
COVID-19 Classification in CT Images with
Convolutional Neural Network-based Ensemble

Learning

by

Dina Kushenchirekova

Submitted to the Department of Data Science
in partial fulfillment of the requirements for the degree of

Master of Science in Data Science

at the

NAZARBAYEV UNIVERSITY

April 2022

© Nazarbayev University 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Data Science

April 26, 2022

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Minho Lee

Assistant Professor
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adnan Yazici

Department Chair
Thesis Co-supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vassilios D. Tourassis

Dean, School of Engineering and Digital Sciences

yazici
Pencil



2



COVID-19 Classification in CT Images with Convolutional

Neural Network-based Ensemble Learning

by

Dina Kushenchirekova

Submitted to the Department of Data Science
on April 26, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science in Data Science

Abstract

The coronavirus infection has spread all over the world with great speed and the
virus continues to grow and change. The COVID-19 infection that became a cause
of the pandemic was a huge issue that people faced. Deep learning has a significant
and important part in application of medical image analysis, and in this paper we use
deep learning and convolutional neural network (CNN) methods. CNN helps us to
classify our formations, since it is an effective tool at image classification. Deep learn-
ing is the field of Artificial Intelligence that copes with the classification problems,
such as classifying and recognizing COVID-19 infection using computer tomography
(CT) images that contain lungs. In the study, we utilize several of the most popular
convolutional neural networks and evaluate them using the common metrics. Among
8 CNN architectures we used, which are VGG-19, VGG-16, MobileNetV2, Xception,
ResNet50V2, DenseNet201, Inception-V3, and EfficientNetB3, the most efficient and
outperforming was VGG-19, as it achieved the highest accuracy score. Specifically,
the VGG-16 CNN architecture’s accuracy on CovidX CT dataset is 0.97, on SARS-
CoV-2 CT dataset is 0.95, and on UCSD COVID-CT dataset the score is 0.94. The
arisen question now is how to properly utilize data mining to build an efficient detec-
tion system and mining framework. To answer the question we decide to use ensemble
learning, which integrates fusion, modeling, and mining into a single model. Our pro-
posal is ensemble learning algorithm that substantially stacks several neural network
architectures into one. The logic behind the method is to extract features from the
images using several of the above-mentioned models and combine the features into a
"stack". The results suggest that the method performs better than each individual
architecture. As the ensemble model considers each of the features and the losses
provided by the models, the resultant loss is lower. This results in a higher accuracy
score. In this way, we achieved the Ensemble model’s accuracy of 0.9867 for the
UCSD COVID-CT dataset, while the highest accuracy of the individual model was
0.945. As a result of the SVM integrated alternative methodology, ensemble model
has shown the accuracy of 0.982 for SARS-COV-2 CT dataset.
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Chapter 1

Introduction

1.1 Motivation

In the modern world, we are surrounded by innovative technologies based on

algorithms that resemble the work of the human brain in their specifics. As we know,

not so long ago, deep learning was one of the key areas through which researchers have

reached incredible heights in the field of medicine, namely in the analysis of medical

images [1]. Deep learning and Artificial Intelligence can now solve non-routine tasks

at a level close to humans, and sometimes better. This leads to the fact that with

the help of such powerful tools, knowledgeable specialists can apply various methods

such as machine learning that can make a huge contribution to medicine [2]. Based

on this, the approaches will help improve treatment and care for people suffering from

a particular disease. Health conditions such as COVID-19, oncological diseases, and

ones that form tumors and spots on the lungs that affect them are currently one of the

most important public health problems. Oncological diseases are among the leading

causes of death worldwide [3]. But with the outbreak of the pandemic in 2019, the

number of losses began to grow. As of May 2021, according to official generalized

data, 3.4 million people died from coronavirus [4]. As it is stated in news portals, in

many cases people died without passing any testing. Vaccines have been developed

in some countries, and mass vaccination is underway in many [4]. Statistics provide

comprehensive view on what is happening in the world and reveal of the burden of
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the disease. The information described above is one of the reasons for conducting this

study. Detection of such diseases at an early stage will help reduce the number of

deaths and may also create new devices in medicine for detecting defects in medical

images.

1.2 Problem statement

The task of working with medical images has always been difficult and time-

consuming for even experienced specialists [5]. But with the right approach, we can

get closer to solving the problem of classification and diagnosis of certain diseases.

The number of people exposed to the COVID-19 is increasing [4]. Most often, people

do not pay due attention to their health, thereby detecting the disease in the late

stages, when it becomes more difficult to fight. Statistics show us unfavorable results,

but with the help of deep learning, we can facilitate faster identification of problems

[4]. In terms of solving the problem, namely classification, the issue is that we need to

prepare the dataset first and then train a model on the special tools we have created.

Such studies based on the recognition and analysis of the medical images, specifically

on the nature and growth of cells, are very important for evaluating the effect of drugs

and prescribing treatment and in some cases have much higher information content

than standard indicators. Image analysis provides an invaluable tool for predicting

the growth of primary cells and detecting lesion spots in the lungs.

Considering Convolutional Neural Network (CNN) architectures, the problem is

finding the most suitable structure for COVID-19 recogniton using Computer To-

mography scans. There is a huge number of different most common CNN models

that perform decently on ImageNet dataset. One of them, namely ResNet50 [6], uses

residual blocks. Another one is DenseNet201, which utilizes the feed-forward fash-

ion that is used in linear neural network [7]. The other one, namely, MobileNetV2,

utilizes residual blocks and applies different fine-tuning techniques to provide mobil-

ity [8]. It is necessary to test each architecture according to its class affiliation [9].

Furthermore, in this study we try different Ensemble learning methods, and check
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their performance. The problem is to find the most efficient Ensemble model for

CT scans medium. This requires understanding of the models’ structures and their

compatibility between each other.

