
MOTOR/GENERATOR FAULT PROGNOSIS USING

VIBRATION SIGNATURE AND FORECASTING

TECHNIQUES

Kuanysh Orynbek, BTech in Electric Power Engineering

Submitted in fulfilment of the requirements

for the degree of Master of Science

in Electrical and Computer Engineering

School of Engineering and Digital Sciences

Department of Electrical and Computer Engineering

Nazarbayev University

53, Kabanbay batyr Avenue,

Nur-Sultan, Kazakhstan, 010000

Supervisor: Mehdi Bagheri

Co-supervisor: Amin Zollanvari

April 2022

2

Declaration

I hereby, declare that this manuscript, entitled "Motor/generator fault prognosis using

vibration signature and forecasting techniques”, is the result of my own work except for

quotations and citations that have been duly acknowledged.

I also declare that, to the best of my knowledge and belief, it has not been previously or

concurrently submitted, in whole or in part, for any other degree or diploma at Nazarbayev

University or any other national or international institution.

Name: Kuanysh Orynbek

Date: April 2022

3

Abstract

Over the last few years, the industrial dependency to operate induction motors and

generators has been significantly increased. In this instance, it is necessary to monitor the state

of induction (asynchronous) machines, as the motor/generators will face with overloading,

under-voltage, overvoltage, or even catastrophic failures over the course of their operation. To

address this important concern, a fault forecasting architecture using machine learning

techniques is studied and developed over the motor/generator vibration signature in this thesis.

Initially, mathematical modeling is provided to find the normal and abnormal parameters, and

also explore the vibrational frequencies along with the analytical analysis for motor/generators.

The Föppl/Jeffcot’s rotor modeling system is employed for rotor vibration modeling; however,

the transformer core and winding vibration model was considered as a basic theory for the stator

core and winding of the motor/generator in an analytical approach. To emulate a faulty

condition over an induction motor in this thesis, an experimental setup is designed and

developed. The voltage excitation condition for induction motor along with single phasing are

considered to be the fault types and examined practically in the laboratory to conduct

experiments and collect vibrational data. Afterwards, 1D Convolutional Neural Network

(CNN) model is constructed for accurately detecting faults. The MSE of voltage excitation

prediction was obtained as 0.000426, whereas the highest fault detection accuracy of single

phasing reveled to be 99.58%.

4

Acknowledgements

Firstly, I would like to express my uttermost gratitude to my supervisors Mehdi Bagheri

and Amin Zollanvari. It has been their supervision and direction throughout my studies, which

has allowed me to successfully complete this two-year Master’s program in Electrical and

Computer Engineering. I am appreciative for their supervision, especially in the areas of power

systems and machine learning. Furthermore, I would like to thank my family and friends for

supporting me from the beginning up to now.

5

Table of Contents

Abstract………………………………………………………………………………………..3

Acknowledgements…………………………………………………………………………....4

List of Abbreviations and Symbols…………………………………………………………..7

List of Tables…………………………………………………………………………………..8

List of Figures………………………………………………………………………………....9

Chapter 1 – Introduction……………………………………………………………………....10

1.1 Aims and Objectives……...…………………………………………………………...10

1.2 Literature review……………………………………………………………………...11

 1.2.1. Motor/generator – asynchronous machines………………………………….…11

 1.2.1.1. Motor fault types……………………………………………………..12

 1.2.1.2. Vibration analysis…………………………………………………….13

 1.2.2. Forecasting techniques…………………………………………………………14

Chapter 2 – Mathematical Model……………………………………………………………...16

2.1 Rotor component vibration model…………………………………………………….16

 2.1.1 Damped free vibration…………………………………………………………..18

 2.1.2 Undamped free vibration………………………………………………………..21

2.2 Stator vibration model...……………………………………………………………....22

 2.2.1 Stator core vibration model……………………………………………………..22

 2.2.2 Stator winding vibration model………………………………………………....24

 2.2.2.1 Free vibration without damping factor………………………………..24

2.2.2.2 Free vibration with damping factor……………….…………………..25

Chapter 3 – Methodology and Experimental Study………………….………………………..28

3.1 Experimental setup……………………………………………………………………29

3.2 Data preparation……………………………………………………………...……….30

3.3 Convolutional Neural Networks...……………………………...……………………..31

 3.3.1 Architecture of 1D CNN...………………………………………..……………..31

3.4 Tuning of hyperparameters……………………………………………………………33

3.5 Implementation ……………………………………………………………………….33

3.6 Evaluation metrics…………………………………………………………………….34

3.5.1 Mean Absolute Error……………………………………………………………34

3.5.2 Mean Squared Error……………………………………………………………..34

Chapter 4 – Testing and Results………………………………………………………………35

4.1 Experimental measurements…………………………………………..……………...35

 4.1.1 Motor under and over excitations with load and no load condition…………….35

4.1.2 Single phasing of Motor with load and no load condition……………………….37

4.2 1D CNN model outputs……………………………………………………………….38

 4.2.1 Voltage excitation with load condition……………………………………..…...38

 4.2.2 Voltage excitation with no load condition…………………………………...….39

 4.2.3 Single phasing with load condition……………………………………………...40

 4.2.4 Single phasing with no load condition………………………………………......41

6

Chapter 5 – Conclusion and Future Work……………………………………………....…….43

Bibliography………………………………………………………………………………....45

Appendix A…………………………………………………………………………………..49

Appendix B…………………………………………………………………………………..50

Appendix C…………………………………………………………………………………..59

7

List of Abbreviations and Symbols

ANN Artificial Neural Network

CNN Convolutional Neural Network

CSA Current Signature Analysis

V Volts

MSE Mean Squared Error

MAE Mean Absolute Error

AC Alternating Current

DBN Deep Belief Network

RBM Restrict Boltzmann Machines

SVM Support Vector Machine

FFT Fast Fourier Transform

DW Discrete Wavelet Transform

MP Matching Pursuit

NN Neural Network

AI Artificial Intelligence

TFD Time Frequency Distribution

KNN K-Nearest Neighbor

RNN Recurrent Neural Network

RAE Relative Absolute Error

DL Deep Learning

1D CNN One-dimensional Convolutional Neural Network

2D CNN Two-dimensional Convolutional Neural Network

8

List of Tables

Table 1: Excitation voltages of experimental motor...……………………………………...…35

Table 2: The selected CNN architecture based on the lowest MSE of voltage excitation

prediction with load condition……….……………………………………………….……….38

Table 3: The CNN model used for the analysis of load condition model C [256,128,64], K(5).39

Table 4: The selected CNN architecture based on the lowest MSE of voltage excitation

prediction with no load condition …………………………………………………..…………39

Table 5: The CNN model used for the analysis of no load condition model C [256, 128], K(5).40

Table 6: The selected CNN architecture based on the highest accuracy of single phasing with

load condition …………………………………………………………………..…………….40

Table 7: The CNN model used for the analysis of load condition model C [256, 128], K(5)….41

Table 8: The selected CNN architecture based on the highest accuracy of single phasing with

no load condition ………………………………………………………………….………….41

Table 9: The CNN model used for the analysis of no load condition model C [256, 128], K(4).43

9

List of Figures

Figure 1: Rotor model of Föppl/Jeffcott……………………………………………..………..16

Figure 2: Shaft cross-section……………………………………………………………….....17

Figure 3: An underdamped system's typical response………………………………………..20

Figure 4: Experimental setup……………………………………………………………..…..29

Figure 5: One-dimensional CNN architecture………………………………………...……...32

Figure 6: Vibration signals for different excitations………………………………………….37

Figure 7: Time-series vibration signals, (a) abnormal state, (b) normal state……..……...….37

10

Chapter 1 – Introduction

Induction (asynchronous) motors have various applications, and their significant roles

in industry, electricity generation, and renewable energy wind power plants are crucial for

utility managers and operators. They also have quite well-known benefits such as easy, cost-

effective operation, reliability, and efficiency. However, different faults such as overloading,

under-voltage or overvoltage, short-circuit, and phase disconnections prevent the proper

operation of these devices. Along with the cost, operational limitations and motor/generator

availabilities are essential for the industry. Hence, the induction motor/generators are

considered a key component in a wide range of industrial processes [1] – [5].

There are two types of techniques - online and offline analyses - that are utilized to

evaluate motor states. Lately, the online analysis method is predominantly used because online

methods are now an interest of technical societies as they continuously assist in machine

monitoring. This method also comprises data from current, voltage, vibration, and temperature.

Accordingly, vibration analysis is the most widespread and convenient method compared to

others for observing the real-time condition of rotating machines. In order to avoid impeding

the proper operation of motor/generators, it is worthy of developing a system that can identify

the failure. The necessity of the system primarily relates to industry and manufacture [6] – [11].

1.1.Aims and Objectives

The main aim of this project is to implement a system that can evaluate and analyze a

real-time condition of the motor/generator using a signature of vibration signal and machine

learning methods. The system is supposed to be able to identify motor excitation voltage, such

as under-voltage and overvoltage. Furthermore, to determine the motor's normal state and

abnormal state using one-phase disconnection is also planned to be studied. It helps to define

device failures early on before they become catastrophic incidents. In the same way, this work

focuses on researching and creating accurate prediction vibration signals for asynchronous

11

motors/generators similar to those found in experiments. Through conducting experimental

measurements, several case studies will be implemented to explore the motor's under-voltage

and overvoltage situations and phase disconnections. The collected data will be utilized to

create predictive models for voltage prognosis. The model with the highest accuracy should be

selected as the prediction model. The following objectives are planned to be performed to

achieve the main aim:

 to perform a literature review to understand the basics of the vibration analysis

methods along with indicating state of the art,

 to create a mathematical model for motor/generator vibration analysis,

 to build an experimental setup and collect vibration signal data,

 to develop a code for forecasting the state of induction motors,

 to make a model selection based on hyperparameters and come up with a desirable

solution in motor/generator prognosis.

1.2.Literature review

1.2.1. Motor/generator - asynchronous machines

 Asynchronous or induction motors are classified into two groups. Induction motors are

available in single and three-phase configurations. A single-phase asynchronous motor can be

powered by a single-phase alternating current source. However, the three-phase asynchronous

motor is able to be connected to a three-phase AC power source. To achieve certain goals, such

as implementing a program for identifying failures, it is essential to acquire relevant data. In

this step, it is crucial to identify the motor/generator type and its habit under the operational

condition to analyze its data later experimentally and precisely in prognosis. Van and Yang [3]

developed a cost-effective vibration measurement analysis over a single-phase induction motor.

They proposed that data-driven and model-based techniques help to increase the accuracy of

prediction ability. Moreover, in [12], the authors implemented a prognostic system to forecast

12

the wear condition of asynchronous machines. Single-phase motors are mainly utilized in

household applications and small industrial workshops, and their defects and faults can be

addressed with their private owners, or even their replacement might be economical. In contrast,

three-phase motors have mainly professional and industrial applications, and their failure is

vital for utility management or operators. Korkua et al. [11] described three-phase induction

motor fault detecting using vibration signal analysis. Accordingly, the necessity to identify

failures in the three-phase asynchronous motor is critical [11] – [23].

1.2.1.1. Motor fault types

 There are some specific fault categories that might occur only in single- or three-phase

motors. For instance, overvoltage, under-current, under-voltage, overload, and over-

temperature might occur for single- or three-phase motors/generators, while a phase

disconnection can be initiated in three-phase induction motors/generators. Nevertheless, the

most representative fault types will be discussed in this section. The authors in [4], [13], [15],

[24] discussed about the broken rotor bar/fault. In addition, in [6], [18], [25], researchers stated

that the vibration spectrum could be used to detect motor/generator failure. It means that during

motor operation in a normal state, the vibration signature is aligned and adjusted to a specific

vibrational frequency; however, during the fault, the main vibrational frequency might be

altered from its original value [7], [21], [26]. Another common fault is an unbalanced load

operational condition. According to [14], [16] – [18], unbalanced load conditions will affect the

three-phase induction motors negatively. Moreover, it has significant effects on temperature

rise and may lead to insulation failure in motors or may substantially decrease motor efficiency

[7], [11], [22]. Obviously, it is similar to generators. The authors in [17], [18], [24] investigated

the third failure type, which is bearing fault. The bearing fault initiates due to electro erosion

and deterioration of spinning elements [20], [21], [26], and it is quite common in

motors/generators. The last popular common fault type in induction machines is the stator fault

13

[3], [12], [24]. A stator fault may occur due to insulation degradation. During insulation

degradation, the possibility of short-circuit faults would be considerably increased [4], [6], [26].

