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Abstract 

Over the last few years, the industrial dependency to operate induction motors and 

generators has been significantly increased. In this instance, it is necessary to monitor the state 

of induction (asynchronous) machines, as the motor/generators will face with overloading, 

under-voltage, overvoltage, or even catastrophic failures over the course of their operation. To 

address this important concern, a fault forecasting architecture using machine learning 

techniques is studied and developed over the motor/generator vibration signature in this thesis. 

Initially, mathematical modeling is provided to find the normal and abnormal parameters, and 

also explore the vibrational frequencies along with the analytical analysis for motor/generators. 

The Föppl/Jeffcot’s rotor modeling system is employed for rotor vibration modeling; however, 

the transformer core and winding vibration model was considered as a basic theory for the stator 

core and winding of the motor/generator in an analytical approach. To emulate a faulty 

condition over an induction motor in this thesis, an experimental setup is designed and 

developed. The voltage excitation condition for induction motor along with single phasing are 

considered to be the fault types and examined practically in the laboratory to conduct 

experiments and collect vibrational data. Afterwards, 1D Convolutional Neural Network 

(CNN) model is constructed for accurately detecting faults. The MSE of voltage excitation 

prediction was obtained as 0.000426, whereas the highest fault detection accuracy of single 

phasing reveled to be 99.58%. 
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Chapter 1 – Introduction 

Induction (asynchronous) motors have various applications, and their significant roles 

in industry, electricity generation, and renewable energy wind power plants are crucial for 

utility managers and operators. They also have quite well-known benefits such as easy, cost-

effective operation, reliability, and efficiency. However, different faults such as overloading, 

under-voltage or overvoltage, short-circuit, and phase disconnections prevent the proper 

operation of these devices. Along with the cost, operational limitations and motor/generator 

availabilities are essential for the industry. Hence, the induction motor/generators are 

considered a key component in a wide range of industrial processes [1] – [5].  

There are two types of techniques - online and offline analyses - that are utilized to 

evaluate motor states. Lately, the online analysis method is predominantly used because online 

methods are now an interest of technical societies as they continuously assist in machine 

monitoring. This method also comprises data from current, voltage, vibration, and temperature. 

Accordingly, vibration analysis is the most widespread and convenient method compared to 

others for observing the real-time condition of rotating machines. In order to avoid impeding 

the proper operation of motor/generators, it is worthy of developing a system that can identify 

the failure. The necessity of the system primarily relates to industry and manufacture [6] – [11].  

1.1.Aims and Objectives 

The main aim of this project is to implement a system that can evaluate and analyze a 

real-time condition of the motor/generator using a signature of vibration signal and machine 

learning methods. The system is supposed to be able to identify motor excitation voltage, such 

as under-voltage and overvoltage. Furthermore, to determine the motor's normal state and 

abnormal state using one-phase disconnection is also planned to be studied. It helps to define 

device failures early on before they become catastrophic incidents. In the same way, this work 

focuses on researching and creating accurate prediction vibration signals for asynchronous 
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motors/generators similar to those found in experiments. Through conducting experimental 

measurements, several case studies will be implemented to explore the motor's under-voltage 

and overvoltage situations and phase disconnections. The collected data will be utilized to 

create predictive models for voltage prognosis. The model with the highest accuracy should be 

selected as the prediction model. The following objectives are planned to be performed to 

achieve the main aim: 

 to perform a literature review to understand the basics of the vibration analysis 

methods along with indicating state of the art, 

 to create a mathematical model for motor/generator vibration analysis, 

 to build an experimental setup and collect vibration signal data, 

 to develop a code for forecasting the state of induction motors, 

 to make a model selection based on hyperparameters and come up with a desirable 

solution in motor/generator prognosis. 

1.2.Literature review 

1.2.1. Motor/generator - asynchronous machines 

 Asynchronous or induction motors are classified into two groups. Induction motors are 

available in single and three-phase configurations. A single-phase asynchronous motor can be 

powered by a single-phase alternating current source. However, the three-phase asynchronous 

motor is able to be connected to a three-phase AC power source. To achieve certain goals, such 

as implementing a program for identifying failures, it is essential to acquire relevant data. In 

this step, it is crucial to identify the motor/generator type and its habit under the operational 

condition to analyze its data later experimentally and precisely in prognosis. Van and Yang [3] 

developed a cost-effective vibration measurement analysis over a single-phase induction motor. 

They proposed that data-driven and model-based techniques help to increase the accuracy of 

prediction ability. Moreover, in [12], the authors implemented a prognostic system to forecast 
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the wear condition of asynchronous machines. Single-phase motors are mainly utilized in 

household applications and small industrial workshops, and their defects and faults can be 

addressed with their private owners, or even their replacement might be economical. In contrast, 

three-phase motors have mainly professional and industrial applications, and their failure is 

vital for utility management or operators. Korkua et al. [11] described three-phase induction 

motor fault detecting using vibration signal analysis. Accordingly, the necessity to identify 

failures in the three-phase asynchronous motor is critical [11] – [23].  

1.2.1.1. Motor fault types 

 There are some specific fault categories that might occur only in single- or three-phase 

motors. For instance, overvoltage, under-current, under-voltage, overload, and over-

temperature might occur for single- or three-phase motors/generators, while a phase 

disconnection can be initiated in three-phase induction motors/generators. Nevertheless, the 

most representative fault types will be discussed in this section. The authors in [4], [13], [15], 

[24] discussed about the broken rotor bar/fault. In addition, in [6], [18], [25], researchers stated 

that the vibration spectrum could be used to detect motor/generator failure. It means that during 

motor operation in a normal state, the vibration signature is aligned and adjusted to a specific 

vibrational frequency; however, during the fault, the main vibrational frequency might be 

altered from its original value [7], [21], [26]. Another common fault is an unbalanced load 

operational condition. According to [14], [16] – [18], unbalanced load conditions will affect the 

three-phase induction motors negatively. Moreover, it has significant effects on temperature 

rise and may lead to insulation failure in motors or may substantially decrease motor efficiency 

[7], [11], [22]. Obviously, it is similar to generators. The authors in [17], [18], [24] investigated 

the third failure type, which is bearing fault. The bearing fault initiates due to electro erosion 

and deterioration of spinning elements [20], [21], [26], and it is quite common in 

motors/generators. The last popular common fault type in induction machines is the stator fault 
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[3], [12], [24]. A stator fault may occur due to insulation degradation. During insulation 

degradation, the possibility of short-circuit faults would be considerably increased [4], [6], [26]. 

Consequently, this degradation may result in a short circuit between the conductor turns. To 

sum up, this fault implies a flow of a huge amount of current, which can disturb the motor and 

the system [11], [21], [22]. 

1.2.1.2. Vibration analysis 

 To develop a system that is able to perform motor/generator fault prognosis, vibrational 

signal analysis can be considered as a fast and non-destructive solution. According to [7], 

vibration elements are particularly essential for evaluating the state of an induced 

electromagnetic engine system at the frequencies of line, twice line, and twice slip. A fair 

understanding and proper knowledge of the motor/generator physical factors, which can cause 

vibration in the device, is essential in identifying induction engine issues, associated with the 

functioning of electromagnetic systems. In [6], the authors have considered that the analysis 

can be performed based on two data steps process; the first is collecting the relevant information 

to fault prognosis, while the second is analyzing the data for diagnosing. Initially, it is essential 

to know how vibration occurs. It arises when the inherent frequency of the machine is close to 

the frequency of the force applied to the stator [7], [27], [28]. Therefore, the authors in [11] 

employed current signature analysis (CSA) based on stator current for fault detection analysis. 

In [11], vibration detection techniques using accelerometers with low power consumption are 

highly recommended and concluded as an economical solution. Moreover, a study by [26] 

explained auto-extract useful information from vibrational signals that describe an induction 

generator's operational status using a Deep Belief Network (DBN)-based technique. It is 

intended to monitor the motor automatically and intelligently, which is an integral component 

of a wide spectrum of manufacturing machinery. The DBN model utilizes an effective learning 

technique termed greedy layer-wise formation and is structured using layered Restricted 
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Boltzmann Machines (RBMs). Vibration signals are used to implement the DBN easily, and 

outputs from activation functions in trained networks are among the qualities necessary for 

problem detection. Once we compare this technique with other existing methods for induction 

motor’s defect diagnostics, such as wavelet transformation, the proposed approach may deduce 

features from the vibration signal directly in order to evaluate the motor/generator condition, 

which is very accurate. The efficacy of the suggested technique for diagnostics of induction 

motor failures was validated by experiments [7], [26], [28]. 

1.2.2. Forecasting techniques 

 Artificial intelligence (AI) is an imitation of human intelligence using machines. 

Machine learning (ML) is the part of AI that concentrates on using data and algorithms to 

simulate a human learning. It can be used to predict, classify, cluster and associate objects. 

Furthermore, ML algorithms can build the model that predicts and makes decisions using the 

dataset, which is also known as training data. It can contribute to improve, develop and solve 

many problems. There are numerous types and algorithms of ML. These algorithms can be 

classified in reinforcement, semi-supervised, unsupervised and supervised types. From ML 

methods, Artificial Neural Networks (ANN) is an interconnected group of nodes with weights 

and activation functions and resemble the learning process of a biological brain learning [28]. 

For instance, using the ANN structure, Rahman et al. [22] have employed recording, 

monitoring, analysis, and classification of motor vibration data in MATLAB. They concluded 

that the usage of simple features and ANN structure could effectively classify different fault 

types of motor. 

 Convolutional Neural Network (CNN) is one of the main deep learning methods for 

processing data [29]. Furthermore, it is trendy in image processing, as it is suitable and effective 

to process matrix data [8], [9], [28]. The authors in [15] built a system that could diagnose an 

induction motor fault based on CNN. In their research, vibration signal data were collected, and 
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these values were fed into the CNN and employed in the diagnosis of faults. Experimental 

measurement and simulation were used to verify this method. In addition, Shao et al. [29] 

consolidated that the CNN is considered a powerful method. The proposed system can process 

multiple signals in a single iteration. The process begins with signal reception and multiple 

signals are then transformed into a time-frequency distribution (TFD). The proposed 

architecture was applied to TFD and was used to predict the condition of the induction motor 

using a fully connected layer. Another study [24] used CNN that shows an improvement in 

accuracy of 3-10% over the conventional techniques, such as Wavelet Transform, Fast Fourier 

Transform (FFT) and Hilbert Transforms. Additionally, Liu et al. [30] stated that the CNN has 

achieved good performances in various application domains.  