1.3 Proposed approach

As a starter, we will introduce the peculiarities of COVID-19 disease and ways

to recognize it on time. Pneumonia that is associated with coronavirus infection

(COVID-19 pneumonia) is a special type of lung lesion that more accurately reflects

the term "pneumonitis". This implies the involvement of interstitial lung tissue,

alveolar walls and vessels in the pathological process. That is, inflammation develops

in all structures of the lungs, which are involved in gas exchange. This prevents the

normal saturation of blood with oxygen. Computed tomography (CT) of the lungs

is an excellent method, but it is not used to diagnose coronavirus as such, but to

diagnose viral pneumonia. For many patients, fortunately, the infection proceeds

without inflammation of the lungs or with minimal lung damage. As part of this

research paper, we used deep learning models to identify formations on CT images.

In order to conduct the study, we collected a set of the images, which will be tested

using a set of specially trained CNN models for image classification. Furthermore, the

ensemble learning algorithm was used to improve the results and reduce the errors,

since combining two or more models leads to a better performance, thereby improving

chances of correctly identifying the disease.
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Chapter 2

Related work

2.1 Convolutional neural network

Reviewing the related papers, journal work of other researchers and their solu-

tions, it was helpful to start work and gain novel ideas. The research revealed that

each work was done with a closer goal but using different approaches. CNN based

research papers show comparatively high results that are consistently improving. The

implementation of this architecture was done on publicly available datasets. The use

of such technologies is beneficial in terms of solving social problems related to medical

education.

Through transmission training, it was determined whether the CNN model works

effectively with new sets of images by studying its architecture (i.e. Inception-v3) by

Mahbub Husain, Jordan J. Bird,and Diego R. Faria [10]. Also one of the reviewed

papers proposed an individual CNN architecture for classifying sections of images of

light HRCT ILD patterns [11]. According to some of them, effective methods need to

be used to extract signs from ML-based healthcare systems. However, we still don’t

know what effective functions are, and the methods available to extract functions

are not very efficient. Much ongoing research is directed to studying and classifying

CT-scan and X-ray or MRI images of tumors, COVID-19, etc. Compared to other

solutions, these demonstrate a decent track record of achieving high classification

results. For instance, according to Narayan Das et al. [12], the ResNet50 architecture
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achieves the accuracy score of 92%, and VGG architecture achieves the value of the

accuracy of 90%. Furthermore, Parnian Afshar et al. [13] proposed the solution that

works with the smaller datasets. The approach was based on Deep Learning and

achieved high accuracy scores.

Yana Sun et al. propose an automatic method for designing CNN architecture

using genetic algorithms to efficiently solve image classification problems [14]. The

article discusses the advantage of the proposed algorithm, that lies in its “automatic”

characteristic, which implies that users do not need knowledge of the CNN domain

when using the proposed algorithm, while they can still get a promising CNN archi-

tecture for given images [14].

Q. Li et al. proposed a customized CNN architecture to classify HRCT lang image

patches of WILD patterns [11]. The results of this work showed that the described

design is able to automatically extract distinctive features without manual work, thus

this method can achieve good performance. They also stated that a properly designed

network structure and similar methods such as intensive screening and distortion of

input data that eliminate the problem of overfitting, effectively solved these problems.

Mohammad Sajjad et al. also conducted a research on classification of the brain

tumors. The authors used deep CNN with extensive data expansion. Across all the

models that were presented in this work,CNN used augmented data to fine-tune its

classification of brain tumor grades [15].

Paulo Lacerda et al. used a Hyperband optimization algorithm in the optimization

process, CNN turned to the diagnosis of the disease SARS-Cov 2 (COVID-19). They

used the Options framework. Cnn models were trained on 2175 computed tomography

(CT) images. As a result, they propose a CNN model, which is VGG 16 with five

initial modules and 128 neurons in two fully connected layers. Their proposed model

achieved 82% results [16].
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2.2 Ensemble Machine Learning Algorithms

Giorgio Giacinto and Fabio Roza researchers with their work proposed an approach

related to ensemble learning, namely, the authors talked about the design of effective

ensembles of neural networks. A large set of neural networks was used, and the

presented approach was aimed at selecting a subset of networks that were most error-

independent. Thus, the authors achieved effective results [17].

Byoungchul Ko et al. [18] provided another method that is based on the ensemble

algorithms and random forest classifier. They also proved that the algorithm they

used was more efficient compared to other classification methods when using training

datasets.

R. Lavanyadevi et al. [19] proposed a method that includes mechanically rec-

ognizing semantically meaningful areas in an image. The researchers were able to

detect malignancy and make diagnoses by correlating every pixel in the image and

the sticker that signifies a semantically meaningful part. The features of neighboring

double examples and gray level co-occurrences are removed from brain images with

benign or malignant or normal images.

Zi Wei Zhi et al. [20] developed a diagnostic prototype system for COVID disease

that has been put forward. Their proposed model has been tested and trained on var-

ious datasets. CT scans from uninfected people were used. The results of computed

tomography accuracy, which was 95.8 percent, were also described extensively.

In another article, Ying Bi et al. offer a training system that is automated using

an ensemble algorithm and applying GP (EGP) for image classification. The method

presented in this paper combines not only the study of the features, but also the

selection and training of the classifier function, as well as the combination into a

single program tree. The results of the work were positive, as EGP provided better

performance, thereby improving ensembles. The authors of this paper were the first

researchers to use automatic ensemble creation and GP (EGP) [21].

Hasan Rusel, Seule Yasar, and Kemal Kolak conducted a study that was aimed

at web development, specifically at the development of free software which purpose
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is to diagnose and detect brain tumors [22]. The results of the software, as it has

demonstrated its competitiveness and reliability in the identification and diagnosis of

three types of brain tumors. The authors also provided a link to their web software

that is available in 2 languages.

In the "Diagnosis of nodular formations in the lungs based on computed tomog-

raphy images based on ensemble training", a classification method using computed

tomography was proposed [23]. To evaluate the performance of the proposed system,

they used 60 computerized tomography (CT) scans assembled by the Lung Image

Database Consortium (LIDC), and as a result, all these techniques has shown an

improvement in diagnostics.