Consequently, this degradation may result in a short circuit between the conductor turns. To

sum up, this fault implies a flow of a huge amount of current, which can disturb the motor and

the system [11], [21], [22].

1.2.1.2. Vibration analysis

 To develop a system that is able to perform motor/generator fault prognosis, vibrational

signal analysis can be considered as a fast and non-destructive solution. According to [7],

vibration elements are particularly essential for evaluating the state of an induced

electromagnetic engine system at the frequencies of line, twice line, and twice slip. A fair

understanding and proper knowledge of the motor/generator physical factors, which can cause

vibration in the device, is essential in identifying induction engine issues, associated with the

functioning of electromagnetic systems. In [6], the authors have considered that the analysis

can be performed based on two data steps process; the first is collecting the relevant information

to fault prognosis, while the second is analyzing the data for diagnosing. Initially, it is essential

to know how vibration occurs. It arises when the inherent frequency of the machine is close to

the frequency of the force applied to the stator [7], [27], [28]. Therefore, the authors in [11]

employed current signature analysis (CSA) based on stator current for fault detection analysis.

In [11], vibration detection techniques using accelerometers with low power consumption are

highly recommended and concluded as an economical solution. Moreover, a study by [26]

explained auto-extract useful information from vibrational signals that describe an induction

generator's operational status using a Deep Belief Network (DBN)-based technique. It is

intended to monitor the motor automatically and intelligently, which is an integral component

of a wide spectrum of manufacturing machinery. The DBN model utilizes an effective learning

technique termed greedy layer-wise formation and is structured using layered Restricted

14

Boltzmann Machines (RBMs). Vibration signals are used to implement the DBN easily, and

outputs from activation functions in trained networks are among the qualities necessary for

problem detection. Once we compare this technique with other existing methods for induction

motor’s defect diagnostics, such as wavelet transformation, the proposed approach may deduce

features from the vibration signal directly in order to evaluate the motor/generator condition,

which is very accurate. The efficacy of the suggested technique for diagnostics of induction

motor failures was validated by experiments [7], [26], [28].

1.2.2. Forecasting techniques

 Artificial intelligence (AI) is an imitation of human intelligence using machines.

Machine learning (ML) is the part of AI that concentrates on using data and algorithms to

simulate a human learning. It can be used to predict, classify, cluster and associate objects.

Furthermore, ML algorithms can build the model that predicts and makes decisions using the

dataset, which is also known as training data. It can contribute to improve, develop and solve

many problems. There are numerous types and algorithms of ML. These algorithms can be

classified in reinforcement, semi-supervised, unsupervised and supervised types. From ML

methods, Artificial Neural Networks (ANN) is an interconnected group of nodes with weights

and activation functions and resemble the learning process of a biological brain learning [28].

For instance, using the ANN structure, Rahman et al. [22] have employed recording,

monitoring, analysis, and classification of motor vibration data in MATLAB. They concluded

that the usage of simple features and ANN structure could effectively classify different fault

types of motor.

 Convolutional Neural Network (CNN) is one of the main deep learning methods for

processing data [29]. Furthermore, it is trendy in image processing, as it is suitable and effective

to process matrix data [8], [9], [28]. The authors in [15] built a system that could diagnose an

induction motor fault based on CNN. In their research, vibration signal data were collected, and

15

these values were fed into the CNN and employed in the diagnosis of faults. Experimental

measurement and simulation were used to verify this method. In addition, Shao et al. [29]

consolidated that the CNN is considered a powerful method. The proposed system can process

multiple signals in a single iteration. The process begins with signal reception and multiple

signals are then transformed into a time-frequency distribution (TFD). The proposed

architecture was applied to TFD and was used to predict the condition of the induction motor

using a fully connected layer. Another study [24] used CNN that shows an improvement in

accuracy of 3-10% over the conventional techniques, such as Wavelet Transform, Fast Fourier

Transform (FFT) and Hilbert Transforms. Additionally, Liu et al. [30] stated that the CNN has

achieved good performances in various application domains.

 A study by [21] described a new induction motor defect detection method based on

machine learning with single and multiple electric and mechanical defects. Two signal

processing approaches are proposed for the extraction of features: matching pursuit (MP) and

discrete wavelet transforms (DW). They also employed K-Nearest Neighbor (KNN).

Consequently, the fine KNN and Gaussian SVM, bagged trees, and weighted and subspace

KNN classifiers yielded presumably high percent accuracy classifications for fault diagnosis of

motors [18]. Another study [10] used a deep recurrent neural network (RNN) to capture the

hidden patterns of vibration time series in order to predict the fault of the transformer in the

early stages. The findings of this technique demonstrated a positive prediction of voltage

excitation because the relative absolute error (RAE) equals 0.56%. Additionally, inter-turn

faults revealed some RNN issues with an RAE of 17.58%.

16

Chapter 2 - Mathematical Model

The asynchronous motor consists of two main components, a rotor and a stator.

Moreover, both will be discussed separately as they are isolated physically. The Föppl/Jeffcot’s

rotor modeling system [31] is employed for rotor vibration modeling. However, the stator core

and winding will be described individually. The transformer core and winding vibration model

will be considered as a fundamental theory for stator core and winding.

2.1. Rotor component vibration model

The research by Jeffcott from 1919 contains the earliest reported fundamental concepts

of rotor dynamics. Jeffcott validated Föppl's prediction of the existence of a steady supercritical

solution by 1895 and expanded Foppl's study by considering external damping [32]. The

Föppl/Jeffcot rotor, often known as the Jeffcot rotor, is a simplified rotor arrangement. It is

considered that a Jeffcott rotor has a flexible shaft of low mass with a hard disk at the mid-span

[33], as shown in Figure 1. The inventors created the basic concept of rotor vibration prediction

and attenuation using a more straightforward rotor system. It is frequently used in the real world

to analyze increasingly sophisticated rotor-dynamic systems [31].

Figure 1: Rotor model of Föppl/Jeffcott, taken from [31]

17

According to [31], the rotor disk with mass m is positioned at the center of the shaft.

The shaft is supposed to be massless during the calculation because its mass is ignorable

compared to the rotor disk with mass m [31]. In this instance, the geometric center of disk C is

placed at the point (uxC, uyC). However, the disk center mass G is positioned at (uxG, uyG). The

vector that connects points C and G is the unbalanced eccentricity eu. It depicts the rotor disk’s

imbalance. Furthermore, the disk’s rotating speed is represented by ω. At time t=0, it is

considered that eu is parallel with the xaxis. The shaft cross-section of Föppl/Jeffcott single mass

rotor is appeared in Figure 2.

Figure 2: Shaft cross-section, taken from [31]

The Föppl/Jeffcott’s lateral bending stiffness is defined by assuming that the rotor disk

has no effect on the massless shaft's stiffness:

𝑘𝑠 =
48𝐸𝐼

𝐿3
 (2.1)

where I denotes the shaft area moment of inertia, L denotes the distance between the bearings,

E is the beam’s elastic modulus. Furthermore, the inertia I can be represented with D, which

indicates the diameter of the cylindrical shaft:

𝐼 =
𝜋𝐷4

64
 (2.2)

18

It was further assumed that at the rotor mid-span, the effective damping influence on

the displacement of the disk is minimal. Thus, the constant of damping is cs. The damping and

inertial forces that created by the deformation of the shaft operate on the disk under the

assumption that the shaft is massless. The motion's lateral equations along the x and y axes are

found to be:

𝑚�̈�𝑥𝐺 = −𝑘𝑆𝑢𝑥𝐶 − 𝑐𝑠�̇�𝑥𝐶 (2.3)

𝑚�̈�𝑦𝐺 = −𝑘𝑆𝑢𝑦𝐶 − 𝑐𝑠�̇�𝑦𝐶 (2.4)

The usage of the rotor angle of rotation ωt and the geometric center C can be used to

rewrite the coordinates of the disk's mass center:

𝑢𝑦𝐺 = 𝑢𝑦𝐶 + 𝑒𝑢 sin(𝜔𝑡) (2.5)

𝑢𝑥𝐺 = 𝑢𝑥𝐶 + 𝑒𝑢 cos(𝜔𝑡) (2.6)

The motion equations for the Jeffcott rotor was obtained by inserting the second time

derivative of (2.5) and (2.6) equations into (2.3) and (2.4)

𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 + 𝑐𝑠�̇�𝑥𝐶 = 𝑚𝑒𝑢𝜔2 cos(𝜔𝑡) (2.7)

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 + 𝑐𝑠�̇�𝑦𝐶 = 𝑚𝑒𝑢𝜔2 sin(𝜔𝑡) (2.8)

The gyroscopic effects operating on the rotor are not included in this model since the

bearings are assumed to be endlessly rigid, and the disk of rotor does not tilt.

2.1.1. Damped Free Vibration

The vibration response of the rotor of Jeffcott was explored with a non-zero effective

shaft dampening impact on the system. In this case, the motion equation (2.7) and (2.8)

becomes:

19

𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 + 𝑐𝑠�̇�𝑥𝐶 = 0 (2.9)

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 + 𝑐𝑠�̇�𝑦𝐶 = 0 (2.10)

The solutions to the (2.9) and (2.10) systems of second order derivatives are as:

𝑢𝑥𝐶 = 𝐴𝑥𝑒𝑠𝑡 (2.11)

𝑢𝑦𝐶 = 𝐴𝑦𝑒𝑠𝑡 (2.12)

The equations (2.13) and (2.14) were obtained by substituting the above mentioned

solutions into (2.9) and (2.10)

(𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠)𝐴𝑥𝑒𝑠𝑡 = 0 (2.13)

(𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠)𝐴𝑦𝑒𝑠𝑡 = 0 (2.14)

If the equation for the damped characteristic applies, these equations apply to any initial

condition:

𝑚𝑠2 + 𝑘𝑆 + 𝑐𝑠 = 0 (2.15)

The system's damped eigenvalues are represented as,

𝑠1,2 = −
𝑐𝑠

2𝑚
± 𝑗√

𝑘𝑠

𝑚
− (

𝑐𝑠

2𝑚
) (2.16)

Moreover, the system of rotor is typically undamped, this means:

𝑐𝑠

2𝑚
<

𝑘𝑠

𝑚
 (2.17)

The damping ratio 𝜍 determines as,

𝜍 =
𝑐𝑠

2𝑚𝜔𝑛
 (2.18)

20

Once the system becomes over damped, the effective damping’s ratio cs to the critical

value is represented by this value. Thus, equations (2.13) and (2.14) can be rewritten in a

different way

𝑠1,2 = −𝜍𝜔𝑛 ± 𝑗𝜔𝑛√1 − 𝜍2 (2.19)

The damped natural frequency is the imaginary component of s,

𝜔𝑑 = 𝜔𝑛√1 − 𝜍2 (2.20)

The damping coefficient of 0.1 is usually considered necessary for the machine's safe

operation. The linear combination of the (2.11), (2.12) and (2.16) is discovered to be the final

solution to the underdamped free vibration

𝑢𝑥𝐶 = 𝑒−𝜍𝜔𝑛𝑡(𝐴𝑥1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑥2𝑒−𝑗𝜔𝑛𝑡) =

𝑒−𝜍𝜔𝑛𝑡(𝐵𝑥1 cos(𝜔𝑛𝑡) + 𝐵𝑥2 sin(𝜔𝑛𝑡)) (2.21)

𝑢𝑦𝐶 = 𝑒−𝜍𝜔𝑛𝑡(𝐴𝑦1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑦2𝑒−𝑗𝜔𝑛𝑡) =

𝑒−𝜍𝜔𝑛𝑡(𝐵𝑦1 cos(𝜔𝑛𝑡) + 𝐵𝑦2 sin(𝜔𝑛𝑡)) (2.22)

The Axi and Ayi values, as well as Bxi and Byi values, are dependent on the rotor's starting

state.