 A study by [21] described a new induction motor defect detection method based on 

machine learning with single and multiple electric and mechanical defects. Two signal 

processing approaches are proposed for the extraction of features: matching pursuit (MP) and 

discrete wavelet transforms (DW). They also employed K-Nearest Neighbor (KNN). 

Consequently, the fine KNN and Gaussian SVM, bagged trees, and weighted and subspace 

KNN classifiers yielded presumably high percent accuracy classifications for fault diagnosis of 

motors [18]. Another study [10] used a deep recurrent neural network (RNN) to capture the 

hidden patterns of vibration time series in order to predict the fault of the transformer in the 

early stages. The findings of this technique demonstrated a positive prediction of voltage 

excitation because the relative absolute error (RAE) equals 0.56%. Additionally, inter-turn 

faults revealed some RNN issues with an RAE of 17.58%. 
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Chapter 2 - Mathematical Model 

The asynchronous motor consists of two main components, a rotor and a stator. 

Moreover, both will be discussed separately as they are isolated physically. The Föppl/Jeffcot’s 

rotor modeling system [31] is employed for rotor vibration modeling. However, the stator core 

and winding will be described individually. The transformer core and winding vibration model 

will be considered as a fundamental theory for stator core and winding. 

2.1. Rotor component vibration model 

The research by Jeffcott from 1919 contains the earliest reported fundamental concepts 

of rotor dynamics. Jeffcott validated Föppl's prediction of the existence of a steady supercritical 

solution by 1895 and expanded Foppl's study by considering external damping [32]. The 

Föppl/Jeffcot rotor, often known as the Jeffcot rotor, is a simplified rotor arrangement. It is 

considered that a Jeffcott rotor has a flexible shaft of low mass with a hard disk at the mid-span 

[33], as shown in Figure 1. The inventors created the basic concept of rotor vibration prediction 

and attenuation using a more straightforward rotor system. It is frequently used in the real world 

to analyze increasingly sophisticated rotor-dynamic systems [31].  

 

Figure 1: Rotor model of Föppl/Jeffcott, taken from [31] 
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According to [31], the rotor disk with mass m is positioned at the center of the shaft. 

The shaft is supposed to be massless during the calculation because its mass is ignorable 

compared to the rotor disk with mass m [31]. In this instance, the geometric center of disk C is 

placed at the point (uxC, uyC). However, the disk center mass G is positioned at (uxG, uyG). The 

vector that connects points C and G is the unbalanced eccentricity eu. It depicts the rotor disk’s 

imbalance. Furthermore, the disk’s rotating speed is represented by ω. At time t=0, it is 

considered that eu is parallel with the xaxis. The shaft cross-section of Föppl/Jeffcott single mass 

rotor is appeared in Figure 2. 

 

Figure 2: Shaft cross-section, taken from [31] 

The Föppl/Jeffcott’s lateral bending stiffness is defined by assuming that the rotor disk 

has no effect on the massless shaft's stiffness: 

𝑘𝑠 =
48𝐸𝐼

𝐿3
        (2.1) 

where I denotes the shaft area moment of inertia, L denotes the distance between the bearings, 

E is the beam’s elastic modulus. Furthermore, the inertia I can be represented with D, which 

indicates the diameter of the cylindrical shaft: 

𝐼 =
𝜋𝐷4

64
        (2.2) 
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It was further assumed that at the rotor mid-span, the effective damping influence on 

the displacement of the disk is minimal. Thus, the constant of damping is cs. The damping and 

inertial forces that created by the deformation of the shaft operate on the disk under the 

assumption that the shaft is massless. The motion's lateral equations along the x and y axes are 

found to be: 

𝑚�̈�𝑥𝐺 = −𝑘𝑆𝑢𝑥𝐶 − 𝑐𝑠�̇�𝑥𝐶        (2.3) 

𝑚�̈�𝑦𝐺 = −𝑘𝑆𝑢𝑦𝐶 − 𝑐𝑠�̇�𝑦𝐶        (2.4) 

The usage of the rotor angle of rotation ωt and the geometric center C can be used to 

rewrite the coordinates of the disk's mass center: 

𝑢𝑦𝐺 = 𝑢𝑦𝐶 + 𝑒𝑢 sin(𝜔𝑡)       (2.5) 

𝑢𝑥𝐺 = 𝑢𝑥𝐶 + 𝑒𝑢 cos(𝜔𝑡)      (2.6) 

The motion equations for the Jeffcott rotor was obtained by inserting the second time 

derivative of (2.5) and (2.6) equations into (2.3) and (2.4) 

𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 + 𝑐𝑠�̇�𝑥𝐶 = 𝑚𝑒𝑢𝜔2 cos(𝜔𝑡)     (2.7) 

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 + 𝑐𝑠�̇�𝑦𝐶 = 𝑚𝑒𝑢𝜔2 sin(𝜔𝑡)     (2.8) 

The gyroscopic effects operating on the rotor are not included in this model since the 

bearings are assumed to be endlessly rigid, and the disk of rotor does not tilt. 

2.1.1. Damped Free Vibration  

The vibration response of the rotor of Jeffcott was explored with a non-zero effective 

shaft dampening impact on the system. In this case, the motion equation (2.7) and (2.8) 

becomes: 
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𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 + 𝑐𝑠�̇�𝑥𝐶 = 0       (2.9) 

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 + 𝑐𝑠�̇�𝑦𝐶 = 0                                                   (2.10) 

The solutions to the (2.9) and (2.10) systems of second order derivatives are as: 

𝑢𝑥𝐶 = 𝐴𝑥𝑒𝑠𝑡       (2.11) 

𝑢𝑦𝐶 = 𝐴𝑦𝑒𝑠𝑡       (2.12) 

The equations (2.13) and (2.14) were obtained by substituting the above mentioned 

solutions into (2.9) and (2.10) 

(𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠)𝐴𝑥𝑒𝑠𝑡 = 0       (2.13) 

(𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠)𝐴𝑦𝑒𝑠𝑡 = 0       (2.14) 

If the equation for the damped characteristic applies, these equations apply to any initial 

condition: 

𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠 = 0       (2.15) 

The system's damped eigenvalues are represented as, 

𝑠1,2 = −
𝑐𝑠

2𝑚
± 𝑗√

𝑘𝑠

𝑚
− (

𝑐𝑠

2𝑚
)      (2.16) 

Moreover, the system of rotor is typically undamped, this means: 

𝑐𝑠

2𝑚
<

𝑘𝑠

𝑚
       (2.17) 

The damping ratio 𝜍 determines as, 

𝜍 =
𝑐𝑠

2𝑚𝜔𝑛
       (2.18) 
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Once the system becomes over damped, the effective damping’s ratio cs to the critical 

value is represented by this value. Thus, equations (2.13) and (2.14) can be rewritten in a 

different way 

𝑠1,2 = −𝜍𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜍2      (2.19) 

The damped natural frequency is the imaginary component of s, 

𝜔𝑑 = 𝜔𝑛√1 − 𝜍2      (2.20) 

The damping coefficient of 0.1 is usually considered necessary for the machine's safe 

operation. The linear combination of the (2.11), (2.12) and (2.16) is discovered to be the final 

solution to the underdamped free vibration 

𝑢𝑥𝐶 = 𝑒−𝜍𝜔𝑛𝑡(𝐴𝑥1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑥2𝑒−𝑗𝜔𝑛𝑡) = 

𝑒−𝜍𝜔𝑛𝑡(𝐵𝑥1 cos(𝜔𝑛𝑡) + 𝐵𝑥2 sin(𝜔𝑛𝑡))  (2.21) 

𝑢𝑦𝐶 = 𝑒−𝜍𝜔𝑛𝑡(𝐴𝑦1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑦2𝑒−𝑗𝜔𝑛𝑡) = 

𝑒−𝜍𝜔𝑛𝑡(𝐵𝑦1 cos(𝜔𝑛𝑡) + 𝐵𝑦2 sin(𝜔𝑛𝑡))  (2.22) 

The Axi and Ayi values, as well as Bxi and Byi values, are dependent on the rotor's starting 

state. 

 

Figure 3: An underdamped system's typical response, taken from [31] 
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2.1.2. Un-damped Free Vibration 

When the eu=0 and cs=0 are negligible, the un-damped free vibration analysis considers 

rotor vibration. Therefore, the equations in (2.7) and (2.8) are modified to 

𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 = 0      (2.23) 

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 = 0      (2.24) 

This second order homogeneous system has the following solution: 

𝑢𝑥𝐶 = 𝐴𝑥𝑒𝑠𝑡       (2.25) 

𝑢𝑦𝐶 = 𝐴𝑦𝑒𝑠𝑡       (2.26) 

For a number of complicated constant s. The initial condition of the rotor disk yields the 

values of the constants Ax and Ay. Equations (2.27) and (2.28) are obtained by substituting the 

solution in equations (22.5), (2.26) into equations (2.23) and (2.24) 

𝑚𝑠2𝐴𝑥𝑒𝑠𝑡 + 𝑘𝑆𝐴𝑥𝑒𝑠𝑡 = (𝑚𝑠2 + 𝑘𝑆)𝐴𝑥𝑒𝑠𝑡 = 0    (2.27) 

𝑚𝑠2𝐴𝑦𝑒𝑠𝑡 + 𝑘𝑆𝐴𝑦𝑒𝑠𝑡 = (𝑚𝑠2 + 𝑘𝑆)𝐴𝑦𝑒𝑠𝑡 = 0    (2.28) 

If the un-damped characteristic equation holds, for any value of Ax and Ay, the foregoing 

equations apply, 

𝑚𝑠2 + 𝑘𝑆 = 0       (2.29) 

Solving (2.29) equivalency for the complex constant s, the equation (2.30) result is 

derived, 

𝑠1,2 = ±𝑗𝜔𝑛        (2.30) 

The shaft's natural frequency is represented by ωn, which is calculated as, 
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𝜔𝑛 = √
𝑘𝑠

𝑚
= √

48𝐸𝐼

𝐿3𝑚
       (2.31) 

Furthermore, the system's un-damped critical speed is determined as 

𝜔𝑐𝑟 = ±𝜔𝑛       (2.32) 

The un-damped free vibration's final solutions are  

𝑢𝑥𝐶 = 𝐴𝑥1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑥2𝑒−𝑗𝜔𝑛𝑡 = 

𝐵𝑥1 cos(𝜔𝑛𝑡) + 𝐵𝑥2 sin(𝜔𝑛𝑡) (2.33) 

𝑢𝑦𝐶 = 𝐴𝑦1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑦2𝑒−𝑗𝜔𝑛𝑡 = 

𝐵𝑦1 cos(𝜔𝑛𝑡) + 𝐵𝑦2 sin(𝜔𝑛𝑡) (2.34) 

For certain Ax and Ay, or Bx and By values that may be determined based on the rotor's 

beginning circumstances. 