Xiaobo Li et al. in their article developed a system that worked even when train-

ing data was insufficient [24]. The system is based on the ensemble transmission to

improve the classification accuracy. The authors also proposed a weighted sampling

method for transmission training, which was called TrResampling and used the TrAd-

aBoost algorithm. The algorithm is used to adjust the weights of the source data and

the target data.
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Chapter 3

Methodology

3.1 Datasets

Computed tomography is a highly modified X–ray, which represents a comput-

erized imaging device mounted inside of rotating "bagel". The process of computed

tomography includes shifting the table on which the patient is located in an anterior-

posterior direction, while the tube and detector rotate around the table so that the

patient is constantly between them. Since the patient is constantly moving back and

forth, the trajectory described by the X-ray bean on the patient takes a form of spiral

[25]. The detector gets several thousand projections of each cross-section of the body

at different times. After that, with the help of special logarithms of computer pro-

cessing, and reconstruction, we get a three-dimensional data set: a set of very thin

cross-sections of the human body, from which we can then arbitrarily rebuild any

other planes. The following are examples of what the lungs look like on a CT-scan

of a coronavirus CT infection. In patients with inflammation caused by coronavirus

infection, tomograms show a characteristic radiological sign, which can be viewed in

Figure 3-1.
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Figure 3-1: Characteristic of radiological signs of coronavirus infection.

For this study three open-source datasets were used. These datasets encouraged

us, as novice researchers, to apply our proposed technology in the field of image

classification to achieve new opportunities in the fight against this infectious disease.

The SARS-CoV-2 dataset, for comparison purposes, contains 1252 CT scans that

are positive for SARS-CoV-2 infection (COVID-19) and 1230 CT scans for patient

populations who are not infected with SARS-CoV-2, for a total of 2482 CT scans

3-2. The information was gathered from genuine patients at Sao Paulo hospitals,

and the goal of this data collection is to encourage artificial intelligence research and

development for determining whether a patient is diagnosed with SARS-CoV-2 by

monitoring his or her computed tomography scans [26]. Images from the COVID-CT

Sao Paulo, Brazil dataset are displayed in Figure 3-2 and appear in the first row

while non-Covid-19 cases appear in the second row. COVID-CT dataset composition

is shown in Table 3.1.

Figure 3-2: COVID-CT images from the SARS-COV-2 CT-Scan Dataset Covid-19
cases.
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Table 3.1: SARS-COV-2 CT-Scan Dataset.

Type Non-Covid-19 Covid-19 Total

Train 988 749 1737

Validation 200 173 373

Test 199 173 372

UCSD COVID-CT, the second dataset, has the lowest average number of samples

above all the others. The data was in TXT file format and in separate folders with

png images, which was quite convenient to use [27]. The repository also has meta-

information which consists of patient ID, patient information, Gender, image caption,

and age. All images in this dataset were gathered from COVID19-related papers from

medRxiv, bioRxiv, NEJM, JAMA, Lancet, etc [28]. Examples of data are listed on

Figure 3-3 and Table 3.2.

Figure 3-3: COVID-CT images from the UCSD COVID-CT Dataset Covid-19 cases.
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Table 3.2: UCSD COVID-CT Dataset.

Type Non-Covid-19 Covid-19 Total

Train 177 120 297

Validation 40 25 65

Test 39 24 63

The third dataset, COVIDx-CT Dataset, contains volumetric chest CT scans and a

comparison CT image dataset derived from CT imaging data collected by the China

National Center for Bioinformation, with 104,009 images from 1,489 patient cases

[29]. COVIDx CT data structure is separated into two variations: A and B. The first

variant consists of cases with confirmed diagnoses, while the second variant includes

the entirety of the first option as well as some cases that are supposed to be correctly

diagnosed but have been poorly verified [30]. More than ten people were involved in

the data collection process. The dataset allocates a large amount of memory since

there was a lot of excess in it. During the beginning of the virus, datasets were

updated with the addition of new CT images of patients. The sample images and

dataset analysis are provided in Figure 3-4 and Table 3.3.

Figure 3-4: COVID-CT images from the COVID-CT dataset Covid-19 cases.
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Table 3.3: COVIDx-CT Dataset.

Type Non-Covid-19 Covid-19 Total

Train 27201 12520 39721

Validation 9107 4529 13636

Test 9450 4346 13796

3.2 Ensemble learning algorithm

In this chapter, we consider the Ensemble learning algorithm as well as its meth-

ods. The ensemble algorithm is one of the decently performing methods in machine

learning. In the study, we used the algorithm to classify medical images, specifically

COVID-CT datasets. Speaking of how the algorithm works, it combines several mod-

els to get the better result and performance, which are the most significant aspects of

the identification of different diseases. In our work, we were convinced that ensemble

classification models can be a powerful machine learning tool. The main value is that

it can eliminate potential errors made by any individual classifier, thereby improving

the performance of the programmatic model (Fig. 3-5).

Figure 3-5: Ensemble learning methods structure.

Ensemble learning performs better than the individual models it comprises, be-
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cause it gives us the error of each prediction. Thus, when the algorithm combines

two predictions, it improves the indications and reduces the number of mistakes [31].

There are three most popular methods for the combination of different models’ fore-

casts: Bagging, Stacking and Boosting.

One of the methods we consider in the study is stacking the features extracted

by several neural networks. First, we took multiple pretrained Convolutional Neu-

ral Network models and fine-tuned their last convolutional layers using 3 of the de-

scribed datasets. For the fine-tuning process we used the Categorical Cross-Entropy

loss function. It basically calculates the difference between the actual and predicted

likelihoods. The ideal value of the loss is 0. The formula for the latter is as follows:

𝐿𝑜𝑠𝑠 = −
𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑖𝑧𝑒∑︁

𝑖=1

𝑦𝑖 · 𝑙𝑜𝑔(𝑦𝑖) (1)

Furthermore, another important part of the fine-tuning is freezing the dense layers

to fine-tune only convolution blocks. This was done using Keras built-in functional-

ities, such as the attribute trainable of the keras.layers. By making the dense layers

"non-trainable", we can fine-tune only the convolutional architecture of the model.