Figure 3: An underdamped system's typical response, taken from [31]

21

2.1.2. Un-damped Free Vibration

When the eu=0 and cs=0 are negligible, the un-damped free vibration analysis considers

rotor vibration. Therefore, the equations in (2.7) and (2.8) are modified to

𝑚�̈�𝑥𝐺 + 𝑘𝑆𝑢𝑥𝐶 = 0 (2.23)

𝑚�̈�𝑦𝐺 + 𝑘𝑆𝑢𝑦𝐶 = 0 (2.24)

This second order homogeneous system has the following solution:

𝑢𝑥𝐶 = 𝐴𝑥𝑒𝑠𝑡 (2.25)

𝑢𝑦𝐶 = 𝐴𝑦𝑒𝑠𝑡 (2.26)

For a number of complicated constant s. The initial condition of the rotor disk yields the

values of the constants Ax and Ay. Equations (2.27) and (2.28) are obtained by substituting the

solution in equations (22.5), (2.26) into equations (2.23) and (2.24)

𝑚𝑠2𝐴𝑥𝑒𝑠𝑡 + 𝑘𝑆𝐴𝑥𝑒𝑠𝑡 = (𝑚𝑠2 + 𝑘𝑆)𝐴𝑥𝑒𝑠𝑡 = 0 (2.27)

𝑚𝑠2𝐴𝑦𝑒𝑠𝑡 + 𝑘𝑆𝐴𝑦𝑒𝑠𝑡 = (𝑚𝑠2 + 𝑘𝑆)𝐴𝑦𝑒𝑠𝑡 = 0 (2.28)

If the un-damped characteristic equation holds, for any value of Ax and Ay, the foregoing

equations apply,

𝑚𝑠2 + 𝑘𝑆 = 0 (2.29)

Solving (2.29) equivalency for the complex constant s, the equation (2.30) result is

derived,

𝑠1,2 = ±𝑗𝜔𝑛 (2.30)

The shaft's natural frequency is represented by ωn, which is calculated as,

22

𝜔𝑛 = √
𝑘𝑠

𝑚
= √

48𝐸𝐼

𝐿3𝑚
 (2.31)

Furthermore, the system's un-damped critical speed is determined as

𝜔𝑐𝑟 = ±𝜔𝑛 (2.32)

The un-damped free vibration's final solutions are

𝑢𝑥𝐶 = 𝐴𝑥1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑥2𝑒−𝑗𝜔𝑛𝑡 =

𝐵𝑥1 cos(𝜔𝑛𝑡) + 𝐵𝑥2 sin(𝜔𝑛𝑡) (2.33)

𝑢𝑦𝐶 = 𝐴𝑦1𝑒𝑗𝜔𝑛𝑡 + 𝐴𝑦2𝑒−𝑗𝜔𝑛𝑡 =

𝐵𝑦1 cos(𝜔𝑛𝑡) + 𝐵𝑦2 sin(𝜔𝑛𝑡) (2.34)

For certain Ax and Ay, or Bx and By values that may be determined based on the rotor's

beginning circumstances.

2.2. Stator vibration model

2.2.1. Stator core vibration model

Magnetostriction is the primary cause of stator core vibration [34]. It is the term used to

describe the length change in a ferromagnetic material after being magnetized [35]. The stator

core vibration explosion to the magnetic field is represented by equation (2.35)

𝑈0 sin(𝜔𝑡) = −𝑁𝑤𝐴𝑐
𝑑𝐵

𝑑𝑡
, (2.35)

where U0 is presented the applied voltage to the winding, Nw is the winding turns’ number.

Moreover, ω is the angular frequency, Ac is the cross-section area, whereas the magnetic

induction is provided by B. As a result, the magnetic induction can be examined as follows:

𝐵 =
−𝑈0

𝑁𝑤𝐴𝑐
∫ sin(𝜔𝑡)𝑑𝑡 =

𝑈0

𝑁𝑤𝐴𝑐𝜔
cos(𝜔𝑡) = 𝐵0 cos(𝜔𝑡) (2.36)

23

where B0 is the induction magnitude as the maximum value. B0 is equal to or less than Bs; that

is induction’s saturation level

𝐵0 =
𝑈0

𝑁𝑤𝐴𝑐𝜔
≤ 𝐵𝑠 (2.37)

Furthermore, magnetic induction and field density are linked by magnetic permeability.

𝐵 = 𝜇𝐻 (2.38)

where H is the intensity and µ is the permeability of magnetic. The saturated magnetic intensity

is Hc, which is found when H reaches the highest value:

𝐵𝑠 = 𝜇𝐻𝑐 (2.39)

Therefore, the magnetic intensity of saturated induction and the field intensity of applied

magnetics may be calculated as

𝐵 =
𝐵𝑠

𝐻𝑐
𝐻 (2.40)

By substituting (2.36) for (2.40), the field intensity of applied magnetics is acquired,

𝐻 =
𝐻𝑐𝐵0

𝐵𝑠
cos(𝜔𝑡) (2.41)

Any variations in the core laminate length are triggered by changes in the magnetic field

strength. As a result, the maximum movement of the core laminate owing to field intensity

variations is provided by

𝑥𝑐𝑜𝑟𝑒 =
𝑑𝐿

𝐿
=

𝜆𝑠

𝐻𝑐
2 ∫ 𝐻𝑑𝐻 =

2𝜆𝑠

𝐻𝑐
2 ∫ |𝐻|𝑑𝐻 =

𝜆𝑠𝐻2

𝐻𝑐
2

𝐻

0

𝐻

−𝐻
=

𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2 𝐵0

2 cos2(𝜔𝑡) =

𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2 (

𝑈0

𝑁𝑤𝐴𝑐𝜔
)

2

𝑐𝑜𝑠2(𝜔𝑡) =
𝜆𝑠𝑈0

2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2𝜔2 𝑐𝑜𝑠2(𝜔𝑡) (2.42)

Here λs is presented as the magnetostriction highest value. As a result, the acceleration

of the core laminates is calculated as follow:

24

�̈�𝑐𝑜𝑟𝑒 =
𝑑2𝑥𝑐𝑜𝑟𝑒

𝑑𝑡2 = −
2𝜆𝑠𝐿𝑈0

2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2 cos(2𝜔𝑡) (2.43)

The value of the core vibration of the stator is directly proportional to the voltage square

of excitation, as shown by equation (2.43). In addition, the frequency of the vibration of the

core is matched to the voltage fundamental frequency's second harmonic order.

2.2.2. Stator winding vibration model

Winding vibration is created by the electromagnetic force induced by the leaking

magnetic flux, Bleakage, passing through the winding and its current. The direction of

electromagnetic force can be adjusted, and as a result, the direction of mechanical force can be

changed. Furthermore, the winding can be mechanically modeled using springs. As a result,

winding vibrations can be studied using the spring-force model. As a result, two distinct

outcomes can be assumed.

2.2.2.1. Free vibration without damping factor

In the absence of external limitations, any impulse force strike can cause the stator

winding to travel vertically. The stator winding will naturally oscillate since there is an

uncontrolled movement. The unit extension of the spring factor, k, represents the relationship

between the movement and applied force, and the equation is produced as,

𝐹 = −𝑘𝑥 (2.44)

where F denotes force, whereas x denotes displacement. The force equation is achieved as

follows when the spring weight is taken into account, and a single impulse is delivered to the

spring:

𝑚𝑎 = 𝐹′ = 𝑊 − 𝐹 = 𝑊 − (𝑊 + 𝑘𝑥) (2.45)

25

The winding weight is indicated by W, while a is the factor of acceleration. Then,

Equation (2.45) can be rewritten as

𝑚𝑎 =
𝑊

𝘨
𝑎 =

𝑊

𝘨
�̈� = 𝑊 − (𝑊 + 𝑘𝑥) (2.46)

The gravity acceleration is denoted by the letter g. The equation for motion of natural

winding is found by rearranging (2.46):

𝑊

𝘨
�̈� + 𝑘𝑥 = 0, �̈� +

𝘨

𝑊
𝑘𝑥 = 0 (2.47)

The result of modification of (2.47) is

𝘨𝑘

𝑊
= 𝛼2, �̈� + 𝛼2𝑥 = 0. (2.48)

The differential equation (2.48) has the following solution:

𝑥1 = 𝐶1cos(𝛼𝑡) + 𝐶2sin(𝛼𝑡) (2.49)

where C1 and C2 are the starting condition constants, and α is provided by

𝛼 =
2𝜋

𝜏𝑛
, 𝜏𝑛 = 2𝜋√

𝛿𝑠𝑡

𝘨
, 𝑓𝑛 =

1

2𝜋
√

𝘨

𝛿𝑠𝑡
 (2.50)

when the damping component is neglected, ƒn signifies the natural oscillation frequency of the

spring.

2.2.2.2. Free vibration with damping factor

Natural oscillation of the winding is prevented when the damping factor for the motion

of winding owing to the impulsive force is considered. The damping factor may be able to avoid

the winding's fast oscillation. In this instance, the winding motion equation of winding is:

𝑊

𝘨
�̈� = 𝑊 − (𝑊 + 𝑘𝑥) − 𝑐�̇�. (2.51)

26

The motion of winding with damping factor is derived by rearranging (2.51):

𝑊

𝘨
�̈� + 𝑐�̇� + 𝑘𝑥 = 0 (2.52)

where c is the constant damping factor provided by the starting condition. Modification of

(2.52) yields

�̈� +
𝘨𝑐

𝑊
�̇� +

𝘨𝑘

𝑊
𝑥 = 0, (2.53)

�̈� + 2𝛽�̇� + 𝛼2𝑥 = 0,
𝘨𝑐

𝑊
= 2𝛽. (2.54)

The linear differential equation (2.54) can be solved in one way:

𝑥 = 𝑒𝜇𝑡 (2.55)

Here t denotes the current time. Thus, µ is derived by (2.56)

𝜇2 + 2𝛽𝜇 + 𝛼2 = 0, (2.56)

From which

𝜇 = −𝛽 ± √𝛽2 − 𝛼2. (2.57)

Because the square root value in (2.57) becomes negative when α2>β2. Thus, α2-β2 has

a positive value (2.58)

𝛼1
2 = 𝛼2 − 𝛽2 (2.58)

The roots of equation (2.56) are derived in this format as

μ1 = −β + jα1, μ2 = −β − jα1 (2.59)

As a result, two distinct solutions for (2.55) can be calculated:

𝑥1 =
𝐶1

2
(𝑒𝜇1𝑡 + 𝑒𝜇2𝑡) = 𝐶1𝑒−𝛽𝑡cos(𝛼1𝑡),

27

𝑥2 =
𝐶2

2𝑗
(𝑒𝜇1𝑡 − 𝑒𝜇2𝑡) = 𝐶2𝑒−𝛽𝑡sin(𝛼1𝑡), (2.60)

Finally, in the second case, the winding displacement is provided as

𝑥 = 𝑒−𝛽𝑡(𝐶1cos(𝛼1𝑡) + 𝐶2sin(𝛼1𝑡)) (2.61)

The bases in equation (2.57) will become real and negative when α2<β2. Furthermore,

the displacement is derived as

𝑥 = 𝐶1𝑒𝜇1𝑡 + 𝐶2𝑒𝜇2𝑡 (2.62)

In winding movement, there is no such thing as a periodic term for α2<β2, as shown by

equation (2.62). As a result, the winding won't oscillate.

The excitation voltage square and current square values are proportional to the

magnitudes of the stator core and winding vibrations, according to vibration modeling of the

stator of a motor/generator. Furthermore, both the core and the winding vibrate at a fundamental

frequency of 2ω, where the current and voltage signal fundamental frequencies are specified as

ω. As a result, once the motor/generator is in service, it is theoretically expected that it will be

possible to acquire a sinusoidal time series with a frequency of 2ω for core and winding

vibrations.

28

Chapter 3 – Methodology and Experimental Study

It is critical to investigate electrical faults because electrical disruptions are practical

rather than permanent mechanical faults. Electrical disruptions have almost no effect on rotor

insulation due to the presence of a squirrel-cage rotor [36]; hence, experimental measurements

are only performed over the motor stator. This demonstrates the rotor's durability and capacity

to remain unaffected by electrical problems. Consequently, rotor vibration is only dependent

on the shaft's natural frequency, according to Jeffcott's rotor model. As a result, the stator

winding insulation and core vibrations have the highest impact on motor performance.