2.2. Stator vibration model 

2.2.1. Stator core vibration model 

Magnetostriction is the primary cause of stator core vibration [34]. It is the term used to 

describe the length change in a ferromagnetic material after being magnetized [35]. The stator 

core vibration explosion to the magnetic field is represented by equation (2.35) 

𝑈0 sin(𝜔𝑡) = −𝑁𝑤𝐴𝑐
𝑑𝐵

𝑑𝑡
,      (2.35) 

where U0 is presented the applied voltage to the winding, Nw is the winding turns’ number. 

Moreover, ω is the angular frequency, Ac is the cross-section area, whereas the magnetic 

induction is provided by B. As a result, the magnetic induction can be examined as follows: 

𝐵 =
−𝑈0

𝑁𝑤𝐴𝑐
∫ sin(𝜔𝑡)𝑑𝑡 =

𝑈0

𝑁𝑤𝐴𝑐𝜔
cos(𝜔𝑡) = 𝐵0 cos(𝜔𝑡)  (2.36) 
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where B0 is the induction magnitude as the maximum value. B0 is equal to or less than Bs; that 

is induction’s saturation level 

𝐵0 =
𝑈0

𝑁𝑤𝐴𝑐𝜔
≤ 𝐵𝑠      (2.37) 

Furthermore, magnetic induction and field density are linked by magnetic permeability. 

𝐵 = 𝜇𝐻       (2.38) 

where H is the intensity and µ is the permeability of magnetic. The saturated magnetic intensity 

is Hc, which is found when H reaches the highest value: 

𝐵𝑠 = 𝜇𝐻𝑐       (2.39) 

Therefore, the magnetic intensity of saturated induction and the field intensity of applied 

magnetics may be calculated as 

𝐵 =
𝐵𝑠

𝐻𝑐
𝐻        (2.40) 

By substituting (2.36) for (2.40), the field intensity of applied magnetics is acquired, 

𝐻 =
𝐻𝑐𝐵0

𝐵𝑠
cos(𝜔𝑡)      (2.41) 

Any variations in the core laminate length are triggered by changes in the magnetic field 

strength. As a result, the maximum movement of the core laminate owing to field intensity 

variations is provided by 

𝑥𝑐𝑜𝑟𝑒 =
𝑑𝐿

𝐿
=

𝜆𝑠

𝐻𝑐
2 ∫ 𝐻𝑑𝐻 =

2𝜆𝑠

𝐻𝑐
2 ∫ |𝐻|𝑑𝐻 =

𝜆𝑠𝐻2

𝐻𝑐
2

𝐻

0

𝐻

−𝐻
=

𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2 𝐵0

2 cos2(𝜔𝑡) =

𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2 (

𝑈0

𝑁𝑤𝐴𝑐𝜔
)

2

𝑐𝑜𝑠2(𝜔𝑡) =
𝜆𝑠𝑈0

2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2𝜔2 𝑐𝑜𝑠2(𝜔𝑡)   (2.42) 

Here λs is presented as the magnetostriction highest value. As a result, the acceleration 

of the core laminates is calculated as follow: 
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�̈�𝑐𝑜𝑟𝑒 =
𝑑2𝑥𝑐𝑜𝑟𝑒

𝑑𝑡2 = −
2𝜆𝑠𝐿𝑈0

2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2 cos(2𝜔𝑡)   (2.43) 

The value of the core vibration of the stator is directly proportional to the voltage square 

of excitation, as shown by equation (2.43). In addition, the frequency of the vibration of the 

core is matched to the voltage fundamental frequency's second harmonic order.  

2.2.2. Stator winding vibration model 

Winding vibration is created by the electromagnetic force induced by the leaking 

magnetic flux, Bleakage, passing through the winding and its current. The direction of 

electromagnetic force can be adjusted, and as a result, the direction of mechanical force can be 

changed. Furthermore, the winding can be mechanically modeled using springs. As a result, 

winding vibrations can be studied using the spring-force model. As a result, two distinct 

outcomes can be assumed. 

2.2.2.1. Free vibration without damping factor 

In the absence of external limitations, any impulse force strike can cause the stator 

winding to travel vertically. The stator winding will naturally oscillate since there is an 

uncontrolled movement. The unit extension of the spring factor, k, represents the relationship 

between the movement and applied force, and the equation is produced as, 

𝐹 = −𝑘𝑥       (2.44) 

where F denotes force, whereas x denotes displacement. The force equation is achieved as 

follows when the spring weight is taken into account, and a single impulse is delivered to the 

spring: 

𝑚𝑎 = 𝐹′ = 𝑊 − 𝐹 = 𝑊 − (𝑊 + 𝑘𝑥)   (2.45) 
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The winding weight is indicated by W, while a is the factor of acceleration. Then, 

Equation (2.45) can be rewritten as 

𝑚𝑎 =
𝑊

𝘨
𝑎 =

𝑊

𝘨
�̈� = 𝑊 − (𝑊 + 𝑘𝑥)   (2.46) 

The gravity acceleration is denoted by the letter g. The equation for motion of natural 

winding is found by rearranging (2.46): 

𝑊

𝘨
�̈� + 𝑘𝑥 = 0,   �̈� +

𝘨

𝑊
𝑘𝑥 = 0    (2.47) 

The result of modification of (2.47) is 

𝘨𝑘

𝑊
= 𝛼2,   �̈� + 𝛼2𝑥 = 0.     (2.48) 

The differential equation (2.48) has the following solution: 

𝑥1 = 𝐶1cos(𝛼𝑡) + 𝐶2sin(𝛼𝑡)     (2.49) 

where C1 and C2 are the starting condition constants, and α is provided by 

𝛼 =
2𝜋

𝜏𝑛
, 𝜏𝑛 = 2𝜋√

𝛿𝑠𝑡

𝘨
,   𝑓𝑛 =

1

2𝜋
√

𝘨

𝛿𝑠𝑡
   (2.50) 

when the damping component is neglected, ƒn signifies the natural oscillation frequency of the 

spring. 

2.2.2.2. Free vibration with damping factor 

Natural oscillation of the winding is prevented when the damping factor for the motion 

of winding owing to the impulsive force is considered. The damping factor may be able to avoid 

the winding's fast oscillation. In this instance, the winding motion equation of winding is: 

𝑊

𝘨
�̈� = 𝑊 − (𝑊 + 𝑘𝑥) − 𝑐�̇�.     (2.51) 
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The motion of winding with damping factor is derived by rearranging (2.51): 

𝑊

𝘨
�̈� + 𝑐�̇� + 𝑘𝑥 = 0      (2.52) 

where c is the constant damping factor provided by the starting condition. Modification of 

(2.52) yields 

�̈� +
𝘨𝑐

𝑊
�̇� +

𝘨𝑘

𝑊
𝑥 = 0,      (2.53) 

�̈� + 2𝛽�̇� + 𝛼2𝑥 = 0,
𝘨𝑐

𝑊
= 2𝛽.    (2.54) 

The linear differential equation (2.54) can be solved in one way: 

𝑥 = 𝑒𝜇𝑡      (2.55) 

Here t denotes the current time. Thus, µ is derived by (2.56) 

𝜇2 + 2𝛽𝜇 + 𝛼2 = 0,     (2.56) 

From which 

𝜇 = −𝛽 ± √𝛽2 − 𝛼2.     (2.57) 

Because the square root value in (2.57) becomes negative when α2>β2. Thus, α2-β2 has 

a positive value (2.58) 

𝛼1
2 = 𝛼2 − 𝛽2      (2.58) 

The roots of equation (2.56) are derived in this format as 

μ1 = −β + jα1, μ2 = −β − jα1    (2.59) 

As a result, two distinct solutions for (2.55) can be calculated: 

𝑥1 =
𝐶1

2
(𝑒𝜇1𝑡 + 𝑒𝜇2𝑡) = 𝐶1𝑒−𝛽𝑡cos(𝛼1𝑡),      
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𝑥2 =
𝐶2

2𝑗
(𝑒𝜇1𝑡 − 𝑒𝜇2𝑡) = 𝐶2𝑒−𝛽𝑡sin(𝛼1𝑡),    (2.60) 

Finally, in the second case, the winding displacement is provided as 

𝑥 = 𝑒−𝛽𝑡(𝐶1cos(𝛼1𝑡) + 𝐶2sin(𝛼1𝑡))     (2.61) 

The bases in equation (2.57) will become real and negative when α2<β2. Furthermore, 

the displacement is derived as  

𝑥 = 𝐶1𝑒𝜇1𝑡 + 𝐶2𝑒𝜇2𝑡     (2.62) 

In winding movement, there is no such thing as a periodic term for α2<β2, as shown by 

equation (2.62). As a result, the winding won't oscillate. 