This was done so that only pre-trained part of the model was tuned using the CT

scan datasets. If we fine-tune the models with the unfrozen dense layers, this will

result in the large gradient shifts and in the elimination of the pre-trained features of

the architectures we use.

We then used the models to extract features from the images of the datasets. The

features were then stacked into another so-called dataset. To classify the features

that were extracted by the models, we used one of the most efficient linear classifiers,

namely Logistic Regression. The equation for the logistic regression, where p is the

probability of correct prediction, is as follows:

𝑦 = 𝑙𝑜𝑔(
𝑝

1− 𝑝
) (2)
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Beforehand, we used Global Average Pooling to transform 2 dimensional features

into 1 dimensional data. The reason of why the ensemble method works is that it

diminishes the losses of individual network, which results in higher evaluation accu-

racy.

Then, we also utilized Support Vectors Machines (SVM) algorithm instead of

Logistic Regression. What SVM does is mapping the input data into the points in

n-dimensional space, with n as a number of features. Then, it solves the classification

problem and finds the hyper-plane that separates the date into several classes. The

algorithm is capable of both classification and regression, however, in the task we

used Support Vectors Classifier, namely, LinearSVC. Other SVM classifiers include

SVC and NuSVC that utilize "one-versus-one" multi-class strategy, while LinearSVC

uses "one-vs-the-rest" way of multiple class classification. The method utilizes hinge

loss function to solve the main problem, where the hinge loss for a given input x in

its simplest form (Equation 3.1):

𝑙𝑜𝑠𝑠(𝑦) = 𝑚𝑎𝑥(0, 1− 𝑦 · 𝑥) (3.1)

For the given SVM problem, the hinge loss is as follows:

ℎ𝑖𝑛𝑔𝑒𝑙𝑜𝑠𝑠 =
∑︁
𝑖=1

𝑚𝑎𝑥(0, 1− 𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏) (3.2)

In Equation 3.2, 𝜑 stands for identity function. The main goal of the SVM is to

minimize the weights parameters. In combination with the hinge loss, the formulation

of the main problem is as follows:

𝑚𝑖𝑛𝑤,𝑏 −
1

2
𝑤𝑇𝑤 + 𝐶

∑︁
𝑖=1

𝑚𝑎𝑥(0, 1− 𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏)) (3.3)

C in the Equation 3.3 stands for the penalty term that regulates the penalty for

allowing some points to located at some distance from the boundary.

Bagging - helps us to reduce the spread in datasets. The technique significantly

impacts the reduction of correlation. Eventually, when compared to a single decision
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tree, the average value of all predictions from several trees is superior and unbiased.

Boosting - as we said earlier, the algorithms work with several models simulta-

neously. The application of boosting improves the model’s evaluation results. There

are several instances of the meta-algorithms that utilize boosting: AdaBoost, gradient

boosting, and others.

Another Ensemble method we utilized is called Weighted Average Ensemble. The

Weighted Ensemble approach is an extended model averaging method. Model averag-

ing is the type of ensemble learning, where each individual neural network architecture

contributes to the resultant prediction in the same way as other individual models.

In a Weighted Ensemble approach, however, the individual weights are assigned to

each model depending on its performance (see the equation below). In this way, the

model that performs with a better accuracy will get the higher weight. The sum of

the weights should be equal to one.

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑚𝑜𝑑𝑒𝑙𝑠∑︁
𝑖=1

𝐴𝑖 · 𝑤𝑖 (3)

3.3 Models

Convolutional Neural Network

When working on my thesis, we were often asked why we use CNN models specif-

ically. Below we will try to describe the reason in details. The task is to create

CNN models to classify medical images and achieve high accuracy results. The image

classification problem is to receive the initial image and to output its class (covid,

non-covid, etc.) or a list of the probabilities for each class [32]. The convolutional

neural network architectures fit the problem of image classification perfectly, which is

why the method was used. Below we will describe each CNN model that we use [33].

The reason for utilization of these models lies in the fact that they successfully per-

form with the similar domain providing promising results. In this study, those models

have provided very competitive results outreaching all the initially set expectations.
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Convolutional Neural Networks is needed to analyze tiny data features in order to

obtain a larger perspective. It is evident from recent study that CNN performs best

in terms of image classification abilities.

VGG-19

VGG-19 is a CNN architecture that that comprises 19 levels of different Neural

Network layers. It is one of the most popular convolutional neural networks, which is

simple and practical enough and can perform with the state-of-the-art efficiency [13].

VGG-19 model was pretrained on vast numbers of sample images and implements the

architectural style that combines Image regularization, Convolution, ReLU, and Max

Pooling. Researchers used kernels with the stride size of one pixel, which allowed

them to cover the entire image concept. VGG can be assumed as a more in-depth

version of AlexNet. The system is made up of convolutional and fully connected

layers help achieve a high model accuracy classification [34].

MobileNetV2

MobileNetV2 is a CNN model which was designed for mobile applications. Sandler

et al. modified the previous version of the MobileNet to provide a better performance

and efficiency that are capable of competing with other novel convolutional neural

network architectures [8]. The architecture is especially compatible with the frame-

works that were also created by the authors. One of them is SSDLite, which was

created to efficiently utilize the MobileNet models to recognize objects. The baseline

that was used for the development of the MobileNetV2 architecture was an inverted

residual structure. The principle behind it is that they used bottleneck layers as in-

put and output layers of the residual block. The structure of the MobileNetV2 model

comprises, first, convolution layer that contains 32 filters and, second, 19 residual bot-

tleneck layers [8]. Model a very effective feature extraction for object detection and

segmentation and also faster in performance and are useful for mobile applications.