Voltage excitation is one of the most common electrical issues. Likewise, unbalanced

supply voltage due to overvoltage and under-voltage will make three-phase electrical

appliances riskier [37]. Under-voltage and overvoltage are types of voltage excitation that are

studied in this research work. During the under-voltage condition, once the voltage decreases,

the current would be increased. Alternatively, the current will take a lower value when the

voltage takes a higher value. It means that when an under-voltage fault develops, the induction

motor will consume a large current. Consequently, the coils will be damaged due to overheating

[38]. On the contrary, if an overvoltage is developed, insulation failure is the risk as the

insulation can tolerate its nominal and maximum breakdown voltage levels. The overvoltage

also causes a high current value to flow from the primary or stator coil of an induction motor

and causes winding failure [39].

The following fault type that is studied in this thesis is single-phase disconnection (two-

phase operation). For single-phase disconnection in the supply system of the induction motor,

the asynchronous motor will continue to operate with the other two phases. This condition is

known as single phasing. In this instance, the unbalanced current in the stator winding causes

torque fluctuation and irregular vibration in the motor. Moreover, overheating can cause severe

damage to motor insulation [40]. Taking everything into account, two cases have been

29

considered in this thesis. There are voltage excitation, which is under-voltage and overvoltage

of motor/generator with and without load, and single phasing with and without load,

respectively.

3.1. Experimental setup

To collect vibration signal data, a practical setup was assembled and demonstrated in

Figure 4, where different components were utilized. There is a three-phase squirrel-cage

asynchronous motor, model M4-EV, Kistler vibration sensor, and DEWE 43 DAQ (data

acquisition) system. Furthermore, the power supply, transformer, and two switches were

utilized. A detailed description of each piece of equipment and its connections is provided in

the further part.

Figure 4: Experimental setup

The rated power of the model M4-EV induction motor is P = 500 W. Additionally, the

rated voltage is V = 400/230 V, whereas frequency f = 50 Hz, as shown in Fig A.1 (see

Appendix A). The transformer was used to imitate a grid model. In addition, the switches were

employed to facilitate connection and disconnection of the circuit along with emulating the

single phasing occurrence. However, the main measuring device is the DEWE 43 DAQ. It is

connected to the three-dimensional vibration sensor Kistler. It is attached to the surface of the

motor stator, as shown in Figure A.2 (see Appendix A). After the assembling of all elements,

30

the acquisition of data was started. The data collection was under three cases with load and no

load conditions. There are overvoltage, under-voltage, and phase disconnections. The different

values of voltage will be applied and obtained the vibration signal in the time domain. In the

beginning, overvoltage and under-voltage scenarios were examined. For the under-voltage, the

following voltage values were employed: 320V, 340V, 360V, 380V, and 400V. It means 80%,

85%, 90%, 95% and 100% of the rated voltage. However, for the overvoltage, 420V and 440V

were performed, respectively. During data collection for overvoltage, it was crucial to conduct

it for only 2-3 seconds, due to overstress condition on insulation media for the test object [39].

Finally, phase disconnections were considered as the last scenario. In this case, a single-phase

disconnection was examined. The switches were used to emulate this condition over the motor.

Indeed, one phase was disconnected during motor operation, and the data was collected and

compared with the normal operational condition. Furthermore, another motor with the same

characteristics was connected to the motor paly as a generator or to emulate a load for our motor

under test. The previous procedure was repeated to acquire data with load conditions.

3.2 Data preparation

The first case study is the motor in under and over excitations with a load and with no

load conditions. In this instance, the input of the 1D CNN model is the vibration signals of the

motor stator, whereas the output is the value of the voltage applied to the motor. The acquired

data were segmented by 80 samples per segment. It means that 1 second consists of 50 segments

data. The data were randomly shuffled, and divided into 60 percent training, 20 percent

validation, and 20 percent test sets in order to train, evaluate and test the model performance,

respectively.

The second case study is a disconnection of a single phase supply from the motor with

a load and without load conditions. The input contains vibration signals from the motor stator.

However, the output is represented as “0” and “1”. In this case, “0” means a normal state, and

31

“1” is called the abnormal state, when one phase is disconnected during the motor operation.

40 samples of data were considered per segment and 1 second consisted of 100 segment of data.

The data were shuffled at random and divided into three sets: 60% for training, 20% for

validation, and 20% for test, respectively. All observations were normalized by dividing the

maximum values of input and output. Hence, the data were scaled between -1 and 1.

3.3. Convolutional Neural Networks

CNN is the architecture that is included in the class of ANN for processing data, which

has a grid-like topology, such as time series data or images [41] – [43]. The convolutional layers

are the fundamental building blocks of CNN architecture [43], [44]. The kernel is a

multidimensional array of parameters learned by the backpropagation learning algorithm. Each

CNN layer uses a kernel to convolve the multidimensional array of input. These

multidimensional arrays are referred to as tensors in the context of DL.

Let X and Y denote the three dimensional (3-D) input tensor and 3-D output tensor,

respectively, whereas K represents the 4-D kernel tensor. Convolving K over X is obtained by

computing the output feature map Y [45], [46]. This is given as:

𝑌𝑙,𝑚,𝑛 = ∑ 𝑋𝑖,𝑚+𝑗−1,𝑛+𝑘−1𝐾𝑙,𝑖,𝑗,𝑘𝑖,𝑗,𝑘 (3.1)

where the indices are elements of the multidimensional arrays X, K, and Y, and the summation

is over all valid indices. When a network contains multiple convolutional layers, the output

feature map of one layer is used as the input to the next layer [46].

3.3.1. Architecture of 1D CNN

The CNN involves layers such as input, convolutional, pooling, flatten, fully connected,

and output (Figure 5) [47]. The convolution layer receives the input features. A filter is applied

to an input feature in the convolution layer to create a feature map. The results are activated

using an activation function. The convolution layer's output is fed into the pooling layer, which

reduces the size of the feature map. The data from the pooled feature map is fed into a flattened

32

layer, which converts it to a one-dimensional array that can be fed into the next layer. The fully

connected layer receives the flattened layer output. The weights are used to process the data in

the fully connected layer. The output of the fully connected layer is fed into the output layer

[47], [48].

Figure 5: One-dimensional CNN architecture, taken from [47]

After the convolutional operation, activation functions such as the tanh function,

sigmoid function, or Rectified Linear Unit (ReLU) transform the output value nonlinearly [49]-

[52]. The equations of activation functions [49] can be defined as:

sigmoid = 𝜙(𝑥) =
𝑒𝑥

1+𝑒𝑥 (3.2)

tanh = 𝜙(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (3.3)

ReLU = 𝜙(𝑥) = max(𝑥, 0) (3.4)

33

More complex activation function, such as Leaky ReLU [53], has the same

characteristics as ReLU. It has fast training and low computational cost. So, the ReLU leakage

function [53] can be determined by (3.5),

Leaky ReLU = 𝜙(𝑥) = {
𝛼𝑥 → 𝑥 ≤ 0

𝑥 → 𝑥 > 0
 𝜙′(𝑥) = {

𝑥 → 𝑥 ≤ 0
1 → 𝑥 > 0

 (3.5)

The Leaky ReLU is used as the activation function in the convolution layer. The

activation function is not applied to the remaining layers.

3.4 Tuning of hyperparameters

Estimating the appropriate value of hyperparameters for a learning algorithm is an

essential stage and is known as a hyperparameter tuning. The number of filters, learning rate,

and kernel size hyperparameters are selected for tuning [54].

The following assumptions are used to define the CNN hyperparameter space: the batch

size of 32, epochs from 1 to 100 without early stopping, no more than 3 convolutional layers,

the learning rates of 0.001 and 0.0001 with Adam optimizer [55], the number of filters 32,

64,128 for an increasing filter pattern, and 256, 128, 64 for a decreasing filter pattern. Moreover,

the size of kernels is considered to be 2 to 5. The Leaky ReLU activation function, the

convolutional operation, and the max-pooling operation are all present in each layer (except for

the last convolutional layer). The above assumptions set the cardinality of the space of

hyperparameters to 4800: 100 (epoch size) × 6 (filters) × 4 (kernel size) × 2 (learning rate). 1D

CNN models were trained using this hyperparameter space and the model with the best

performance on validation set was then identified. For the CNN models both MSE and MAE

were recorded, although MSE was used for model selection.

3.5. Implementation

All computations were done on a standard PC with an NVIDIA GeForce GTX 1660Ti

graphical processing unit. Furthermore, this PC has an AMD Ryzen 5 4600H processor with a

RAM capacity of 16.0 GB.

34

3.6. Evaluation Metrics

3.6.1. Mean Absolute Error (MAE)

The measure of the absolute difference between two continuous variables can be

measured using MAE and is defined as

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑎𝑣𝑖 − 𝑝𝑣𝑖)2𝑁

𝑖=1 (3.9)

where 𝑁 is the number of test data sets, 𝑎𝑣𝑖 and 𝑝𝑣𝑖 are actual and predicted values, respectively.

3.6.2. Mean Squared Error (MSE)

A mean squared error is defined as the squared difference between the actual and

predicted values.

𝑀𝑆𝐸 =
1

𝑁
∑ |𝑎𝑣𝑖 − 𝑝𝑣𝑖|

𝑁
𝑖=1 (3.10)

where 𝑁, 𝑎𝑣𝑖 and 𝑝𝑣𝑖 are the number of test data sets, actual value and predicted value,

respectively.

35

Chapter 4 – Testing and Results

In this thesis, two different case studies were examined for the collection data. There

are motor voltage excitation and single phasing faults with load and no load conditions,

respectively.

4.1. Experimental measurements

4.1.1. Motor under and over excitations with load and no load condition

 The supply voltage was changed from 80% to 110% with a 5% step shift to find how

the vibration signal would be altered when the excitation voltage is changed; see Table 1. The

vibration signals were gathered using a three-dimensional Kistler vibration sensor. The stator

core and winding vibrations accelerate primarily in one dimension. Therefore, vibration

readings of only one dimension were chosen. Data were acquired at a frequency of 20 kHz.

Consequently, while exporting data from DewesoftX software to ease signal processing, the

sample rate was decreased to 4 kHz. It means 4000 data samples per second were derived. The

vibration readings for no load conditions are illustrated in Figure 6.

Table 1: Excitation voltages of experimental motor

Excitation Voltage % 80 85 90 95 100 105 110

Injected Voltage [V] 320 340 360 380 400 420 440

-200

-100

0

100

200

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

80% Excitation

36

-500

0

500
V

ib
ra

ti
o
n
 r

ea
d
in

g
s

Time [ms]

85% Excitation

-400

-200

0

200

400

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

90% Excitation

-400

-200

0

200

400

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

95% Excitation

-400

-200

0

200

400

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

100% Excitation

-400

-200

0

200

400

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

105% Excitation

37

Figure 6: Vibration signals for different excitations

4.1.2. Single phasing of Motor with load and no load condition

The second case study used a switch to examine vibration data and signal processing to

recognize the motor's single phasing. The motor's vibration under load and no load conditions

were utilized for training a model throughout this procedure while the motor was in service.

The generated model was used to predict the state of the motor; precisely, whether it is in a

normal state or an abnormal state. An abnormal state means when one phase is disconnected.

Similar to the previous case, the sampling rate of the observations was 20 kHz. The vibration

sampling rate was decreased to 4 kHz and exported from the DewesoftX software. The vibration

signals of normal and abnormal states are shown in Figure 7.

(a)

(b)

Figure 7: Time-series vibration signals, (a) abnormal state, (b) normal state

-400

-200

0

200

400
V

ib
ra

ti
o
n
 r

ea
d
in

g
s

Time [ms]

110% Excitation

-500

0

500

1000

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

-400

-200

0

200

400

V
ib

ra
ti

o
n
 r

ea
d
in

g
s

Time [ms]

38

4.2. 1D CNN model outputs

One-dimensional CNN models were developed for four different cases: voltage

excitation with load and no load conditions, and single phasing with load and no load

conditions. The scripts for each model are shown in Appendix B.

4.2.1. Voltage excitation with load condition

As mentioned before (Section 3.4), the best 1D CNN model was selected on the lowest

MSE achieved on validation set. Table 2 shows the top 10 outcomes of the model selection

stage. The complete list of models presented in Table 2 is shown in Table C.1. (see Appendix

C). In Table 2, F[fi1,.., fin] represents the structure of the CNN classifier with fi denoting the

number of filters in layer 𝑖, and K[h] identifying the kernel size [height] used in all layers. Table

2 provides that the best model for voltage excitation prognosis has the following structure:

F[256, 128, 64], K[5] (the model highlighted in bold in the table). According to Table 2, the

MSE and MAE of voltage excitation prediction with load condition equal to 0.000426 and

0.014925, respectively.