The excitation voltage square and current square values are proportional to the 

magnitudes of the stator core and winding vibrations, according to vibration modeling of the 

stator of a motor/generator. Furthermore, both the core and the winding vibrate at a fundamental 

frequency of 2ω, where the current and voltage signal fundamental frequencies are specified as 

ω. As a result, once the motor/generator is in service, it is theoretically expected that it will be 

possible to acquire a sinusoidal time series with a frequency of 2ω for core and winding 

vibrations. 
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Chapter 3 – Methodology and Experimental Study  

It is critical to investigate electrical faults because electrical disruptions are practical 

rather than permanent mechanical faults. Electrical disruptions have almost no effect on rotor 

insulation due to the presence of a squirrel-cage rotor [36]; hence, experimental measurements 

are only performed over the motor stator. This demonstrates the rotor's durability and capacity 

to remain unaffected by electrical problems. Consequently, rotor vibration is only dependent 

on the shaft's natural frequency, according to Jeffcott's rotor model. As a result, the stator 

winding insulation and core vibrations have the highest impact on motor performance.  

Voltage excitation is one of the most common electrical issues. Likewise, unbalanced 

supply voltage due to overvoltage and under-voltage will make three-phase electrical 

appliances riskier [37]. Under-voltage and overvoltage are types of voltage excitation that are 

studied in this research work. During the under-voltage condition, once the voltage decreases, 

the current would be increased. Alternatively, the current will take a lower value when the 

voltage takes a higher value. It means that when an under-voltage fault develops, the induction 

motor will consume a large current. Consequently, the coils will be damaged due to overheating 

[38]. On the contrary, if an overvoltage is developed, insulation failure is the risk as the 

insulation can tolerate its nominal and maximum breakdown voltage levels. The overvoltage 

also causes a high current value to flow from the primary or stator coil of an induction motor 

and causes winding failure [39]. 

The following fault type that is studied in this thesis is single-phase disconnection (two-

phase operation). For single-phase disconnection in the supply system of the induction motor, 

the asynchronous motor will continue to operate with the other two phases. This condition is 

known as single phasing. In this instance, the unbalanced current in the stator winding causes 

torque fluctuation and irregular vibration in the motor. Moreover, overheating can cause severe 

damage to motor insulation [40]. Taking everything into account, two cases have been 
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considered in this thesis. There are voltage excitation, which is under-voltage and overvoltage 

of motor/generator with and without load, and single phasing with and without load, 

respectively. 

3.1. Experimental setup 

To collect vibration signal data, a practical setup was assembled and demonstrated in 

Figure 4, where different components were utilized. There is a three-phase squirrel-cage 

asynchronous motor, model M4-EV, Kistler vibration sensor, and DEWE 43 DAQ (data 

acquisition) system. Furthermore, the power supply, transformer, and two switches were 

utilized. A detailed description of each piece of equipment and its connections is provided in 

the further part. 

 

Figure 4: Experimental setup 

The rated power of the model M4-EV induction motor is P = 500 W. Additionally, the 

rated voltage is V = 400/230 V, whereas frequency f = 50 Hz, as shown in Fig A.1 (see 

Appendix A). The transformer was used to imitate a grid model. In addition, the switches were 

employed to facilitate connection and disconnection of the circuit along with emulating the 

single phasing occurrence. However, the main measuring device is the DEWE 43 DAQ. It is 

connected to the three-dimensional vibration sensor Kistler. It is attached to the surface of the 

motor stator, as shown in Figure A.2 (see Appendix A). After the assembling of all elements, 
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the acquisition of data was started. The data collection was under three cases with load and no 

load conditions. There are overvoltage, under-voltage, and phase disconnections. The different 

values of voltage will be applied and obtained the vibration signal in the time domain. In the 

beginning, overvoltage and under-voltage scenarios were examined. For the under-voltage, the 

following voltage values were employed: 320V, 340V, 360V, 380V, and 400V. It means 80%, 

85%, 90%, 95% and 100% of the rated voltage. However, for the overvoltage, 420V and 440V 

were performed, respectively. During data collection for overvoltage, it was crucial to conduct 

it for only 2-3 seconds, due to overstress condition on insulation media for the test object [39]. 

Finally, phase disconnections were considered as the last scenario. In this case, a single-phase 

disconnection was examined. The switches were used to emulate this condition over the motor. 

Indeed, one phase was disconnected during motor operation, and the data was collected and 

compared with the normal operational condition. Furthermore, another motor with the same 

characteristics was connected to the motor paly as a generator or to emulate a load for our motor 

under test. The previous procedure was repeated to acquire data with load conditions. 

3.2 Data preparation 

The first case study is the motor in under and over excitations with a load and with no 

load conditions. In this instance, the input of the 1D CNN model is the vibration signals of the 

motor stator, whereas the output is the value of the voltage applied to the motor. The acquired 

data were segmented by 80 samples per segment. It means that 1 second consists of 50 segments 

data. The data were randomly shuffled, and divided into 60 percent training, 20 percent 

validation, and 20 percent test sets in order to train, evaluate and test the model performance, 

respectively. 

The second case study is a disconnection of a single phase supply from the motor with 

a load and without load conditions. The input contains vibration signals from the motor stator. 

However, the output is represented as “0” and “1”. In this case, “0” means a normal state, and 
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“1” is called the abnormal state, when one phase is disconnected during the motor operation. 

40 samples of data were considered per segment and 1 second consisted of 100 segment of data. 

The data were shuffled at random and divided into three sets: 60% for training, 20% for 

validation, and 20% for test, respectively. All observations were normalized by dividing the 

maximum values of input and output. Hence, the data were scaled between -1 and 1. 

3.3. Convolutional Neural Networks 

CNN is the architecture that is included in the class of ANN for processing data, which 

has a grid-like topology, such as time series data or images [41] – [43]. The convolutional layers 

are the fundamental building blocks of CNN architecture [43], [44]. The kernel is a 

multidimensional array of parameters learned by the backpropagation learning algorithm. Each 

CNN layer uses a kernel to convolve the multidimensional array of input. These 

multidimensional arrays are referred to as tensors in the context of DL.  

Let X and Y denote the three dimensional (3-D) input tensor and 3-D output tensor, 

respectively, whereas K represents the 4-D kernel tensor. Convolving K over X is obtained by 

computing the output feature map Y [45], [46]. This is given as: 

𝑌𝑙,𝑚,𝑛 = ∑ 𝑋𝑖,𝑚+𝑗−1,𝑛+𝑘−1𝐾𝑙,𝑖,𝑗,𝑘𝑖,𝑗,𝑘     (3.1) 

where the indices are elements of the multidimensional arrays X, K, and Y, and the summation 

is over all valid indices. When a network contains multiple convolutional layers, the output 

feature map of one layer is used as the input to the next layer [46]. 

3.3.1. Architecture of 1D CNN  

The CNN involves layers such as input, convolutional, pooling, flatten, fully connected, 

and output (Figure 5) [47]. The convolution layer receives the input features. A filter is applied 

to an input feature in the convolution layer to create a feature map. The results are activated 

using an activation function. The convolution layer's output is fed into the pooling layer, which 

reduces the size of the feature map. The data from the pooled feature map is fed into a flattened 
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layer, which converts it to a one-dimensional array that can be fed into the next layer. The fully 

connected layer receives the flattened layer output. The weights are used to process the data in 

the fully connected layer. The output of the fully connected layer is fed into the output layer 

[47], [48]. 

 
Figure 5: One-dimensional CNN architecture, taken from [47] 

After the convolutional operation, activation functions such as the tanh function, 

sigmoid function, or Rectified Linear Unit (ReLU) transform the output value nonlinearly [49]-

[52]. The equations of activation functions [49] can be defined as: 

sigmoid = 𝜙(𝑥) =
𝑒𝑥

1+𝑒𝑥     (3.2) 

tanh = 𝜙(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥      (3.3) 

ReLU = 𝜙(𝑥) = max(𝑥, 0)     (3.4) 
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More complex activation function, such as Leaky ReLU [53], has the same 

characteristics as ReLU. It has fast training and low computational cost. So, the ReLU leakage 

function [53] can be determined by (3.5), 

Leaky ReLU = 𝜙(𝑥) = {
𝛼𝑥 →   𝑥 ≤ 0

𝑥 →   𝑥 > 0
   𝜙′(𝑥) = {

𝑥 →   𝑥 ≤ 0
1 →   𝑥 > 0

   (3.5) 

The Leaky ReLU is used as the activation function in the convolution layer. The 

activation function is not applied to the remaining layers. 

3.4 Tuning of hyperparameters  

Estimating the appropriate value of hyperparameters for a learning algorithm is an 

essential stage and is known as a hyperparameter tuning. The number of filters, learning rate, 

and kernel size hyperparameters are selected for tuning [54]. 

The following assumptions are used to define the CNN hyperparameter space: the batch 

size of 32, epochs from 1 to 100 without early stopping, no more than 3 convolutional layers, 

the learning rates of 0.001 and 0.0001 with Adam optimizer [55], the number of filters 32, 

64,128 for an increasing filter pattern, and 256, 128, 64 for a decreasing filter pattern. Moreover, 

the size of kernels is considered to be 2 to 5. The Leaky ReLU activation function, the 

convolutional operation, and the max-pooling operation are all present in each layer (except for 

the last convolutional layer). The above assumptions set the cardinality of the space of 

hyperparameters to 4800: 100 (epoch size) × 6 (filters) × 4 (kernel size) × 2 (learning rate). 1D 

CNN models were trained using this hyperparameter space and the model with the best 

performance on validation set was then identified. For the CNN models both MSE and MAE 

were recorded, although MSE was used for model selection. 

3.5. Implementation 

All computations were done on a standard PC with an NVIDIA GeForce GTX 1660Ti 

graphical processing unit. Furthermore, this PC has an AMD Ryzen 5 4600H processor with a 

RAM capacity of 16.0 GB. 
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3.6. Evaluation Metrics 

3.6.1. Mean Absolute Error (MAE) 

The measure of the absolute difference between two continuous variables can be 

measured using MAE and is defined as 

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑎𝑣𝑖 − 𝑝𝑣𝑖)2𝑁

𝑖=1     (3.9) 

where 𝑁 is the number of test data sets, 𝑎𝑣𝑖 and 𝑝𝑣𝑖 are actual and predicted values, respectively.  