VGG-16

The VGG-16 architecture is a Convolutional Neural Network model that was

presented by Simonyan and Zisserman [35]. The architecture shows one of the best

performances on the ImageNet dataset which comprises 1000 classes of 14 million
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images. VGG16 achieved the accuracy score of 92.7% that was one of the 5 highest

results on the dataset. The architecture is somewhat similar to the AlexNet model’s

structure. However, to improve the model in terms of efficiency, the authors replaced

large kernel-sized filters with 3 3x3 kernel-sized filters, where each is subsequent to

another. The model consists of 13 convolutional layers, 3 dense layers, and 5 pooling

layers [35]. It is also built in the Keras application library, where it can be accessed

as pretrained on the ImageNet dataset.Moreover, VGG model outperformed other

models with 92.7 and showed top-5 test accuracy, and won 1st and 2nd place in the

2014 ILSVRC competition.

ResNet-50

The ResNet50 architecture is a Deep Residual Neural Network. That is, the

architecture of the model was also created by stacking several residual blocks. The

ResNet convolutional neural network models are all based on the same principle.

The authors used the VGG CNN architecture as a baseline for creating the residual

analogue [6]. The ResNet-50 architecture, however, has one significant difference in

the structure. To optimize the training process, the authors transformed the building

block into a bottleneck. As the name suggests, the ResNet50 model comprises 50

neural network layers that provide one of the highest accuracies among other state-

of-the-art architectures [6]. The use of this model is positive for saving computing

resources and training time to develop this work.

InceptionV3

One of the main goals of the Inception architectures is coping with two issues

related to Convolutional Neural Network architecture. One of them is increasing

the depth of the model and improving its performance. The Inception architecture

was initially planned as a baseline for the GoogLeNet Convolutional Neural Network

model. The Inception models utilize the "Inception modules" that comprises convo-

lutional filters. One of the benefits of the InceptionV3 CNN architecture is that the

width of every stage and the total stages number can be modified [36].

Xception

The Xception is a Convolutional Neural Network architecture that utilizes regu-
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lar convolution layers, Inception modules, and the depthwise separable convolution

operation. The author [37] used the Inception modules that were described above

for separation of the regular convolution and the depthwise separable convolution.

The latter is substantially an Inception module, however, it consist of the largest

possible number of towers. The overall structure comprises the depthwise separable

convolution blocks that each followed by MaxPooling layer, which are linked using

shortcuts that are used in the ResNet architectures [37]. Thus, due to its structure,

this architecture is very easily defined and modified.

DenseNet201

The Dense Convolutional Network (DenseNet) architecture is another popular

CNN model. It uses a feed-forward connecting method, which is used in the linear

neural networks [7]. That is, the method was basically created to link the dense layers

between each other. The architecture of the DenseNet models utilizes several dense

blocks, which combines a number of convolution layers that are connected in a feed-

forward fashion. The structure of the DenseNet201 is as follows: a regular convolution

layer, pooling layer, 4 Dense blocks, each of which has 2 convolutional layers, that are

linked using a one by one sized convolution layer and an average pooling layer, and

classification layer, which consists of global average pooling and fully-connected dense

layer. Each dense block contains different number of the pair of one by one and three

by three convolution layers. Although, the layer has a large number of parameters,

it provides one of the highest accuracies and one of the best performances for image

classification [7]. It offers a totally different architecture comparing to the other ones,

it has dense block where the convolutional layers are connected in a feed forward

fashion.
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EfficientNet-B3

The model is one of the most powerful CNN models, when comparing to ResNet

and other popular CNN models. As a result, demonstrating greater accuracy and

efficiency [38]. The architecture of EfficientNet-B3 model is displayed on the Fig.

3-6 below. Efficient models follow the same general structure as the other popular

image recognition models and contain the blocks of convolutional layers followed by

fully connected layers. The models commonly have 7 blocks with sub-blocks that

consist of Memristive Binary Convolution layers (MBConv) with skip connections

which improves recognition capability and optimizing training. EfficientNet-B3 has

12 million parameters and is one of the smallest models used in our training. However,

its MBConv layers and structural simplicity provide one of the best accuracy results

with little training time.

Figure 3-6: Architecture of EfficientNet-B3 model.

3.4 Training

First, the publicly available datasets that we utilized to train our Convolutional

Neural Network architectures are all differently sized. The UCSD and CovidX CT

databases contain images from various sources. This implies that the images have

different resolution, rotation angle, and brightness. This allows us to find the most

suitable structure for meta-learner and the optimal strategy for fine-tuning.
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The first step before training was the use of fundamental pre-processing. Each

image was aligned, cropped, and regularized in terms of brightness. Although this

added the overall consistency to bigger datasets, pre-processing of smaller ones might

lead to the data corruption and provide inconsistent images to the models, which

eventually results in the lower performance. This implies that we need to thoroughly

consider the selection of meta-learner block and the parameters of its layers [39]. For

instance, when there is not enough data the larger amount of features might result

in overfitting [40]. Furthermore, the wideness of the layers provide almost the same

efficiency as the deepness of a series of layers [6].

Table 3.4: Computational time for each architecture.

Architecture Batch size Epoch Total comp.t(s)

VGG-16 32 150 890

VGG-19 32 150 900

MobileNetV2 32 150 720

ResNet-50 32 150 960

InceptionV3 32 150 808.5

Xception 32 150 1395

DenseNet201 32 150 945

EfficientNet 32 150 1050

In the Table 3.4 the computational time complexity for each architecture is repre-

sented. The time complexity represents the speed, with which the algorithm performs

on some input. One can notice that the input parameters for training purposes were

the same including batch size and number of epochs. The total time complexity of the

CNN architecture depends on several factors, including its deepness, wideness, com-

33



plexity, number of parameters, and others. The results suggested that MobileNetV2

performed the fastest. This was because the model had been designed for mobile

devices that did not posses enough of computational power. Thus, MobileNetV2 was

less complex than others. We can also see that the most of other CNN architectures

performed almost with the same speed with time complexity ranging from 808.5 to

1050 seconds. The slowest model was Xception. This implies that the architecture

was either the most complex or utilized the largest number of parameters.