Table 2: The selected CNN architecture based on the lowest MSE of voltage

excitation prediction with load condition

CNN architectures Learning rate MSE MAE

F[256, 128, 64], K[5] 0.001 0.000426 0.014925

F[32, 64, 128], K[5] 0.001 0.000454 0.015796

F[256, 128, 64], K[4] 0.001 0.000459 0.016186

F[32, 64], K[5] 0.001 0.000468 0.016406

F[256, 128], K[5] 0.001 0.000468 0.01635

F[32, 64, 128], K[3] 0.001 0.00048 0.01617

F[256, 128, 64], K[3] 0.001 0.000513 0.017176

F[32, 64, 128], K[4] 0.001 0.00052 0.016868

F[256, 128], K[3] 0.001 0.000569 0.017961

F[32, 64, 128], K[2] 0.001 0.000602 0.018408

More detailed information about the structure of the best 1D CNN model can be found

in Table 3. The architecture has 215839 parameters.

39

Table 3: The CNN model used for the analysis of load condition model F [256, 128, 64],

K(5)

Index Layer type Output shape Number of parameters

1 Conv1D [86, 256] 1536

2 MaxPooling1D [43, 256] 0

3 Conv1D [39, 128] 163968

4 MaxPooling1D [19, 128] 0

5 Conv1D [15, 64] 41024

6 MaxPooling1D [7, 64] 0

7 Flatten [448] 0

8 Dense [20] 8980

9 Dense [15] 315

10 Dense [1] 16

4.2.2. Voltage excitation with no load condition

According to Table 4, it can be seen that the model that shows the lowest MSE value

for voltage excitation with no load condition has the following structure: F[256, 128], K[5] (the

model highlighted in bold in the table). The MSE and MAE of the constructed model equal to

0.001637 and 0.028586, respectively. The full list of models shown in Table 4 is illustrated in

Table C.2. (see Appendix C).

Table 4: The selected CNN architecture based on the lowest MSE of voltage

excitation prediction with no load condition

CNN architectures Learning rate MSE MAE

F[256, 128], K[5] 0.001 0.001637 0.028586

F[256, 128], K[4] 0.001 0.001748 0.029672

F[32, 64], K[5] 0.001 0.001754 0.030453

F[32, 64], K[4] 0.001 0.001808 0.031603

F[256], K[5] 0.001 0.001829 0.03071

F[32, 64, 128], K[5] 0.001 0.001844 0.031011

F[256], K[4] 0.001 0.001892 0.032975

F[256, 128], K[3] 0.001 0.001895 0.031669

F[32, 64], K[3] 0.001 0.001902 0.032656

F[256, 128, 64], K[3] 0.001 0.001936 0.033202

Table 5 shows more detailed information about the structure of this constructed 1D

CNN model. It has 2 convolutional layers with the max-pooling operation, and the output is

flattened. There are 215839 parameters in this model.

40

Table 5: The CNN model used for the analysis of no load condition model F [256, 128],

K(5)

Index Layer type Output shape Number of parameters

1 Conv1D [86, 256] 1536

2 MaxPooling1D [43, 256] 0

3 Conv1D [39, 128] 163968

4 MaxPooling1D [19, 128] 0

5 Flatten [2432] 0

6 Dense [20] 48660

7 Dense [15] 315

8 Dense [1] 16

4.2.3. Single phasing with load condition

The result of the model selection stage is shown in Table 6. The final selected CNN

structure of single phasing of the motor is chosen based on the obtained highest accuracy.

Furthermore, Table 6 presents that the best model has the following structure: F[256, 128], K[5]

(the model highlighted in bold in the table). The highest accuracy is equal to 99.58%. The

comprehensive list of models represented in Table 6 is demonstrated in Table C.3. (see

Appendix C).

Table 6: The selected CNN architecture based on the highest accuracy of single

phasing with load condition

CNN architectures Learning rate MSE Accuracy

F[256, 128], K[5] 0.001 0.003807 0.99589

F[32, 64, 128], K[5] 0.001 0.00415 0.995205

F[256, 128, 64], K[4] 0.001 0.004002 0.993151

F[256, 128, 64], K[5] 0.001 0.004501 0.993151

F[32, 64], K[3] 0.001 0.010146 0.992466

F[32, 64], K[4] 0.001 0.008963 0.992466

F[32], K[5] 0.001 0.011745 0.992466

F[256], K[5] 0.001 0.008244 0.992466

F[32, 64], K[5] 0.001 0.006903 0.991781

F[32, 64, 128], K[3] 0.001 0.007522 0.991096

Furthermore, Table 7 displays detailed information about the CNN model’s structure.

In this table, Conv1D, MaxPooling1D and Leaky ReLU activation are used to describe

convolutional operations. The number of total parameters is 183775.

41

Table 7: The CNN model used for the analysis of load condition model F [256, 128], K(5)

Index Layer type Output shape Number of parameters

1 Conv1D [36, 256] 1536

2 MaxPooling1D [18, 256] 0

3 Conv1D [14, 128] 163968

4 MaxPooling1D [7, 128] 0

5 Flatten [896] 0

6 Dense [20] 17940

7 Dense [15] 315

8 Dense [1] 16

4.2.4. Single phasing with no load condition

Table 8 shows the results of the model selection strategy for one phase disconnection

with no load condition. Additionally, Table 8 tabulates that the best model has the following

structure: F[256, 128], K[4] (the model highlighted in bold in the table). The highest accuracy

of the constructed model is equal to 96.85%. The complete list of models provided in Table 8

is elucidated in Table C.4. (See Appendix C). Moreover, the models with a similar number of

filters and the kernel size (F[256, 128, 64], K[5]), but with the different learning rate show the

same accuracy, which is equal to 96.3% (the third and fourth model in Table 8).

Table 8: The selected CNN architecture based on the highest accuracy of single

phasing with no load condition

CNN architectures Learning rate MSE Accuracy

F[256, 128], K[4] 0.001 0.029235397 0.96851852

F[256, 128, 64], K[4] 0.001 0.026971309 0.96851852

F[256, 128, 64], K[5] 0.001 0.031876623 0.96388889

F[256, 128, 64], K[5] 0.0001 0.031008006 0.96388889

F[32, 64, 128], K[3] 0.001 0.030320587 0.96296296

F[32, 64], K[4] 0.001 0.033742246 0.96296296

F[32], K[5] 0.001 0.031903708 0.96296296

F[32], K[4] 0.001 0.031805294 0.96203704

F[32, 64], K[5] 0.001 0.031429155 0.96203704

F[256, 128], K[3] 0.001 0.033781285 0.96111111

According to Table 8, we observe that the 5 top models have at least 2 convolutional

layers and the minimum kernel size is 3. Moreover, Table 9 contains detailed information about

the CNN model's structure. The number of total parameters is 201951.

42

Table 9: The CNN model used for the analysis of no load condition model F [256, 128],

K(4)

Index Layer type Output shape Number of parameters

1 Conv1D [117, 256] 1280

2 MaxPooling1D [58, 256] 0

3 Conv1D [55, 128] 131200

4 MaxPooling1D [27, 128] 0

5 Flatten [3456] 0

6 Dense [20] 69140

7 Dense [15] 315

8 Dense [1] 16

 The average fault detection accuracy of single phasing with and without load were

achieved as 95.53% and 98.24%. It shows that the applied data were collected very precisely.

Chen et al. [51] developed several ML models for rolling bearing fault diagnosis. There are the

1D CNN model, Long-Short Term Memory (LSTM) model, KNN model, Multilayer

Perceptron (MLP) model, SVM model and Random Forest model. Additionally, the data were

collected by similar experimental grid system using motor with different characteristics. In [51],

researchers used the tanh function as an activation function in 1D CNN model. The average

accuracy of the developed approach was achieved by 99.2%. It shows that in the future the

usage of this activation function might give results that are more accurate. Nevertheless, the

average accuracies of LSTM, MLP, Random Forest, KNN and SVM are 86.79%, 78.59%,

68.38%, 33.26% and 71.05%, respectively. Overall, in this research 1D CNN model was

constructed for accurately detecting faults. The average accuracy of the proposed model is

higher by 11.45%, 19.65%, 29.86%, 64.98% and 27.19% than those 5 models, which were

described earlier. These outcomes prove the effectiveness of the proposed approach.

43

Chapter 5 – Conclusion and Future Work

 This thesis aimed to study and implement a computational pipeline that can evaluate

and analyze a real-time condition assessment for motors/generators using vibrational signal

signature and machine learning techniques. Vibration analysis, along with the other available

methods for motor/generator assessments was discussed. The problems with the rotational

machines' failure were provided, and a wide literature review was conducted to clarify the state

of the art in this technology. Mathematical modeling of motor/generator vibrations was

analyzed and technically reviewed, and different methodologies to evaluate vibrational signals

were explained. It was also explained and discussed that the rotor and stator would oscillate

based on the fundamental frequency of the injected signal (voltage). Having this mathematical

model, we are able to examine the accuracy of the measurement results and validate the

practical data and sensors' performance in motor/generator vibration analysis. In addition,

voltage excitation faults such as under-voltage and overvoltage fault types along with single

phasing of motors were practically examined for motor fault emulation and prognosis. To

achieve the main goal of this research thesis, a single-dimensional CNN was selected as the

model of choice for motor vibrational signal evaluation. The reason to choose a single-

dimensional CNN model was the flexibility and minimal data preprocessing. In this regard,

after conducting an exhaustive search over a prespecified hyperparameter space, a single CNN

predictor was created for each fault type. To summarise the results, the MSE of voltage

excitation prediction with load, and no load conditions were 0.000426 and 0.001637,

respectively. Furthermore, the fault detection accuracy of single phasing with load and no load

conditions were achieved as 99.58 and 96.85%. The concept of building a system that can

diagnose motor faults is worthwhile, as it would be able to address many industrial requests

worldwide.

44

The future direction of the research will focus on considering bearing fault types, such

as inner and outer race and cage faults. Moreover, devices from the Internet of Things (IoT)

can be examined to monitor the state of the motor/generator remotely.

45

Bibliography

[1] D. Mori and T. Ishikawa, “Force and vibration analysis of induction motors,” IEEE

Transactions on Magnetics, vol. 41, no. 5, pp. 1948– 1951, 2005.

[2] Z. Fengge, T. Ningze, and W. Fengxiang, “Analysis of vibration modes for large

induction motor,” in 2005 International Conference on Electrical Machines and

Systems, vol. 1, pp. 64–67 Vol. 1, 2005.

[3] D. K. Soother, J. Daudpoto, and A. Shaikh, “Vibration measurement system for the low

power induction motor,” Engineering Science and Technology International Research

Journal, vol. 2, no. 4, pp. 53–57, 2018.

[4] A. M. Alturas, “Electrical faults and their effects on induction machines,” vol. 15, pp.

36–46, 12 2019.

[5] T. Van Tung and B.-S. Yang, “Machine fault diagnosis and prognosis: The state of the

art,” International Journal of Fluid Machinery and Systems, vol. 2, no. 1, pp. 61–71,

2009.

[6] M. Tsypkin, “Induction motor condition monitoring: Vibration analysis technique - a

practical implementation,” in 2011 IEEE International Electric Machines Drives

Conference (IEMDC), pp. 406–411, 2011.

[7] M. Tsypkin, “Induction motor condition monitoring: Vibration analysis technique —

diagnosis of electromagnetic anomalies,” in 2017 IEEE AUTOTESTCON, pp. 1–7,

2017.

[8] E. G. Strangas, “4 - fault diagnosis and failure prognosis of electrical drives,” in Fault

Diagnosis and Prognosis Techniques for Complex Engineering Systems (H. Karimi,

ed.), pp. 127–180, Academic Press, 2021.

[9] M. Bagheri, V. Nurmanova, A. Zollanvari, S. Nezhivenko, and B. T. Phung, “Iot

application in transformer fault prognosis using vibration signal,” in 2018 IEEE

International Conference on High Voltage Engi- neering and Application (ICHVE), pp.

1–5, 2018.