3.6.2. Mean Squared Error (MSE) 

A mean squared error is defined as the squared difference between the actual and 

predicted values. 

𝑀𝑆𝐸 =
1

𝑁
∑ |𝑎𝑣𝑖 − 𝑝𝑣𝑖|

𝑁
𝑖=1     (3.10) 

where 𝑁, 𝑎𝑣𝑖 and 𝑝𝑣𝑖 are the number of test data sets, actual value and predicted value, 

respectively.   
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Chapter 4 – Testing and Results 

In this thesis, two different case studies were examined for the collection data. There 

are motor voltage excitation and single phasing faults with load and no load conditions, 

respectively. 

4.1. Experimental measurements 

4.1.1. Motor under and over excitations with load and no load condition 

 The supply voltage was changed from 80% to 110% with a 5% step shift to find how 

the vibration signal would be altered when the excitation voltage is changed; see Table 1. The 

vibration signals were gathered using a three-dimensional Kistler vibration sensor. The stator 

core and winding vibrations accelerate primarily in one dimension. Therefore, vibration 

readings of only one dimension were chosen. Data were acquired at a frequency of 20 kHz. 

Consequently, while exporting data from DewesoftX software to ease signal processing, the 

sample rate was decreased to 4 kHz. It means 4000 data samples per second were derived. The 

vibration readings for no load conditions are illustrated in Figure 6. 

Table 1: Excitation voltages of experimental motor 

Excitation Voltage % 80 85 90 95 100 105 110 

Injected Voltage [V] 320 340 360 380 400 420 440 
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Figure 6: Vibration signals for different excitations 

4.1.2. Single phasing of Motor with load and no load condition 

The second case study used a switch to examine vibration data and signal processing to 

recognize the motor's single phasing. The motor's vibration under load and no load conditions 

were utilized for training a model throughout this procedure while the motor was in service. 

The generated model was used to predict the state of the motor; precisely, whether it is in a 

normal state or an abnormal state. An abnormal state means when one phase is disconnected. 

Similar to the previous case, the sampling rate of the observations was 20 kHz. The vibration 

sampling rate was decreased to 4 kHz and exported from the DewesoftX software. The vibration 

signals of normal and abnormal states are shown in Figure 7. 

 
(a) 

 
(b) 

Figure 7: Time-series vibration signals, (a) abnormal state, (b) normal state 
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4.2. 1D CNN model outputs 

One-dimensional CNN models were developed for four different cases: voltage 

excitation with load and no load conditions, and single phasing with load and no load 

conditions. The scripts for each model are shown in Appendix B.  

4.2.1. Voltage excitation with load condition 

As mentioned before (Section 3.4), the best 1D CNN model was selected on the lowest 

MSE achieved on validation set. Table 2 shows the top 10 outcomes of the model selection 

stage. The complete list of models presented in Table 2 is shown in Table C.1. (see Appendix 

C). In Table 2, F[fi1,.., fin] represents the structure of the CNN classifier with fi denoting the 

number of filters in layer 𝑖, and K[h] identifying the kernel size [height] used in all layers. Table 

2 provides that the best model for voltage excitation prognosis has the following structure: 

F[256, 128, 64], K[5] (the model highlighted in bold in the table). According to Table 2, the 

MSE and MAE of voltage excitation prediction with load condition equal to 0.000426 and 

0.014925, respectively. 

Table 2: The selected CNN architecture based on the lowest MSE of voltage 

excitation prediction with load condition 

CNN architectures Learning rate MSE MAE 

F[256, 128, 64], K[5] 0.001 0.000426 0.014925 

F[32, 64, 128], K[5] 0.001 0.000454 0.015796 

F[256, 128, 64], K[4] 0.001 0.000459 0.016186 

F[32, 64], K[5] 0.001 0.000468 0.016406 

F[256, 128], K[5] 0.001 0.000468 0.01635 

F[32, 64, 128], K[3] 0.001 0.00048 0.01617 

F[256, 128, 64], K[3] 0.001 0.000513 0.017176 

F[32, 64, 128], K[4] 0.001 0.00052 0.016868 

F[256, 128], K[3] 0.001 0.000569 0.017961 

F[32, 64, 128], K[2] 0.001 0.000602 0.018408 

 

More detailed information about the structure of the best 1D CNN model can be found 

in Table 3. The architecture has 215839 parameters. 
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Table 3: The CNN model used for the analysis of load condition model F [256, 128, 64], 

K(5) 

Index Layer type Output shape Number of parameters 

1 Conv1D [86, 256] 1536 

2 MaxPooling1D [43, 256] 0 

3 Conv1D [39, 128] 163968 

4 MaxPooling1D [19, 128] 0 

5 Conv1D [15, 64] 41024 

6 MaxPooling1D [7, 64] 0 

7 Flatten [448] 0 

8 Dense [20] 8980 

9 Dense [15] 315 

10 Dense [1] 16 

 

4.2.2. Voltage excitation with no load condition 

According to Table 4, it can be seen that the model that shows the lowest MSE value 

for voltage excitation with no load condition has the following structure: F[256, 128], K[5] (the 

model highlighted in bold in the table). The MSE and MAE of the constructed model equal to 

0.001637 and 0.028586, respectively. The full list of models shown in Table 4 is illustrated in 

Table C.2. (see Appendix C).  

Table 4: The selected CNN architecture based on the lowest MSE of voltage 

excitation prediction with no load condition 

CNN architectures Learning rate MSE MAE 

F[256, 128], K[5] 0.001 0.001637 0.028586 

F[256, 128], K[4] 0.001 0.001748 0.029672 

F[32, 64], K[5] 0.001 0.001754 0.030453 

F[32, 64], K[4] 0.001 0.001808 0.031603 

F[256], K[5] 0.001 0.001829 0.03071 

F[32, 64, 128], K[5] 0.001 0.001844 0.031011 

F[256], K[4] 0.001 0.001892 0.032975 

F[256, 128], K[3] 0.001 0.001895 0.031669 

F[32, 64], K[3] 0.001 0.001902 0.032656 

F[256, 128, 64], K[3] 0.001 0.001936 0.033202 

 

Table 5 shows more detailed information about the structure of this constructed 1D 

CNN model. It has 2 convolutional layers with the max-pooling operation, and the output is 

flattened. There are 215839 parameters in this model. 
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Table 5: The CNN model used for the analysis of no load condition model F [256, 128], 

K(5) 

Index Layer type Output shape Number of parameters 

1 Conv1D [86, 256] 1536 

2 MaxPooling1D [43, 256] 0 

3 Conv1D [39, 128] 163968 

4 MaxPooling1D [19, 128] 0 

5 Flatten [2432] 0 

6 Dense [20] 48660 

7 Dense [15] 315 

8 Dense [1] 16 

 

4.2.3. Single phasing with load condition 

The result of the model selection stage is shown in Table 6. The final selected  CNN 

structure of single phasing of the motor is chosen based on the obtained highest accuracy. 

Furthermore, Table 6 presents that the best model has the following structure: F[256, 128], K[5] 

(the model highlighted in bold in the table). The highest accuracy is equal to 99.58%. The 

comprehensive list of models represented in Table 6 is demonstrated in Table C.3. (see 

Appendix C). 

Table 6: The selected CNN architecture based on the highest accuracy of single 

phasing with load condition 

CNN architectures Learning rate MSE Accuracy 

F[256, 128], K[5] 0.001 0.003807 0.99589 

F[32, 64, 128], K[5] 0.001 0.00415 0.995205 

F[256, 128, 64], K[4] 0.001 0.004002 0.993151 

F[256, 128, 64], K[5] 0.001 0.004501 0.993151 

F[32, 64], K[3] 0.001 0.010146 0.992466 

F[32, 64], K[4] 0.001 0.008963 0.992466 

F[32], K[5] 0.001 0.011745 0.992466 

F[256], K[5] 0.001 0.008244 0.992466 

F[32, 64], K[5] 0.001 0.006903 0.991781 

F[32, 64, 128], K[3] 0.001 0.007522 0.991096 

 

Furthermore, Table 7 displays detailed information about the CNN model’s structure. 

In this table, Conv1D, MaxPooling1D and Leaky ReLU activation are used to describe 

convolutional operations. The number of total parameters is 183775. 
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Table 7: The CNN model used for the analysis of load condition model F [256, 128], K(5) 

Index Layer type Output shape Number of parameters 

1 Conv1D [36, 256] 1536 

2 MaxPooling1D [18, 256] 0 

3 Conv1D [14, 128] 163968 

4 MaxPooling1D [7, 128] 0 

5 Flatten [896] 0 

6 Dense [20] 17940 

7 Dense [15] 315 

8 Dense [1] 16 

 

4.2.4. Single phasing with no load condition 

Table 8 shows the results of the model selection strategy for one phase disconnection 

with no load condition. Additionally, Table 8 tabulates that the best model has the following 

structure: F[256, 128], K[4] (the model highlighted in bold in the table). The highest accuracy 

of the constructed model is equal to 96.85%. The complete list of models provided in Table 8 

is elucidated in Table C.4. (See Appendix C). Moreover, the models with a similar number of 

filters and the kernel size (F[256, 128, 64], K[5]), but with the different learning rate show the 

same accuracy, which is equal to 96.3% (the third and fourth model in Table 8).  