Nevertheless, both varieties require strong regularization methods. In this study

we used L1 and L2 regularization to regularize parameters through penalties. Penal-

ties of higher values were applied on the first layer of the meta-learner block, and

penalties that were ranging from 0.3 to 0.5 were applied to dropout layers. Heckel

and Yilmaz [41] proposed early stopping solution to solve the double descent prob-

lem. However, for this study we trained our CNN models for 100-150 epochs on a

par. According to Nakkiran et al. [42], this ensures consistency and averts gradients’

explosion.

Transfer learning is an effective method that is a subsection of machine learning,

the purpose of which is to apply knowledge obtained from one task to another target

task. As we know, in deep learning there are two common strategies for Transfer

learning namely: function extraction and fine tuning [43]. The first option implies

that only the weights of some newly added layers are optimized during training, while

in the second option all the weights are optimized for a new task. To do this, we

used the built-in Keras functionalities, such as trainable attribute of the keras.layers.

Using the attribute, we can upload the pre-trained CNN models as head and make

it as "non-trainable". Then we add the dense layers and make them "trainable".

The attribute accepts the Boolean values. We established that fine-tuning performs

more successfully than feature extraction. As the CT datasets we have used contain

a number of images with different spatial sizes, they need to be resized beforehand in

order to guarantee their compatibility with the model input size.
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3.5 Evaluation

The convolutional neural network architectures we used are simple, use memory

efficiently, and scale to differently sized and formatted databases. According to our

results, VGG19 and DenseNet201 are the most efficient and provide the best perfor-

mance with regard to accuracy and loss. The structures of the models’ meta-learner

block’s layer were based on the same foundation, which might suggest that the mod-

els could be potentially united in a single more efficient model. Furthermore, t-SNE

results suggested that the models managed to correctly extract the features from the

CT images and achieved the highest accuracy among other models.

During the training process, we also noticed some patterns that resulted in the

overall architectures’ performances. If we consider the randomly selected training

data, the performances of the architectures were consistent and similar. However,

some datasets tend to have the CT scan images taken from a single patient. This

imply that the model could be overfitted with the concrete instance from the large

dataset. The solution for this is utilizing proper filtering of the training set.

Another part of the study was to evaluate the methods we utilized, such as different

data augmentation and pre-processing, using appropriate metrics. The metrics that

were used in the work are sensitivity, specificity, and f1 score. The metrics touch

upon many different aspects of the datasets, including their inconsistencies. This

implies that these are one of the most objective indicators of success. The values of

sensitivity, specificity, and f1 score also suggest that VGG19 and DenseNet201 are

most accurate and best performing architectures.
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Chapter 4

Experiments

4.1 Experimental Setup

This section describes the tools that were used during experiments and evaluation

indicators and also analyzes the settings of hyperparameters which will be described

in detail below.

4.1.1 Software

The experiments that were done for this study were carried out with the help of

certain tools. The code was written using the latest version of Python, Keras libraries,

and TensorFlow frameworks. All the necessary tools were installed on a computer

with a GeForce GTX 970 GPU that is a highly performing graphics card.

4.1.2 Evaluation Metrics

In machine learning tasks, metrics are used to evaluate the quality of models and

compare various algorithms. The work presents metrics that are commonly used for

evaluation in various studies [44]. Before describing the metrics, it is necessary to

understand each concept. To describe metrics in terms of classification errors, we

used confusion matrix [45]. The size of the confusion matrix is N by N, where N is

the number of classes. The well-known indicators that utilize the matrix were used
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to illustrate the characteristics of data in statistical results.

Sensitivity - is an indicator that is a proportion of correctly classified positive

observations. Therefore, the higher the sensitivity, the better performance on the

positive instances is provided by the classifier.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

Specificity - is an indicator that refers to a proportion of true-negative classifica-

tions in the total number of negative observations.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(5)

F-score - is a metric that combines information about the accuracy and com-

pleteness of the algorithm. The indicator helps us evaluate the performance of the

convolutional neural network model in terms of binary classification.

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(6)

Accuracy - is an indicator that depicts the proportion of the correct answers

provided by our algorithm models.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(7)

4.2 Comparison with Other Models

CNN models are the most common solution for the range of image classification

tasks. To understand the difference between the models, let’s start with the LeNet-
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5 model. LeNet-5 consists of 7 Neural Network layers: 3 convolutional layers, 2

subsample layers, and 2 fully connected layers.

AlexNet is made up of 8 levels [46]: 5 convolutional layers, 2 fully connected lay-

ers, and a dense output layer. Comparing to LeNet-5, AlexNet has a much larger ar-

chitecture. As a result of the need in reducing the number of parameters in the CONV

layers and in optimizing the training process, VGGNet was developed. Simonyan

and Zisserman [35] used deeper configuration of AlexNet [46] and they proposed it as

VGGNet.

4.3 Comparison among other ensemble algorithms

Ensemble learning is a well-known machine learning algorithm. Analyzing the

sources, it became clear to us that the algorithms play an invaluable role, since they

are flexible and can be applied to a variety of purposes. Regression and classification

tasks benefit from ensemble estimation because they reduce bias and variance, thereby

improving model performance.

A powerful Adaptive Boosting Algorithm, AdaBoost, arranges a sequence of weak

classifiers such that the weakest classifier at each point is the optimal option for

correcting the errors introduced by the previous classifier. Boosting is the process of

arranging weak classifiers in such a way that the best choice for each weak classifier

corrects errors that have been made by the previous classifier.

Random Forest Algorithm: A random forest is one of the tree-based machine

learning algorithms that combine the abilities to solve several decision trees. To

predict the outcome of such a tree solution, each node works with a random subset

of functions. In the final stages, a random forest collects all the results obtained,

integrates the results of individual decision trees, and evaluates outputs the final

result.

Histogram-based Gradient Boosting : In general, the histogram-based Gradient

Boosting algorithm is similar to the Gradient Boosting algorithm, with the exception

that it’s compatible with the dataset.
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4.4 Results

4.4.1 Performance comparison of the proposed CNN models

In this investigation, 8 models were estimated on 3 different datasets. As a result

of the experiments, VGG-19 outperformed other models with a mean accuracy of

95.3%. The results suggest that we might apply this model or its variation in practical

medical application or future classification works on COVID-19.