[10] A. Zollanvari, K. Kunanbayev, S. Akhavan Bitaghsir, and M. Bagheri, “Transformer

fault prognosis using deep recurrent neural network over vibration signals,” IEEE

Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021.

[11] S. Korkua, H. Jain, W.J. Lee, and C. Kwan, “Wireless health monitoring system for

vibration detection of induction motors,” in 2010 IEEE Indus- trial and Commercial

Power Systems Technical Conference-Conference Record, pp. 1–6, IEEE, 2010.

[12] M. Rocchi, F. Mosciaro, F. Grottesi, M. Scortichini, A. Giantomassi, M. Pirro, M.

Grisostomi, and G. Ippoliti, “Fault prognosis for rotating electrical machines monitoring

using recursive least square,” in 2014 6th European Embedded Design in Education and

Research Conference (EDERC), pp. 269–273, 2014.

[13] I. Preethi, S. Suryaprakash, and M. Mathankumar, “A state-of-art approach on fault

detection in three phase induction motor using ai techniques,” in 2021 5th International

Conference on Computing Methodologies and Communication (ICCMC), pp. 567–573,

2021.

[14] D. A. Papathanasopoulos, E. D. Mitronikas, K. N. Giannousakis, andE. S. Dermatas,

“An alternative approach for condition monitoring of brushless dc motor drives,” in

2020 International Conference on Electrical Machines (ICEM), vol. 1, pp. 1280–1286,

2020.

[15] J.-H. Lee, J.-H. Pack, and I.-S. Lee, “Fault diagnosis of induction motor using

convolutional neural network,” Applied Sciences, vol. 9, no. 15, p. 2950, 2019.

[16] A. Dineva, A. Mosavi, M. Gyimesi, I. Vajda, N. Nabipour, and T. Rabczuk, “Fault

diagnosis of rotating electrical machines using multi- label classification,” Applied

46

Sciences, vol. 9, no. 23, p. 5086, 2019.

[17] T. Plante, A. Nejadpak, and C. Xia Yang, “Faults detection and failures prediction using

vibration analysis,” in 2015 IEEE AUTOTESTCON, pp. 227–231, 2015.

[18] M. Z. Ali, M. N. S. K. Shabbir, X. Liang, Y. Zhang, and T. Hu, “Experimental

investigation of machine learning based fault diagnosis for induction motors,” in 2018

IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–14, 2018.

[19] M. Iorgulescu and R. Beloiu, “Study of dc motor diagnosis based on the vibration

spectrum and current analysis,” in 2012 International Conference on Applied and

Theoretical Electricity (ICATE), pp. 1–4, 2012.

[20] K. Kim and A. G. Parlos, “Induction motor fault diagnosis based on neu- ropredictors

and wavelet signal processing,” IEEE/ASME Transactions on mechatronics, vol. 7, no.

2, pp. 201–219, 2002.

[21] M. Z. Ali, M. N. S. K. Shabbir, X. Liang, Y. Zhang, and T. Hu, “Machine learning-

based fault diagnosis for single- and multi-faults in induction motors using measured

stator currents and vibration signals,” IEEE Transactions on Industry Applications, vol.

55, no. 3, pp. 2378– 2391, 2019.

[22] M. Rahman, T. Azam, and S. K. Saha, “Motor fault detection using vibration patterns,”

in International Conference on Electrical Computer Engineering (ICECE 2010), pp.

486–489, 2010.

[23] V. S, K. Ram, P. Alagumariappan, and B. B., “Condition monitoring of industrial motors

using machine learning classifiers,” SSRN Electronic Journal, 01 2021.

[24] P. Chattopadhyay, N. Saha, C. Delpha, and J. Sil, “Deep learning in fault diagnosis of

induction motor drives,” in 2018 Prognostics and System Health Management

Conference (PHM-Chongqing), pp. 1068– 1073, 2018.

[25] Z. Fan, H. Yi, J. Xu, K. Xie, Y. Qi, S. Ren, and H. Wang, “Performance study and

optimization design of high-speed amorphous alloy induction motor,” Energies, vol. 14,

no. 9, 2021.

[26] S. Shao, W. Sun, P. Wang, R. X. Gao, and R. Yan, “Learning features from vibration

signals for induction motor fault diagnosis,” in 2016 International Symposium on

Flexible Automation (ISFA), pp. 71–76, 2016.

[27] A. Villarroel, G. Zurita, and R. Velarde, “Development of a low-cost vibration

measurement system for industrial applications,” Machines, vol. 7, no. 1, 2019.

[28] K. Kudelina, T. Vaimann, B. Asad, A. Rasso˜lkin, A. Kallaste, and G. Demidova,

“Trends and challenges in intelligent condition monitor- ing of electrical machines using

machine learning,” Applied Sciences, vol. 11, no. 6, 2021.

[29] S. Shao, R. Yan, Y. Lu, P. Wang, and R. X. Gao, “Dcnn-based multi-signal induction

motor fault diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol.

69, no. 6, pp. 2658–2669, 2020.

[30] C. Liu, W. Hsaio and Y. Tu, "Time Series Classification With Multivariate

Convolutional Neural Network," in IEEE Transactions on Industrial Electronics, vol.

66, no. 6, pp. 4788-4797, June 2019, doi: 10.1109/TIE.2018.2864702.

[31] R. Surovec, J. Bocko and J. Šarloši, "Lateral Rotor Vibration Analysis Model",

American Journal of Mechanical Engineering, vol. 2, no. 7, pp. 282-285, 2014.

Available: 10.12691/ajme-2-7-23.

[32] R. Tiwari, Rotor Systems: analysis and identification. CRC press, 2017.

[33] C.-W. Lee. Vibration analysis of rotors, vol. 21. Springer Science & Business Media,

1993

[34] M. Bagheri and B. T. Phung, "Frequency response and vibration analysis in transformer

winding turn-to-turn fault recognition," 2016 International Conference on Smart Green

Technology in Electrical and Information Systems (ICSGTEIS), 2016, pp. 10-15, doi:

47

10.1109/ICSGTEIS.2016.7885758.

[35] M. Bagheri, A. Zollanvari and S. Nezhivenko, "Transformer Fault Condition Prognosis

Using Vibration Signals Over Cloud Environment," in IEEE Access, vol. 6, pp. 9862-

9874, 2018, doi: 10.1109/ACCESS.2018.2809436.

[36] M. Drif, N. Benouzza, B. Kraloua, A. Bendiabdellah and J. A. Dente, "Squirrel cage

rotor faults detection in induction motor utilizing stator power spectrum approach," 2002

International Conference on Power Electronics, Machines and Drives (Conf. Publ. No.

487), 2002, pp. 133-138, doi: 10.1049/cp:20020102.

[37] S. Chauhan and S. B. Singh, "Effects of Voltage Unbalance and Harmonics on 3-Phase

Induction Motor During the Condition of Undervoltage and Overvoltage," 2019 6th

International Conference on Signal Processing and Integrated Networks (SPIN), 2019,

pp. 1141-1146, doi: 10.1109/SPIN.2019.8711753.

[38] M. Proctor and T. Smith, "Application of Undervoltage Protection to Critical Motors,"

2019 IEEE IAS Pulp, Paper and Forest Industries Conference (PPFIC), 2019, pp. 1-5,

doi: 10.1109/PPFIC43189.2019.9052381.

[39] H. D. Do, A. Anuchin, D. Shpak, A. Zharkov and A. Rusakov, "Overvoltage protection

for interior permanent magnet synchronous motor testbench," 2018 25th International

Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), 2018,

pp. 1-4, doi: 10.1109/IWED.2018.8321396.

[40] W. Kersting, "Causes and Effects of Single-Phasing Induction Motors", IEEE

Transactions on Industry Applications, vol. 41, no. 6, pp. 1499-1505, 2005. Available:

10.1109/tia.2005.857467.

[41] R. Ribeiro Junior, F. de Almeida and G. Gomes, "Fault classification in three-phase

motors based on vibration signal analysis and artificial neural networks", Neural

Computing and Applications, vol. 32, no. 18, pp. 15171-15189, 2020. Available:

10.1007/s00521-020-04868-w.

[42] T. Ince, S. Kiranyaz, L. Eren, M. Askar and M. Gabbouj, "Real-Time Motor Fault

Detection by 1-D Convolutional Neural Networks", IEEE Transactions on Industrial

Electronics, vol. 63, no. 11, pp. 7067-7075, 2016. Available: 10.1109/tie.2016.2582729.

[43] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification with deep

convolutional neural networks", Communications of the ACM, vol. 60, no. 6, pp. 84-90,

2017. Available: 10.1145/3065386.

[44] L. Wen, X. Li, L. Gao and Y. Zhang, "A New Convolutional Neural Network-Based

Data-Driven Fault Diagnosis Method", IEEE Transactions on Industrial Electronics,

vol. 65, no. 7, pp. 5990-5998, 2018. Available: 10.1109/tie.2017.2774777.

[45] A. Serikbay, M. Bagheri, A. Zollanvari and B. T. Phung, "Accurate Surface Condition

Classification of High Voltage Insulators based on Deep Convolutional Neural

Networks," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 28, no. 6,

pp. 2126-2133, December 2021, doi: 10.1109/TDEI.2021.009648.

[46] B. Abibullaev and A. Zollanvari, "A Systematic Deep Learning Model Selection for

P300-Based Brain–Computer Interfaces," in IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 52, no. 5, pp. 2744-2756, May 2022, doi:

10.1109/TSMC.2021.3051136.

[47] E. Chaerun Nisa and Y. Kuan, "Comparative Assessment to Predict and Forecast Water-

Cooled Chiller Power Consumption Using Machine Learning and Deep Learning

Algorithms", Sustainability, vol. 13, no. 2, p. 744, 2021. Available:

10.3390/su13020744.

[48] L. Eren, "Bearing Fault Detection by One-Dimensional Convolutional Neural

Networks", Mathematical Problems in Engineering, vol. 2017, pp. 1-9, 2017. Available:

10.1155/2017/8617315.

48

[49] J. Jiao, M. Zhao, J. Lin and K. Liang, "A comprehensive review on convolutional neural

network in machine fault diagnosis", Neurocomputing, vol. 417, pp. 36-63, 2020.

Available: 10.1016/j.neucom.2020.07.088.

[50] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj and D. Inman, "1D

convolutional neural networks and applications: A survey", Mechanical Systems and

Signal Processing, vol. 151, p. 107398, 2021. Available: 10.1016/j.ymssp.2020.107398.

[51] C. Chen, Z. Liu, G. Yang, C. Wu and Q. Ye, "An Improved Fault Diagnosis Using 1D-

Convolutional Neural Network Model", Electronics, vol. 10, no. 1, p. 59, 2020.

Available: 10.3390/electronics10010059.

[52] R. Mukhopadhyay, P. S. Panigrahy, G. Misra and P. Chattopadhyay, "Quasi 1D CNN-

based Fault Diagnosis of Induction Motor Drives," 2018 5th International Conference

on Electric Power and Energy Conversion Systems (EPECS), 2018, pp. 1-5, doi:

10.1109/EPECS.2018.8443552.

[53] R. Junior, I. Areias, M. Campos, C. Teixeira, L. da Silva and G. Gomes, "Fault detection

and diagnosis in electric motors using 1d convolutional neural networks with multi-

channel vibration signals", Measurement, vol. 190, p. 110759, 2022. Available:

10.1016/j.measurement.2022.110759.

[54] F. Chollet, Deep learning with Python.

[55] D. Kingma and J. Ba, "Adam: A method for stochastic optimization", 2014, arXiv

preprint arXiv: 1412.6980.