Table 8: The selected CNN architecture based on the highest accuracy of single 

phasing with no load condition 

CNN architectures Learning rate MSE Accuracy 

F[256, 128], K[4] 0.001 0.029235397 0.96851852 

F[256, 128, 64], K[4] 0.001 0.026971309 0.96851852 

F[256, 128, 64], K[5] 0.001 0.031876623 0.96388889 

F[256, 128, 64], K[5] 0.0001 0.031008006 0.96388889 

F[32, 64, 128], K[3] 0.001 0.030320587 0.96296296 

F[32, 64], K[4] 0.001 0.033742246 0.96296296 

F[32], K[5] 0.001 0.031903708 0.96296296 

F[32], K[4] 0.001 0.031805294 0.96203704 

F[32, 64], K[5] 0.001 0.031429155 0.96203704 

F[256, 128], K[3] 0.001 0.033781285 0.96111111 

 

According to Table 8, we observe that the 5 top models have at least 2 convolutional 

layers and the minimum kernel size is 3. Moreover, Table 9 contains detailed information about 

the CNN model's structure. The number of total parameters is 201951. 
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Table 9: The CNN model used for the analysis of no load condition model F [256, 128], 

K(4) 

Index Layer type Output shape Number of parameters 

1 Conv1D [117, 256] 1280 

2 MaxPooling1D [58, 256] 0 

3 Conv1D [55, 128] 131200 

4 MaxPooling1D [27, 128] 0 

5 Flatten [3456] 0 

6 Dense [20] 69140 

7 Dense [15] 315 

8 Dense [1] 16 

 

 The average fault detection accuracy of single phasing with and without load were 

achieved as 95.53% and 98.24%. It shows that the applied data were collected very precisely. 

Chen et al. [51] developed several ML models for rolling bearing fault diagnosis. There are the 

1D CNN model, Long-Short Term Memory (LSTM) model, KNN model, Multilayer 

Perceptron (MLP) model, SVM model and Random Forest model. Additionally, the data were 

collected by similar experimental grid system using motor with different characteristics. In [51], 

researchers used the tanh function as an activation function in 1D CNN model. The average 

accuracy of the developed approach was achieved by 99.2%. It shows that in the future the 

usage of this activation function might give results that are more accurate. Nevertheless, the 

average accuracies of LSTM, MLP, Random Forest, KNN and SVM are 86.79%, 78.59%, 

68.38%, 33.26% and 71.05%, respectively. Overall, in this research 1D CNN model was 

constructed for accurately detecting faults. The average accuracy of the proposed model is 

higher by 11.45%, 19.65%, 29.86%, 64.98% and 27.19% than those 5 models, which were 

described earlier. These outcomes prove the effectiveness of the proposed approach. 
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Chapter 5 – Conclusion and Future Work 

 This thesis aimed to study and implement a computational pipeline that can evaluate 

and analyze a real-time condition assessment for motors/generators using vibrational signal 

signature and machine learning techniques. Vibration analysis, along with the other available 

methods for motor/generator assessments was discussed. The problems with the rotational 

machines' failure were provided, and a wide literature review was conducted to clarify the state 

of the art in this technology. Mathematical modeling of motor/generator vibrations was 

analyzed and technically reviewed, and different methodologies to evaluate vibrational signals 

were explained. It was also explained and discussed that the rotor and stator would oscillate 

based on the fundamental frequency of the injected signal (voltage). Having this mathematical 

model, we are able to examine the accuracy of the measurement results and validate the 

practical data and sensors' performance in motor/generator vibration analysis. In addition, 

voltage excitation faults such as under-voltage and overvoltage fault types along with single 

phasing of motors were practically examined for motor fault emulation and prognosis. To 

achieve the main goal of this research thesis, a single-dimensional CNN was selected as the 

model of choice for motor vibrational signal evaluation. The reason to choose a single-

dimensional CNN model was the flexibility and minimal data preprocessing. In this regard, 

after conducting an exhaustive search over a prespecified hyperparameter space, a single CNN 

predictor was created for each fault type. To summarise the results, the MSE of voltage 

excitation prediction with load, and no load conditions were 0.000426 and 0.001637, 

respectively. Furthermore, the fault detection accuracy of single phasing with load and no load 

conditions were achieved as 99.58 and 96.85%. The concept of building a system that can 

diagnose motor faults is worthwhile, as it would be able to address many industrial requests 

worldwide. 
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The future direction of the research will focus on considering bearing fault types, such 

as inner and outer race and cage faults. Moreover, devices from the Internet of Things (IoT) 

can be examined to monitor the state of the motor/generator remotely.  
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Appendix 

Appendix A 

 
Figure A.1 The three phase induction motor 

 

 
Figure A.2 The connection of vibration sensor 
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Appendix B. Code scripts 
 

Voltage excitation with load condition 

import pandas as pd 

from numpy import array 

import numpy as np 

from tensorflow import keras 

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten 

from tensorflow.keras.metrics import RootMeanSquaredError 

from random import shuffle 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

ind_file = ['80','85','90','95','100','105','110'] 

max_nl = 0 

dataset = [] 

for ind in ind_file: 

    f_nl = pd.read_csv(ind+'_L.csv') 

    volt_nl = float(ind)*np.ones((len(f_nl['AI 7']),1)) 

    if max_nl>=np.amax(np.array(f_nl[['AI 7']])): 

      max_nl = max_nl 

    else: 

      max_nl = np.amax(np.array(f_nl[['AI 7']]))  

    f_nl = np.concatenate((f_nl[['AI 7']], volt_nl),axis=1)  

    dataset.append(f_nl) 

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,110]) 

print(dataset) 

print(dataset.shape) 

from random import shuffle,seed 

def split_sequences(sequences, steps): 

    X, Y = list(), list() 

    data = list() 

    for i in range(len(sequences)): 

        head = i*steps 

        end = head + steps 

        if end > len(sequences): 

            break 

        sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1] 

        data.append([sequence_x,sequence_y]) 

    seed(42) 

    shuffle(data) 

    for x, y in data: 

        X.append(x) 

        Y.append(y) 

    return np.array(X), np.array(Y) 

 

steps = 80 

X, y = split_sequences(dataset, steps) 

features = 1 

import tensorflow as tf 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) 
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result = list() 

def get_model(X_train, X_test, y_train, y_test): 

    adams = [0.001, 0.0001] 

    num_filters = [[32],[32,64],[32,64,128], 

                 [256],[256,128],[256,128,64]] 

    kernel_sizes = [2, 3, 4, 5] 

    for adam in adams: 

        print('adam: ',adam) 

        for kernel_size in kernel_sizes: 

            print('kernel_size:', kernel_size) 

            for num_filter in num_filters: 

                print('filter,', num_filter) 

                file = 'File_cnn' 

                for fil in num_filter: 

                    file = file + '_' + str(fil) 

                file = file + str(adam) + '_kernel_size_' + str(kernel_size) 

                model_name = file + '.h5' 

                model = keras.Sequential() #initialization 

                if len(num_filter) == 1: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features))) 

                    model.add(MaxPooling1D()) 

                elif len(num_filter) == 2:          

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                     

                elif len(num_filter) == 3: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

        model.add(Flatten()) 

        model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

             model.compile(loss='mse',  

                optimizer=tf.keras.optimizers.Adam(learning_rate=adam), 

                metrics=['accuracy']) #compilation 

    history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split = 

0.2) 

   yhat = model.predict(X_test) 
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   mse = mean_squared_error(y_test, yhat) 

   mae = mean_absolute_error(y_test, yhat) 

     print('MSE: ', mse) 

   print('MAE:', mae) 

               result.append([file, mse, mae]) 

df = pd.DataFrame(result, columns = ['model','MSE', 'MAE']) 

df.sort_values(by='MSE') 

df.to_excel('CNN_Load_model.xlsx') 

get_model(X_train, X_test, y_train, y_test) 

 

Voltage excitation with no load condition 

import pandas as pd 

from numpy import array 

import numpy as np 

from tensorflow import keras 

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten 

from tensorflow.keras.metrics import RootMeanSquaredError 

from random import shuffle 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

ind_file = ['80','85','90','95','100','105','110'] 

max_nl = 0 

dataset = [] 

for ind in ind_file: 

    f_nl = pd.read_csv(ind+'_nL.csv')     

    volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1)) 

    if max_nl>=np.amax(np.array(f_nl[['AI 6']])): 

      max_nl = max_nl 

    else: 

      max_nl = np.amax(np.array(f_nl[['AI 6']]))  

    f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1)  

    dataset.append(f_nl) 

    #len_nl = len(volt_nl) 

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,110]) 

#print(f_nl.shape) 

print(dataset) 

print(dataset.shape) 

from random import shuffle,seed 

def split_sequences(sequences, steps): 

    X, Y = list(), list() 

    data = list() 

    for i in range(len(sequences)): 

        head = i*steps 

        end = head + steps 

        if end > len(sequences): 

            break 

        sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1] 

        data.append([sequence_x,sequence_y]) 

    seed(42) 

    shuffle(data) 

    for x, y in data: 
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        X.append(x) 

        Y.append(y) 

    return np.array(X), np.array(Y) 

 

steps = 80 

X, y = split_sequences(dataset, steps) 

features = 1 

# summarize the data 

import tensorflow as tf 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) 

result = list() 

def get_model(X_train, X_test, y_train, y_test): 

    adams = [0.001, 0.0001] 

    num_filters = [[32],[32,64],[32,64,128], 

                 [256],[256,128],[256,128,64]] 

    kernel_sizes = [2, 3, 4, 5] 

    for adam in adams: 

        print('adam: ',adam) 

        for kernel_size in kernel_sizes: 

            print('kernel_size:', kernel_size) 

            for num_filter in num_filters: 

                print('filter,', num_filter)               

                file = 'File_cnn' 

                for fil in num_filter: 

                    file = file + '_' + str(fil) 

                file = file + str(adam) + '_kernel_size_' + str(kernel_size) 

                model_name = file + '.h5' 

                model = keras.Sequential() #initialization                 

                if len(num_filter) == 1: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features))) 

                    model.add(MaxPooling1D()) 

                elif len(num_filter) == 2: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D())    

                elif len(num_filter) == 3: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 
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        model.add(Flatten()) 

        model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

             model.compile(loss='mse',  

                optimizer=tf.keras.optimizers.Adam(learning_rate=adam), 

                metrics=['accuracy']) #compilation 

    history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split = 

0.2) 

   yhat = model.predict(X_test) 

   mse = mean_squared_error(y_test, yhat) 

   mae = mean_absolute_error(y_test, yhat) 

     print('MSE: ', mse) 

   print('MAE:', mae) 

               result.append([file, mse, mae]) 

df = pd.DataFrame(result, columns = ['model','MSE', 'MAE']) 

df.sort_values(by='MSE') 

df.to_excel('CNN_noLoad_model.xlsx') 

get_model(X_train, X_test, y_train, y_test) 

 