We present summary of results of the EfficientNet-B3 model on test dataset in the

confusion matrix 4-1 below. Predicting correctly 2.4 thousand samples it achieved the

overall accuracy of 76% on test samples. However, the model tended to mark samples

of COVID-19 infected as negative. Possible reason for this behaviour is non-uniform

distribution of samples over classes of about 15% difference. Change of the model’s

meta-learner block or unfreezing last convolution layers might help the model capture

more features without changing dataset for training.

Figure 4-1: Confusion matrix for EfficientNet-B3.
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We included all the relevant metrics’ results (f-score, accuracy, specificity, sensitiv-

ity) in tables 4.1-4.3. VGG-19 and DenseNet201 show slightly better overall perfor-

mance than the rest of the models (VGG-16, Xception, ResNet50V2, MobileNetV2)

with an average of 96.76% and 98.1% accordingly. The observation of the results

that are presented in the table shows that DenseNet201 and VGG19 are more uni-

versally applicable and provide with the better performances. The reasons for their

superiority are their depth and concatenation methodologies.

Table 4.1: Performance comparison of the proposed CNN models for CovidX CT
dataset.

Models acc sensitivity spec f-score

ResNet50v2 0.96 0.95 0.96 0.97

VGG-16 0.97 0.98 0.96 0.97

VGG-19 0.95 0.95 0.95 0.96

InceptionV3 0.97 0.96 0.97 0.97

Xception 0.94 0.94 0.94 0.95

MobileNetV2 0.96 0.97 0.96 0.95

DenseNet201 0.97 0.97 0.97 0.96

Efficientnet-b3 0.80 0.77 0.85 0.81
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Table 4.2: Performance comparison of the proposed CNN models for SARS-CoV-2
CT dataset.

Models acc sensitivity spec f-score

ResNet50v2 0.95 0.95 0.96 0.95

VGG-16 0.95 0.93 0.96 0.98

VGG-19 0.97 0.97 0.96 0.98

InceptionV3 0.96 0.95 0. 95 0.97

Xception 0.93 0.93 0.93 0. 95

MobileNetV2 0.94 0.93 0.94 0.94

DenseNet201 0.97 0.96 0.97 0. 98

Efficientnet-b3 0.76 0.74 0.85 0.79
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Table 4.3: Performance comparison of the proposed CNN models for UCSD COVID-
CT dataset.

Models acc sensitivity spec f-score

ResNet50v2 0.88 0.88 0.89 0.85

VGG-16 0.92 0.92 0.92 0.92

VGG-19 0.94 0.91 0.98 0.97

InceptionV3 0.92 0.92 0.92 0.93

Xception 0.77 0.76 0.77 0.79

MobileNetV2 0.88 0.88 0.88 0.89

DenseNet201 0.91 0.92 0.91 0.92

Efficientnet-b3 0.94 0.92 0.92 0.93

4.4.2 Performance of the Ensemble Learning algorithm

For the evaluation of the performance of the Ensemble Learning algorithm we

used 7 of our Convolutional Neural Network architectures and 3 CT datasets. First,

considering the results obtained using SARS-CoV-2 CT dataset, the best accuracy

was achieved by the MobileNetV2 CNN architecture with the value of 0.9850. The

mean accuracy score for all 7 architecture was 0.945. The resultant ensemble model

accuracy was 0.9900. The values of other accuracies are displayed in the Table 4.4.

Second, let us consider the results obtained using USCD CT dataset. The highest

accuracy was achieved by VGG19 architecture with the value of 0.9450. The lowest

accuracy of 0.7743 was provided by Xception model. The mean accuracy score for all
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Table 4.4: Performance of Ensemble models for SARS-CoV-2 CT dataset.

Ensemble model

Architecture acc Ensemble model acc

InceptionV3 0.92000 0.990

VGG16 0.94500

VGG19 0.91250

MobileNetV2 0.98500

Xception 0.92000

ResNet50 0.96250

DenseNet201 0.97250

7 architecture was 0.8930. The resultant ensemble model accuracy was 0.9867. The

values of other accuracies are displayed in the Table 4.5.

Lastly, we need to consider the results obtained using COVID-X dataset. The

highest accuracy was achieved by VGG19 architecture with the value of 0.9630. The

lowest accuracy of 0.8860 was provided by Xception model. The mean accuracy score

for all 7 architecture was 0.9311. The resultant ensemble model accuracy was 0.9777.

The values of other accuracies are displayed in the Table 4.6.

Each of the above described results suggest that the ensemble model performs

better than the each individual Convolutional Neural Network architecture. When

the models were trained and evaluated on the SARS-CoV-2 CT dataset, the obtained

accuracy values were the highest for individual and Ensemble models. The highest

difference, however, between the Ensemble model’s accuracy and the highest indi-

vidual model’s accuracy was seen when the architectures were trained on USCD CT

dataset. The lowest Ensemble model’s accuracy value was provided when the archi-

tectures were trained and evaluated on the COVID-X dataset.
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Table 4.5: Performance of Ensemble models for USCD CT dataset.

Ensemble model

Architecture acc Ensemble model acc

VGG19 0.9450 0.9867

VGG16 0.9230

InceptionV3 0.9230

Xception 0.7743

MobileNetV2 0.8865

DenseNet201 0.9130

ResNet50v2 0.8860

Table 4.7 represents results of ensemble learning with SVM for three different

opensource datasets. From the below table we can see the achieved results was es-

tablished that these results outperform recent state-of-the-art research findings. For

the UCSD COVID-CT dataset results showed 0.9643, for SARS-COV-2 CT 0.9820

and for the last dataset COVIDX CT achieved results was 0.9943.
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Table 4.6: Performance of Ensemble models for COVID-X dataset.