49

Appendix

Appendix A

Figure A.1 The three phase induction motor

Figure A.2 The connection of vibration sensor

50

Appendix B. Code scripts

Voltage excitation with load condition

import pandas as pd

from numpy import array

import numpy as np

from tensorflow import keras

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten

from tensorflow.keras.metrics import RootMeanSquaredError

from random import shuffle

from sklearn.metrics import mean_absolute_error, mean_squared_error

ind_file = ['80','85','90','95','100','105','110']

max_nl = 0

dataset = []

for ind in ind_file:

 f_nl = pd.read_csv(ind+'_L.csv')

 volt_nl = float(ind)*np.ones((len(f_nl['AI 7']),1))

 if max_nl>=np.amax(np.array(f_nl[['AI 7']])):

 max_nl = max_nl

 else:

 max_nl = np.amax(np.array(f_nl[['AI 7']]))

 f_nl = np.concatenate((f_nl[['AI 7']], volt_nl),axis=1)

 dataset.append(f_nl)

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,110])

print(dataset)

print(dataset.shape)

from random import shuffle,seed

def split_sequences(sequences, steps):

 X, Y = list(), list()

 data = list()

 for i in range(len(sequences)):

 head = i*steps

 end = head + steps

 if end > len(sequences):

 break

 sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1]

 data.append([sequence_x,sequence_y])

 seed(42)

 shuffle(data)

 for x, y in data:

 X.append(x)

 Y.append(y)

 return np.array(X), np.array(Y)

steps = 80

X, y = split_sequences(dataset, steps)

features = 1

import tensorflow as tf

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

51

result = list()

def get_model(X_train, X_test, y_train, y_test):

 adams = [0.001, 0.0001]

 num_filters = [[32],[32,64],[32,64,128],

 [256],[256,128],[256,128,64]]

 kernel_sizes = [2, 3, 4, 5]

 for adam in adams:

 print('adam: ',adam)

 for kernel_size in kernel_sizes:

 print('kernel_size:', kernel_size)

 for num_filter in num_filters:

 print('filter,', num_filter)

 file = 'File_cnn'

 for fil in num_filter:

 file = file + '_' + str(fil)

 file = file + str(adam) + '_kernel_size_' + str(kernel_size)

 model_name = file + '.h5'

 model = keras.Sequential() #initialization

 if len(num_filter) == 1:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 2:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 3:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Flatten())

 model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.compile(loss='mse',

 optimizer=tf.keras.optimizers.Adam(learning_rate=adam),

 metrics=['accuracy']) #compilation

 history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split =

0.2)

 yhat = model.predict(X_test)

52

 mse = mean_squared_error(y_test, yhat)

 mae = mean_absolute_error(y_test, yhat)

 print('MSE: ', mse)

 print('MAE:', mae)

 result.append([file, mse, mae])

df = pd.DataFrame(result, columns = ['model','MSE', 'MAE'])

df.sort_values(by='MSE')

df.to_excel('CNN_Load_model.xlsx')

get_model(X_train, X_test, y_train, y_test)

Voltage excitation with no load condition

import pandas as pd

from numpy import array

import numpy as np

from tensorflow import keras

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten

from tensorflow.keras.metrics import RootMeanSquaredError

from random import shuffle

from sklearn.metrics import mean_absolute_error, mean_squared_error

ind_file = ['80','85','90','95','100','105','110']

max_nl = 0

dataset = []

for ind in ind_file:

 f_nl = pd.read_csv(ind+'_nL.csv')

 volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1))

 if max_nl>=np.amax(np.array(f_nl[['AI 6']])):

 max_nl = max_nl

 else:

 max_nl = np.amax(np.array(f_nl[['AI 6']]))

 f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1)

 dataset.append(f_nl)

 #len_nl = len(volt_nl)

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,110])

#print(f_nl.shape)

print(dataset)

print(dataset.shape)

from random import shuffle,seed

def split_sequences(sequences, steps):

 X, Y = list(), list()

 data = list()

 for i in range(len(sequences)):

 head = i*steps

 end = head + steps

 if end > len(sequences):

 break

 sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1]

 data.append([sequence_x,sequence_y])

 seed(42)

 shuffle(data)

 for x, y in data:

53

 X.append(x)

 Y.append(y)

 return np.array(X), np.array(Y)

steps = 80

X, y = split_sequences(dataset, steps)

features = 1

summarize the data

import tensorflow as tf

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

result = list()

def get_model(X_train, X_test, y_train, y_test):

 adams = [0.001, 0.0001]

 num_filters = [[32],[32,64],[32,64,128],

 [256],[256,128],[256,128,64]]

 kernel_sizes = [2, 3, 4, 5]

 for adam in adams:

 print('adam: ',adam)

 for kernel_size in kernel_sizes:

 print('kernel_size:', kernel_size)

 for num_filter in num_filters:

 print('filter,', num_filter)

 file = 'File_cnn'

 for fil in num_filter:

 file = file + '_' + str(fil)

 file = file + str(adam) + '_kernel_size_' + str(kernel_size)

 model_name = file + '.h5'

 model = keras.Sequential() #initialization

 if len(num_filter) == 1:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 2:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 3:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

54

 model.add(Flatten())

 model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.compile(loss='mse',

 optimizer=tf.keras.optimizers.Adam(learning_rate=adam),

 metrics=['accuracy']) #compilation

 history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split =

0.2)

 yhat = model.predict(X_test)

 mse = mean_squared_error(y_test, yhat)

 mae = mean_absolute_error(y_test, yhat)

 print('MSE: ', mse)

 print('MAE:', mae)

 result.append([file, mse, mae])

df = pd.DataFrame(result, columns = ['model','MSE', 'MAE'])

df.sort_values(by='MSE')

df.to_excel('CNN_noLoad_model.xlsx')

get_model(X_train, X_test, y_train, y_test)

Single phasing with load condition

import pandas as pd

from numpy import array

import numpy as np

from tensorflow import keras

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten

from tensorflow.keras.metrics import RootMeanSquaredError

from random import shuffle

from sklearn.metrics import mean_absolute_error, mean_squared_error

ind_file = ['0','1']

max_nl = 0

dataset = []

for ind in ind_file:

 f_nl = pd.read_csv(ind+'_L.csv')

 volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1))

 if max_nl>=np.amax(np.array(f_nl[['AI 6']])):

 max_nl = max_nl

 else:

 max_nl = np.amax(np.array(f_nl[['AI 6']]))

 f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1)

 dataset.append(f_nl)

 #len_nl = len(volt_nl)

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,1])

#print(f_nl.shape)

print(dataset)

from random import shuffle,seed

def split_sequences(sequences, steps):

 X, Y = list(), list()

 data = list()

 for i in range(len(sequences)):

55

 head = i*steps

 end = head + steps

 if end > len(sequences):

 break

 sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1]

 data.append([sequence_x,sequence_y])

 seed(42)

 shuffle(data)

 for x, y in data:

 X.append(x)

 Y.append(y)

 return np.array(X), np.array(Y)

steps = 40

X, y = split_sequences(dataset, steps)

features = 1

summarize the data

import tensorflow as tf

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

result = list()

def get_model(X_train, X_test, y_train, y_test):

 adams = [0.001, 0.0001]

 num_filters = [[32],[32,64],[32,64,128],

 [256],[256,128],[256,128,64]]

 kernel_sizes = [2, 3, 4, 5]

 for adam in adams:

 print('adam: ',adam)

 for kernel_size in kernel_sizes:

 print('kernel_size:', kernel_size)

 for num_filter in num_filters:

 print('filter,', num_filter)

 file = 'File_cnn'

 for fil in num_filter:

 file = file + '_' + str(fil)

 file = file + str(adam) + '_kernel_size_' + str(kernel_size)

 model_name = file + '.h5'

 model = keras.Sequential() #initialization

 if len(num_filter) == 1:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 2:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 3:

56

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Flatten())

 model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.compile(loss='mse',

 optimizer=tf.keras.optimizers.Adam(learning_rate=adam),

 metrics=['accuracy']) #compilation

 history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split =

0.2)

 yhat = model.predict(X_test)

 mse = mean_squared_error(y_test, yhat)

 n=0

 for i in range(len(yhat)):

 yhat[i]=round(float(yhat[i]))

 if yhat[i] == y_test[i]:

 n=n+1

 accuracy = n/len(yhat)

 print('MSE: ', mse)

 print('accuracy: ', accuracy)

 result.append([file, mse, accuracy])

df = pd.DataFrame(result, columns = ['model','MSE', 'Accuracy'])

df.sort_values(by='MSE')

df.to_excel('CNN_Load_1phase_model.xlsx')

get_model(X_train, X_test, y_train, y_test)

Single phasing with no load condition

import pandas as pd

from numpy import array

import numpy as np

from tensorflow import keras

from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, Flatten

from tensorflow.keras.metrics import RootMeanSquaredError

from random import shuffle

from sklearn.metrics import mean_absolute_error, mean_squared_error

ind_file = ['0','1']

max_nl = 0

dataset = []

for ind in ind_file:

 f_nl = pd.read_csv(ind+'_nL.csv')

 volt_nl = float(ind)*np.ones((len(f_nl['AI 6']),1))

 if max_nl>=np.amax(np.array(f_nl[['AI 6']])):

57

 max_nl = max_nl

 else:

 max_nl = np.amax(np.array(f_nl[['AI 6']]))

 f_nl = np.concatenate((f_nl[['AI 6']], volt_nl),axis=1)

 dataset.append(f_nl)

dataset = np.concatenate(dataset,axis =0)/np.array([max_nl,1])

from random import shuffle,seed

def split_sequences(sequences, steps):

 X, Y = list(), list()

 data = list()

 for i in range(len(sequences)):

 head = i*steps

 end = head + steps

 if end > len(sequences):

 break

 sequence_x, sequence_y = sequences[head:end, :-1], sequences[end-1, -1]

 data.append([sequence_x,sequence_y])

 seed(42)

 shuffle(data)

 for x, y in data:

 X.append(x)

 Y.append(y)

 return np.array(X), np.array(Y)

steps = 40

X, y = split_sequences(dataset, steps)

features = 1

import tensorflow as tf

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)

result = list()

def get_model(X_train, X_test, y_train, y_test):

 adams = [0.001, 0.0001]

 num_filters = [[32],[32,64],[32,64,128],

 [256],[256,128],[256,128,64]]

 kernel_sizes = [2, 3, 4, 5]

 for adam in adams:

 print('adam: ',adam)

 for kernel_size in kernel_sizes:

 print('kernel_size:', kernel_size)

 for num_filter in num_filters:

 print('filter,', num_filter)

 file = 'File_cnn'

 for fil in num_filter:

 file = file + '_' + str(fil)

 file = file + str(adam) + '_kernel_size_' + str(kernel_size)

 model_name = file + '.h5'

 model = keras.Sequential() #initialization

 if len(num_filter) == 1:

58

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1),input_shape=(steps, features)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 2:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 elif len(num_filter) == 3:

 model.add(Conv1D(filters=num_filter[0], kernel_size=kernel_size,

input_shape=(steps, features), activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[1], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Conv1D(filters=num_filter[2], kernel_size=kernel_size,

activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(MaxPooling1D())

 model.add(Flatten())

 model.add(Dense(units=20, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=15, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.add(Dense(units=1, activation=tf.keras.layers.LeakyReLU(alpha=0.1)))

 model.compile(loss='mse',

 optimizer=tf.keras.optimizers.Adam(learning_rate=adam),

 metrics=['accuracy']) #compilation

 history = model.fit(X_train, y_train, batch_size=32, epochs=100, validation_split =

0.2)

 yhat = model.predict(X_test)

 mse = mean_squared_error(y_test, yhat)

 n=0

 for i in range(len(yhat)):

 yhat[i]=round(float(yhat[i]))

 if yhat[i] == y_test[i]:

 n=n+1

 accuracy = n/len(yhat)

 print('MSE: ', mse)

 print('accuracy: ', accuracy)

 result.append([file, mse, accuracy])

df = pd.DataFrame(result, columns = ['model','MSE', 'Accuracy'])

df.sort_values(by='MSE')

df.to_excel('CNN_noLoad_1phase_model.xlsx')

get_model(X_train, X_test, y_train, y_test)