Single phasing with load condition 

import pandas as pd 

from numpy import array 

import numpy as np 

from tensorflow import keras 

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten 

from tensorflow.keras.metrics import RootMeanSquaredError 

from random import shuffle 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

ind_file = ['0','1'] 

max_nl = 0 

dataset = [] 

for ind in ind_file: 

    f_nl = pd.read_csv(ind+'_L.csv') 

    volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1)) 

    if max_nl>=np.amax(np.array(f_nl[['AI 6']])): 

      max_nl = max_nl 

    else: 

      max_nl = np.amax(np.array(f_nl[['AI 6']]))     

    f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1)    

    dataset.append(f_nl) 

    #len_nl = len(volt_nl) 

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,1]) 

#print(f_nl.shape) 

print(dataset) 

from random import shuffle,seed 

def split_sequences(sequences, steps): 

    X, Y = list(), list() 

    data = list() 

    for i in range(len(sequences)): 
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        head = i*steps 

        end = head + steps 

        if end > len(sequences): 

            break 

        sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1] 

        data.append([sequence_x,sequence_y]) 

    seed(42) 

    shuffle(data) 

    for x, y in data: 

        X.append(x) 

        Y.append(y) 

    return np.array(X), np.array(Y) 

 

steps = 40 

X, y = split_sequences(dataset, steps) 

features = 1 

# summarize the data 

import tensorflow as tf 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) 

result = list() 

def get_model(X_train, X_test, y_train, y_test): 

    adams = [0.001, 0.0001] 

    num_filters = [[32],[32,64],[32,64,128], 

                 [256],[256,128],[256,128,64]] 

    kernel_sizes = [2, 3, 4, 5] 

    for adam in adams: 

        print('adam: ',adam) 

        for kernel_size in kernel_sizes: 

            print('kernel_size:', kernel_size) 

            for num_filter in num_filters: 

                print('filter,', num_filter)               

                file = 'File_cnn' 

                for fil in num_filter: 

                    file = file + '_' + str(fil) 

                file = file + str(adam) + '_kernel_size_' + str(kernel_size) 

                model_name = file + '.h5' 

                model = keras.Sequential() #initialization                 

                if len(num_filter) == 1: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features))) 

                    model.add(MaxPooling1D()) 

                elif len(num_filter) == 2: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D())    

                elif len(num_filter) == 3: 
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                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

        model.add(Flatten()) 

        model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

             model.compile(loss='mse',  

                optimizer=tf.keras.optimizers.Adam(learning_rate=adam), 

                metrics=['accuracy']) #compilation 

    history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split = 

0.2) 

   yhat = model.predict(X_test) 

   mse = mean_squared_error(y_test, yhat) 

   n=0 

               for i in range(len(yhat)): 

         yhat[i]=round(float(yhat[i])) 

         if yhat[i] == y_test[i]: 

             n=n+1 

   accuracy = n/len(yhat) 

     print('MSE: ', mse) 

               print('accuracy: ', accuracy) 

               result.append([file, mse, accuracy]) 

df = pd.DataFrame(result, columns = ['model','MSE', 'Accuracy']) 

df.sort_values(by='MSE') 

df.to_excel('CNN_Load_1phase_model.xlsx') 

get_model(X_train, X_test, y_train, y_test) 

 

Single phasing with no load condition 

import pandas as pd 

from numpy import array 

import numpy as np 

from tensorflow import keras 

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten 

from tensorflow.keras.metrics import RootMeanSquaredError 

from random import shuffle 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

ind_file = ['0','1'] 

max_nl = 0 

dataset = [] 

for ind in ind_file: 

    f_nl = pd.read_csv(ind+'_nL.csv') 

    volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1)) 

    if max_nl>=np.amax(np.array(f_nl[['AI 6']])): 
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      max_nl = max_nl 

    else: 

      max_nl = np.amax(np.array(f_nl[['AI 6']]))  

    f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1) 

    dataset.append(f_nl) 

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,1]) 

from random import shuffle,seed 

def split_sequences(sequences, steps): 

    X, Y = list(), list() 

    data = list() 

    for i in range(len(sequences)): 

        head = i*steps 

        end = head + steps 

        if end > len(sequences): 

            break 

        sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1] 

        data.append([sequence_x,sequence_y]) 

    seed(42) 

    shuffle(data) 

    for x, y in data: 

        X.append(x) 

        Y.append(y) 

    return np.array(X), np.array(Y) 

 

steps = 40  

X, y = split_sequences(dataset, steps) 

features = 1 

import tensorflow as tf 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8) 

result = list() 

def get_model(X_train, X_test, y_train, y_test): 

    adams = [0.001, 0.0001] 

    num_filters = [[32],[32,64],[32,64,128], 

                 [256],[256,128],[256,128,64]] 

    kernel_sizes = [2, 3, 4, 5] 

    for adam in adams: 

        print('adam: ',adam) 

        for kernel_size in kernel_sizes: 

            print('kernel_size:', kernel_size) 

            for num_filter in num_filters: 

                print('filter,', num_filter)               

                file = 'File_cnn' 

                for fil in num_filter: 

                    file = file + '_' + str(fil) 

                file = file + str(adam) + '_kernel_size_' + str(kernel_size) 

                model_name = file + '.h5' 

                model = keras.Sequential() #initialization                 

                if len(num_filter) == 1: 
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                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features))) 

                    model.add(MaxPooling1D()) 

                elif len(num_filter) == 2: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D())    

                elif len(num_filter) == 3: 

                    model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size, 

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

                    model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size, 

activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

                    model.add(MaxPooling1D()) 

        model.add(Flatten()) 

        model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

        model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1))) 

             model.compile(loss='mse',  

                optimizer=tf.keras.optimizers.Adam(learning_rate=adam), 

                metrics=['accuracy']) #compilation 

    history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split = 

0.2) 

   yhat = model.predict(X_test) 

   mse = mean_squared_error(y_test, yhat) 

   n=0 

               for i in range(len(yhat)): 

         yhat[i]=round(float(yhat[i])) 

         if yhat[i] == y_test[i]: 

             n=n+1 

   accuracy = n/len(yhat) 

     print('MSE: ', mse) 

               print('accuracy: ', accuracy) 

               result.append([file, mse, accuracy]) 

df = pd.DataFrame(result, columns = ['model','MSE', 'Accuracy']) 

df.sort_values(by='MSE') 

df.to_excel('CNN_noLoad_1phase_model.xlsx') 

get_model(X_train, X_test, y_train, y_test) 
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Appendix C 

 
Table C.1: Architecture of voltage unbalances with load condition 

CNN architectures Learning rate MSE MAE 

F[256, 128, 64], K[5] 0.001 0.000426 0.014925 

F[32, 64, 128], K[5] 0.001 0.000454 0.015796 

F[256, 128, 64], K[4] 0.001 0.000459 0.016186 

F[32, 64], K[5] 0.001 0.000468 0.016406 

F[256, 128], K[5] 0.001 0.000468 0.01635 

F[32, 64, 128], K[3] 0.001 0.00048 0.01617 

F[256, 128, 64], K[3] 0.001 0.000513 0.017176 

F[32, 64, 128], K[4] 0.001 0.00052 0.016868 

F[256, 128], K[3] 0.001 0.000569 0.017961 

F[32, 64, 128], K[2] 0.001 0.000602 0.018408 

F[256, 128, 64], K[2] 0.001 0.00061 0.018609 

F[32, 64], K[4] 0.001 0.000628 0.019301 

F[256, 128, 64], K[5] 0.0001 0.00064 0.019742 

F[32, 64, 128], K[5] 0.0001 0.000661 0.019683 

F[256], K[5] 0.001 0.000668 0.019541 

F[32, 64], K[3] 0.001 0.000687 0.020073 

F[256], K[3] 0.001 0.000727 0.020509 

F[32, 64, 128], K[4] 0.0001 0.00073 0.021338 

F[256, 128], K[2] 0.001 0.000748 0.020566 

F[256, 128, 64], K[4] 0.0001 0.000749 0.021432 

F[256], K[4] 0.001 0.000806 0.021753 

F[256, 128], K[4] 0.001 0.000821 0.022442 

F[256, 128], K[4] 0.0001 0.000833 0.022525 

F[32, 64, 128], K[3] 0.0001 0.000847 0.022998 

F[32, 64], K[2] 0.001 0.000875 0.022292 

F[32], K[4] 0.001 0.000921 0.023764 

F[256, 128], K[5] 0.0001 0.000933 0.024526 

F[256, 128, 64], K[3] 0.0001 0.000937 0.024293 

F[32], K[5] 0.001 0.000971 0.023994 

F[32, 64], K[5] 0.0001 0.000972 0.024158 

F[256, 128, 64], K[2] 0.0001 0.000982 0.024174 

F[32], K[3] 0.001 0.000985 0.02409 

F[256, 128], K[3] 0.0001 0.001019 0.024991 

F[32, 64, 128], K[2] 0.0001 0.001022 0.024709 

F[256], K[2] 0.001 0.001043 0.024658 

F[256, 128], K[2] 0.0001 0.001186 0.026787 

F[32, 64], K[3] 0.0001 0.001228 0.027576 

F[32, 64], K[4] 0.0001 0.00141 0.029159 

F[256], K[5] 0.0001 0.001493 0.030138 

F[32, 64], K[2] 0.0001 0.001596 0.031106 

F[32], K[2] 0.001 0.001655 0.031132 

F[256], K[4] 0.0001 0.001701 0.032307 

F[32], K[5] 0.0001 0.001743 0.032918 

F[256], K[3] 0.0001 0.001744 0.032875 

F[32], K[2] 0.0001 0.001779 0.033316 

F[256], K[2] 0.0001 0.001891 0.034107 

F[32], K[3] 0.0001 0.002042 0.035607 

F[32], K[4] 0.0001 0.002067 0.035998 
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Table C.2: Architectures of voltage unbalances with no load condition 