Ensemble model

Architecture acc Ensemble model acc

VGG19 0.9630 0.9777

VGG16 0.9400

InceptionV3 0.9430

Xception 0.8860

MobileNetV2 0.9065

DenseNet201 0.9430

ResNet50v2 0.9360

Table 4.7: Performance of Ensemble with SVM.

Ensemble model –fine tuning + SVM

Dataset accuracy sensitivity specificity f-score

UCSD COVID-CT 0.9643 0.9751 0.9544 0.9754

SARS-COV-2 CT 0.9820 0.9901 0.9888 0.9883

COVIDX CT 0.9943 0.9933 0.9912 0.9925

The details of the image subsets used here are given in Table 4.8. It should be

noted that the test set classification count of the proposed approach for 2 different

dataset with multiclass ResNet50, VGG-19, Efficientnet-b3 by images.

Table 4.8: Distribution of experimental data.

Training images Validation images Testing images

ResNet50v2 1543 700 711

VGG-19 1543 711 800

Efficientnet-b3 1543 755 800
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4.4.3 t-SNE (t-distributed stochastic neighbor embedding)

To add a transparency to the architectures we utilized, we used t-Distributed

Stochastic Neighbor Embedding (t-SNE). t-SNE is based on the conversion of the

resemblances of data instances to the probabilities. It furthermore relies on the min-

imization of the discrepancy within low- and high-dimensional set of instances. The

t-SNE visualization method is commonly used to reduce the dimensionality and for

displaying multidimensional databases.

Figure 4-2: t-SNE for VGG16, VGG19 and EfficientNet-B3 for 3 datasets.

Note: t-distributed stochastic neighbor embedding for UCSD, Sao Paulo, CovidX

CT dataset. Presented models: VGG16, VGG19 and EfficientNet-B3.
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Figure 4-2 display 2 dimensional visualization. t-SNE was implemented for 3

dataset namely SARS-CoV-2 CT scan dataset, CovidX CT and UCSD COVID-CT.

First, as one can notice, each individual CNN model performed well on SARC-CoV-2

dataset. The two classes were accurately separated into two clusters, which suggest

that the models interpret the data correctly.

Figure 4-3: t-SNE for DenseNet201, InseptionV3 and MobileNetV2 for 3 datasets.

Note: t-distributed stochastic neighbor embedding for UCSD, Sao Paulo, CovidX

CT dataset. Presented models: DenseNet201, InseptionV3 and MobileNetV2.

The least accurate result was provided by MobileNet. Although, it divided the

data into two clusters, it confused some of the samples and did not create a distinct
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boundary. Second, considering CovidX CT dataset, the results are less accurate

than in the previous one. The least accurate was DenseNet, as it did not manage

to separate the data into two different clusters. However, other models provided a

precise separation of the dataset. Lastly, considering UCSD COVID-CT database,

the resultant 2D visualization is the most precise. Each model accurately separated

the data into two distinct clusters. There are only a few inaccuracies in MobileNet’s

t-SNE. Other than that, the results are very precise (Fig. 4-3).

4.4.4 Heatmap visualization

This section explains how to extract and assess regions with significant differential

activation between two classes of samples using a CNN model and Grad-CAM algo-

rithm [47]. We demonstrate the applicability of the algorithm to a variety of medical

imaging problems with varying information resolution, as well as its performance in

a single dimensional and multidimensional data environments.

The Figure 4-4 illustrates a 2D representation of the Grad-CAM heatmap eval-

uated on a CT scan of an individual patient with highlighted disease spots on the

lung region. Grad-CAM is one of the class activation mapping (CAM) approaches

that is employed in this study. The CAM framework allows us to combine data from

a variety of sources to create an accurate demonstration of NN models using individ-

ual examples from each class and dataset. The color palette of the data is seen as a

heatmap [48]. The framework is decently adaptable to emphasize patterns in a variety

of picture and text instances. comprehend NN’s prediction mechanism, The patterns

are further projected onto CT images for a better comprehension of the convolutional

neural network architecture’s decision-making.

The reasons for using Grad-CAM Framework:

• Easy to use.

• Universally applicable to various imaging tasks.

• Provides insights on prediction process.
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To demonstrate the Grad-CAM method in the study, we used 2D slices of lungs.

The predictions of the CNN models differ, implying that the architectures highlight

different parts of the CT scan. One can notice that each model has distinct decision

making. The DenseNet201 architecture relies on the inner part of the lungs to predict

normal and COVID-19 images. The VGG19 model, however, is mainly focuses on the

regions that are potential indicators of COVID-19, such as opacities. In the future

studies, we are planning to utilize the same approach for the analyzing interactive

predictions in 3D CT instances.

Figure 4-4: Predicting through Grad-CAM. Heatmap of Normal and Covid CT-scan
images of models DenseNet201, VGG- 19, ResNet50V2.
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Chapter 5

Conclusion

Considering the results achieved by our Deep Learning methods that include Con-

volutional Neural Networks and Ensemble Learning, we can state that Artificial In-

telligence can play a crucial role in medicine and fight against COVID-19. Firstly,

our study evaluated several most popular convolutional neural network architectures.

Accuracy, sensitivity, specificity, and f-score were computed for the given CNNs. The

models were fine-tuned and evaluated on the 3 of the open source datasets that con-

tain Computer Tomography scans. The pretraining was done using one of the largest

image datasets, namely ImageNet, which was also the dataset that was used as a

benchmark. Using the list, one can rank the models in terms of their capability of

COVID-19 recognition using CT images. The results suggested that the most ac-

curate CNN model was VGG-19. Furthermore, we utilized the Ensemble learning

algorithm for improving the accuracy scores of each individual architecture. The

Ensemble model used the stack of the features extracted by individual models and

logistic regression for classifying the features. The results suggested that in every case

the performance and accuracy of the Ensemble model were superior to the same met-

rics achieved by CNN architectures. There are, however, several questions left that

require further investigation. First, the structural features of the best performing

models need to be considered to advance the performance of the architectures. Sec-

ond, there is a large amount of other Ensemble learning methods that might perform

even better and achieve a higher efficiency.
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