59

Appendix C

Table C.1: Architecture of voltage unbalances with load condition

CNN architectures Learning rate MSE MAE

F[256, 128, 64], K[5] 0.001 0.000426 0.014925

F[32, 64, 128], K[5] 0.001 0.000454 0.015796

F[256, 128, 64], K[4] 0.001 0.000459 0.016186

F[32, 64], K[5] 0.001 0.000468 0.016406

F[256, 128], K[5] 0.001 0.000468 0.01635

F[32, 64, 128], K[3] 0.001 0.00048 0.01617

F[256, 128, 64], K[3] 0.001 0.000513 0.017176

F[32, 64, 128], K[4] 0.001 0.00052 0.016868

F[256, 128], K[3] 0.001 0.000569 0.017961

F[32, 64, 128], K[2] 0.001 0.000602 0.018408

F[256, 128, 64], K[2] 0.001 0.00061 0.018609

F[32, 64], K[4] 0.001 0.000628 0.019301

F[256, 128, 64], K[5] 0.0001 0.00064 0.019742

F[32, 64, 128], K[5] 0.0001 0.000661 0.019683

F[256], K[5] 0.001 0.000668 0.019541

F[32, 64], K[3] 0.001 0.000687 0.020073

F[256], K[3] 0.001 0.000727 0.020509

F[32, 64, 128], K[4] 0.0001 0.00073 0.021338

F[256, 128], K[2] 0.001 0.000748 0.020566

F[256, 128, 64], K[4] 0.0001 0.000749 0.021432

F[256], K[4] 0.001 0.000806 0.021753

F[256, 128], K[4] 0.001 0.000821 0.022442

F[256, 128], K[4] 0.0001 0.000833 0.022525

F[32, 64, 128], K[3] 0.0001 0.000847 0.022998

F[32, 64], K[2] 0.001 0.000875 0.022292

F[32], K[4] 0.001 0.000921 0.023764

F[256, 128], K[5] 0.0001 0.000933 0.024526

F[256, 128, 64], K[3] 0.0001 0.000937 0.024293

F[32], K[5] 0.001 0.000971 0.023994

F[32, 64], K[5] 0.0001 0.000972 0.024158

F[256, 128, 64], K[2] 0.0001 0.000982 0.024174

F[32], K[3] 0.001 0.000985 0.02409

F[256, 128], K[3] 0.0001 0.001019 0.024991

F[32, 64, 128], K[2] 0.0001 0.001022 0.024709

F[256], K[2] 0.001 0.001043 0.024658

F[256, 128], K[2] 0.0001 0.001186 0.026787

F[32, 64], K[3] 0.0001 0.001228 0.027576

F[32, 64], K[4] 0.0001 0.00141 0.029159

F[256], K[5] 0.0001 0.001493 0.030138

F[32, 64], K[2] 0.0001 0.001596 0.031106

F[32], K[2] 0.001 0.001655 0.031132

F[256], K[4] 0.0001 0.001701 0.032307

F[32], K[5] 0.0001 0.001743 0.032918

F[256], K[3] 0.0001 0.001744 0.032875

F[32], K[2] 0.0001 0.001779 0.033316

F[256], K[2] 0.0001 0.001891 0.034107

F[32], K[3] 0.0001 0.002042 0.035607

F[32], K[4] 0.0001 0.002067 0.035998

60

Table C.2: Architectures of voltage unbalances with no load condition

CNN architectures Learning rate MSE MAE

F[256, 128], K[5] 0.001 0.001637 0.028586

F[256, 128], K[4] 0.001 0.001748 0.029672

F[32, 64], K[5] 0.001 0.001754 0.030453

F[32, 64], K[4] 0.001 0.001808 0.031603

F[256], K[5] 0.001 0.001829 0.03071

F[32, 64, 128], K[5] 0.001 0.001844 0.031011

F[256], K[4] 0.001 0.001892 0.032975

F[256, 128], K[3] 0.001 0.001895 0.031669

F[32, 64], K[3] 0.001 0.001902 0.032656

F[256, 128, 64], K[3] 0.001 0.001936 0.033202

F[32], K[5] 0.001 0.001952 0.034049

F[256], K[3] 0.001 0.001954 0.032285

F[32], K[3] 0.001 0.00196 0.03356

F[256, 128, 64], K[5] 0.001 0.001978 0.030769

F[32], K[4] 0.001 0.002021 0.034637

F[32, 64, 128], K[3] 0.001 0.002029 0.033056

F[32, 64, 128], K[2] 0.001 0.002068 0.034507

F[32, 64, 128], K[4] 0.001 0.002068 0.032814

F[256, 128], K[4] 0.0001 0.002075 0.035617

F[256, 128, 64], K[4] 0.001 0.002142 0.033801

F[256], K[2] 0.001 0.002146 0.034853

F[256, 128], K[3] 0.0001 0.002177 0.036264

F[256, 128, 64], K[5] 0.0001 0.002199 0.036708

F[32], K[2] 0.001 0.002209 0.036645

F[256, 128, 64], K[4] 0.0001 0.002224 0.036929

F[256, 128, 64], K[2] 0.001 0.002241 0.036106

F[256, 128], K[2] 0.001 0.002298 0.036218

F[32, 64, 128], K[5] 0.0001 0.002299 0.037531

F[256], K[2] 0.0001 0.002327 0.03766

F[256, 128], K[5] 0.0001 0.002333 0.037897

F[256, 128, 64], K[2] 0.0001 0.002335 0.03792

F[256, 128, 64], K[3] 0.0001 0.002498 0.039912

F[32, 64], K[5] 0.0001 0.002527 0.039707

F[32, 64], K[2] 0.0001 0.002529 0.039193

F[32, 64, 128], K[3] 0.0001 0.002591 0.040328

F[32], K[4] 0.0001 0.00261 0.040612

F[32, 64], K[2] 0.001 0.002634 0.039592

F[32], K[2] 0.0001 0.002648 0.040593

F[32, 64, 128], K[4] 0.0001 0.002649 0.040444

F[256], K[4] 0.0001 0.002675 0.040855

F[32, 64], K[3] 0.0001 0.002709 0.041013

F[32, 64, 128], K[2] 0.0001 0.00275 0.041516

F[32, 64], K[4] 0.0001 0.002752 0.041788

F[32], K[5] 0.0001 0.002754 0.041451

F[256], K[5] 0.0001 0.002821 0.042651

F[256, 128], K[2] 0.0001 0.002859 0.042312

F[256], K[3] 0.0001 0.00304 0.043872

F[32], K[3] 0.0001 0.003076 0.043996

Table C.3: Architectures of single phasing with Load condition

CNN architectures Learning rate MSE Accuracy

F[256, 128], K[5] 0.001 0.003807 0.99589

F[32, 64, 128], K[5] 0.001 0.00415 0.995205

61

F[256, 128, 64], K[4] 0.001 0.004002 0.993151

F[256, 128, 64], K[5] 0.001 0.004501 0.993151

F[32, 64], K[3] 0.001 0.010146 0.992466

F[32, 64], K[4] 0.001 0.008963 0.992466

F[32], K[5] 0.001 0.011745 0.992466

F[256], K[5] 0.001 0.008244 0.992466

F[32, 64], K[5] 0.001 0.006903 0.991781

F[32, 64, 128], K[3] 0.001 0.007522 0.991096

F[256], K[4] 0.001 0.011187 0.991096

F[32, 64, 128], K[4] 0.001 0.00783 0.990411

F[256, 128, 64], K[2] 0.001 0.008302 0.989726

F[256, 128], K[4] 0.001 0.007413 0.989041

F[256, 128, 64], K[5] 0.0001 0.011435 0.989041

F[32], K[2] 0.001 0.015751 0.988356

F[32], K[3] 0.001 0.015457 0.988356

F[32, 64, 128], K[2] 0.001 0.010615 0.987671

F[256, 128], K[2] 0.001 0.011999 0.986986

F[256], K[3] 0.001 0.014716 0.985616

F[256, 128], K[3] 0.001 0.011711 0.985616

F[256, 128, 64], K[4] 0.0001 0.015574 0.985616

F[32, 64], K[2] 0.001 0.01464 0.984932

F[32], K[4] 0.001 0.015923 0.984932

F[256, 128, 64], K[3] 0.0001 0.01551 0.984247

F[256], K[2] 0.001 0.020053 0.980822

F[32, 64, 128], K[2] 0.0001 0.019164 0.980822

F[32, 64, 128], K[4] 0.0001 0.017261 0.980822

F[32, 64, 128], K[5] 0.0001 0.0156 0.980822

F[256, 128], K[5] 0.0001 0.017084 0.980822

F[256, 128, 64], K[2] 0.0001 0.021054 0.979452

F[256, 128], K[4] 0.0001 0.017936 0.979452

F[256, 128, 64], K[3] 0.001 0.017345 0.978767

F[256], K[5] 0.0001 0.019624 0.978767

F[256, 128], K[2] 0.0001 0.019808 0.977397

F[32, 64], K[4] 0.0001 0.020592 0.976712

F[32, 64, 128], K[3] 0.0001 0.021897 0.976027

F[32, 64], K[2] 0.0001 0.027842 0.974658

F[256, 128], K[3] 0.0001 0.021586 0.974658

F[256], K[3] 0.0001 0.023886 0.973288

F[32], K[5] 0.0001 0.028562 0.972603

F[256], K[4] 0.0001 0.025086 0.971233

F[256], K[2] 0.0001 0.025884 0.970548

F[32, 64], K[3] 0.0001 0.028491 0.969863

F[32, 64], K[5] 0.0001 0.026751 0.969863

F[32], K[4] 0.0001 0.034371 0.965753

F[32], K[2] 0.0001 0.032284 0.963699

F[32], K[3] 0.0001 0.037147 0.960959

Table C.4: Architectures of single phasing with no Load condition

CNN architectures Learning

rate

MSE Accuracy

F[256, 128], K[4] 0.001 0.029235397 0.96851852

F[256, 128, 64], K[4] 0.001 0.026971309 0.96851852

F[256, 128, 64], K[5] 0.001 0.031876623 0.96388889

F[256, 128, 64], K[5] 0.0001 0.031008006 0.96388889

F[32, 64, 128], K[3] 0.001 0.030320587 0.96296296

62

F[32, 64], K[4] 0.001 0.033742246 0.96296296

F[32], K[5] 0.001 0.031903708 0.96296296

F[32], K[4] 0.001 0.031805294 0.96203704

F[32, 64], K[5] 0.001 0.031429155 0.96203704

F[256, 128], K[3] 0.001 0.033781285 0.96111111

F[256], K[5] 0.001 0.031465539 0.96111111

F[32, 64], K[3] 0.001 0.036054997 0.96018519

F[256, 128], K[3] 0.0001 0.034290784 0.96018519

F[32, 64, 128], K[2] 0.001 0.031211007 0.95925926

F[256, 128, 64], K[4] 0.0001 0.033313749 0.95925926

F[256, 128], K[5] 0.0001 0.03378064 0.95925926

F[32], K[3] 0.001 0.036557604 0.95833333

F[32, 64], K[2] 0.001 0.040139392 0.95740741

F[32, 64, 128], K[5] 0.001 0.032432234 0.95740741

F[256, 128], K[5] 0.001 0.034485459 0.95740741

F[256, 128, 64], K[3] 0.0001 0.035660972 0.95740741

F[32, 64, 128], K[4] 0.0001 0.035453136 0.95740741

F[256], K[4] 0.001 0.032996154 0.95648148

F[256], K[3] 0.001 0.03647002 0.95555556

F[32, 64, 128], K[4] 0.001 0.034756311 0.95555556

F[256, 128], K[4] 0.0001 0.034059055 0.95555556

F[32, 64], K[3] 0.0001 0.041210337 0.95462963

F[32, 64, 128], K[3] 0.0001 0.036421099 0.95462963

F[256, 128, 64], K[2] 0.001 0.039933187 0.9537037

F[256, 128, 64], K[2] 0.0001 0.037606554 0.9537037

F[256], K[3] 0.0001 0.037463399 0.95277778

F[32, 64], K[4] 0.0001 0.04089261 0.95277778

F[32, 64, 128], K[5] 0.0001 0.036444928 0.95185185

F[256, 128], K[2] 0.001 0.043195758 0.95092593

F[256, 128], K[2] 0.0001 0.040004473 0.95092593

F[32], K[2] 0.001 0.041427386 0.95

F[32, 64, 128], K[2] 0.0001 0.039385212 0.95

F[256], K[4] 0.0001 0.039501479 0.95

F[256, 128, 64], K[3] 0.001 0.049036758 0.94814815

F[32, 64], K[2] 0.0001 0.04438209 0.94722222

F[32], K[5] 0.0001 0.041391855 0.94722222

F[32, 64], K[5] 0.0001 0.04071304 0.94722222

F[256], K[5] 0.0001 0.039932136 0.94722222

F[256], K[2] 0.0001 0.041269461 0.9462963

F[32], K[3] 0.0001 0.041731378 0.9462963

F[32], K[4] 0.0001 0.042723607 0.94537037

F[256], K[2] 0.001 0.047482327 0.94444444

F[32], K[2] 0.0001 0.044314036 0.94444444