CNN architectures Learning rate MSE MAE 

F[256, 128], K[5] 0.001 0.001637 0.028586 

F[256, 128], K[4] 0.001 0.001748 0.029672 

F[32, 64], K[5] 0.001 0.001754 0.030453 

F[32, 64], K[4] 0.001 0.001808 0.031603 

F[256], K[5] 0.001 0.001829 0.03071 

F[32, 64, 128], K[5] 0.001 0.001844 0.031011 

F[256], K[4] 0.001 0.001892 0.032975 

F[256, 128], K[3] 0.001 0.001895 0.031669 

F[32, 64], K[3] 0.001 0.001902 0.032656 

F[256, 128, 64], K[3] 0.001 0.001936 0.033202 

F[32], K[5] 0.001 0.001952 0.034049 

F[256], K[3] 0.001 0.001954 0.032285 

F[32], K[3] 0.001 0.00196 0.03356 

F[256, 128, 64], K[5] 0.001 0.001978 0.030769 

F[32], K[4] 0.001 0.002021 0.034637 

F[32, 64, 128], K[3] 0.001 0.002029 0.033056 

F[32, 64, 128], K[2] 0.001 0.002068 0.034507 

F[32, 64, 128], K[4] 0.001 0.002068 0.032814 

F[256, 128], K[4] 0.0001 0.002075 0.035617 

F[256, 128, 64], K[4] 0.001 0.002142 0.033801 

F[256], K[2] 0.001 0.002146 0.034853 

F[256, 128], K[3] 0.0001 0.002177 0.036264 

F[256, 128, 64], K[5] 0.0001 0.002199 0.036708 

F[32], K[2] 0.001 0.002209 0.036645 

F[256, 128, 64], K[4] 0.0001 0.002224 0.036929 

F[256, 128, 64], K[2] 0.001 0.002241 0.036106 

F[256, 128], K[2] 0.001 0.002298 0.036218 

F[32, 64, 128], K[5] 0.0001 0.002299 0.037531 

F[256], K[2] 0.0001 0.002327 0.03766 

F[256, 128], K[5] 0.0001 0.002333 0.037897 

F[256, 128, 64], K[2] 0.0001 0.002335 0.03792 

F[256, 128, 64], K[3] 0.0001 0.002498 0.039912 

F[32, 64], K[5] 0.0001 0.002527 0.039707 

F[32, 64], K[2] 0.0001 0.002529 0.039193 

F[32, 64, 128], K[3] 0.0001 0.002591 0.040328 

F[32], K[4] 0.0001 0.00261 0.040612 

F[32, 64], K[2] 0.001 0.002634 0.039592 

F[32], K[2] 0.0001 0.002648 0.040593 

F[32, 64, 128], K[4] 0.0001 0.002649 0.040444 

F[256], K[4] 0.0001 0.002675 0.040855 

F[32, 64], K[3] 0.0001 0.002709 0.041013 

F[32, 64, 128], K[2] 0.0001 0.00275 0.041516 

F[32, 64], K[4] 0.0001 0.002752 0.041788 

F[32], K[5] 0.0001 0.002754 0.041451 

F[256], K[5] 0.0001 0.002821 0.042651 

F[256, 128], K[2] 0.0001 0.002859 0.042312 

F[256], K[3] 0.0001 0.00304 0.043872 

F[32], K[3] 0.0001 0.003076 0.043996 

 

Table C.3: Architectures of single phasing with Load condition 

CNN architectures Learning rate MSE Accuracy 

F[256, 128], K[5] 0.001 0.003807 0.99589 

F[32, 64, 128], K[5] 0.001 0.00415 0.995205 
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F[256, 128, 64], K[4] 0.001 0.004002 0.993151 

F[256, 128, 64], K[5] 0.001 0.004501 0.993151 

F[32, 64], K[3] 0.001 0.010146 0.992466 

F[32, 64], K[4] 0.001 0.008963 0.992466 

F[32], K[5] 0.001 0.011745 0.992466 

F[256], K[5] 0.001 0.008244 0.992466 

F[32, 64], K[5] 0.001 0.006903 0.991781 

F[32, 64, 128], K[3] 0.001 0.007522 0.991096 

F[256], K[4] 0.001 0.011187 0.991096 

F[32, 64, 128], K[4] 0.001 0.00783 0.990411 

F[256, 128, 64], K[2] 0.001 0.008302 0.989726 

F[256, 128], K[4] 0.001 0.007413 0.989041 

F[256, 128, 64], K[5] 0.0001 0.011435 0.989041 

F[32], K[2] 0.001 0.015751 0.988356 

F[32], K[3] 0.001 0.015457 0.988356 

F[32, 64, 128], K[2] 0.001 0.010615 0.987671 

F[256, 128], K[2] 0.001 0.011999 0.986986 

F[256], K[3] 0.001 0.014716 0.985616 

F[256, 128], K[3] 0.001 0.011711 0.985616 

F[256, 128, 64], K[4] 0.0001 0.015574 0.985616 

F[32, 64], K[2] 0.001 0.01464 0.984932 

F[32], K[4] 0.001 0.015923 0.984932 

F[256, 128, 64], K[3] 0.0001 0.01551 0.984247 

F[256], K[2] 0.001 0.020053 0.980822 

F[32, 64, 128], K[2] 0.0001 0.019164 0.980822 

F[32, 64, 128], K[4] 0.0001 0.017261 0.980822 

F[32, 64, 128], K[5] 0.0001 0.0156 0.980822 

F[256, 128], K[5] 0.0001 0.017084 0.980822 

F[256, 128, 64], K[2] 0.0001 0.021054 0.979452 

F[256, 128], K[4] 0.0001 0.017936 0.979452 

F[256, 128, 64], K[3] 0.001 0.017345 0.978767 

F[256], K[5] 0.0001 0.019624 0.978767 

F[256, 128], K[2] 0.0001 0.019808 0.977397 

F[32, 64], K[4] 0.0001 0.020592 0.976712 

F[32, 64, 128], K[3] 0.0001 0.021897 0.976027 

F[32, 64], K[2] 0.0001 0.027842 0.974658 

F[256, 128], K[3] 0.0001 0.021586 0.974658 

F[256], K[3] 0.0001 0.023886 0.973288 

F[32], K[5] 0.0001 0.028562 0.972603 

F[256], K[4] 0.0001 0.025086 0.971233 

F[256], K[2] 0.0001 0.025884 0.970548 

F[32, 64], K[3] 0.0001 0.028491 0.969863 

F[32, 64], K[5] 0.0001 0.026751 0.969863 

F[32], K[4] 0.0001 0.034371 0.965753 

F[32], K[2] 0.0001 0.032284 0.963699 

F[32], K[3] 0.0001 0.037147 0.960959 

    

 

Table C.4: Architectures of single phasing with no Load condition  

CNN architectures Learning 

rate 

MSE Accuracy 

F[256, 128], K[4] 0.001 0.029235397 0.96851852 

F[256, 128, 64], K[4] 0.001 0.026971309 0.96851852 

F[256, 128, 64], K[5] 0.001 0.031876623 0.96388889 

F[256, 128, 64], K[5] 0.0001 0.031008006 0.96388889 

F[32, 64, 128], K[3] 0.001 0.030320587 0.96296296 
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F[32, 64], K[4] 0.001 0.033742246 0.96296296 

F[32], K[5] 0.001 0.031903708 0.96296296 

F[32], K[4] 0.001 0.031805294 0.96203704 

F[32, 64], K[5] 0.001 0.031429155 0.96203704 

F[256, 128], K[3] 0.001 0.033781285 0.96111111 

F[256], K[5] 0.001 0.031465539 0.96111111 

F[32, 64], K[3] 0.001 0.036054997 0.96018519 

F[256, 128], K[3] 0.0001 0.034290784 0.96018519 

F[32, 64, 128], K[2] 0.001 0.031211007 0.95925926 

F[256, 128, 64], K[4] 0.0001 0.033313749 0.95925926 

F[256, 128], K[5] 0.0001 0.03378064 0.95925926 

F[32], K[3] 0.001 0.036557604 0.95833333 

F[32, 64], K[2] 0.001 0.040139392 0.95740741 

F[32, 64, 128], K[5] 0.001 0.032432234 0.95740741 

F[256, 128], K[5] 0.001 0.034485459 0.95740741 

F[256, 128, 64], K[3] 0.0001 0.035660972 0.95740741 

F[32, 64, 128], K[4] 0.0001 0.035453136 0.95740741 

F[256], K[4] 0.001 0.032996154 0.95648148 

F[256], K[3] 0.001 0.03647002 0.95555556 

F[32, 64, 128], K[4] 0.001 0.034756311 0.95555556 

F[256, 128], K[4] 0.0001 0.034059055 0.95555556 

F[32, 64], K[3] 0.0001 0.041210337 0.95462963 

F[32, 64, 128], K[3] 0.0001 0.036421099 0.95462963 

F[256, 128, 64], K[2] 0.001 0.039933187 0.9537037 

F[256, 128, 64], K[2] 0.0001 0.037606554 0.9537037 

F[256], K[3] 0.0001 0.037463399 0.95277778 

F[32, 64], K[4] 0.0001 0.04089261 0.95277778 

F[32, 64, 128], K[5] 0.0001 0.036444928 0.95185185 

F[256, 128], K[2] 0.001 0.043195758 0.95092593 

F[256, 128], K[2] 0.0001 0.040004473 0.95092593 

F[32], K[2] 0.001 0.041427386 0.95 

F[32, 64, 128], K[2] 0.0001 0.039385212 0.95 

F[256], K[4] 0.0001 0.039501479 0.95 

F[256, 128, 64], K[3] 0.001 0.049036758 0.94814815 

F[32, 64], K[2] 0.0001 0.04438209 0.94722222 

F[32], K[5] 0.0001 0.041391855 0.94722222 

F[32, 64], K[5] 0.0001 0.04071304 0.94722222 

F[256], K[5] 0.0001 0.039932136 0.94722222 

F[256], K[2] 0.0001 0.041269461 0.9462963 

F[32], K[3] 0.0001 0.041731378 0.9462963 

F[32], K[4] 0.0001 0.042723607 0.94537037 

F[256], K[2] 0.001 0.047482327 0.94444444 

F[32], K[2] 0.0001 0.044314036 0.94444444 

 


