

NAZARBAYEV UNIVERSITY

Multiphase flow in a porous medium using Lattice Boltzmann Method and grid verification

Assetbek Ashirbekov 2nd year in MSc of Mechanical and Aerospace Engineering <u>assetbek.ashirbekov@nu.edu.kz</u> Supervisor: Prof. Luis R. Rojas-Solórzano Co-supervisor: Prof. Konstantinos Kostas

Related Publications

- Ashirbekov, A., Kabdenova, B., Monaco, E., & Rojas-Solórzano, L. R. (2021). Equation of State's Crossover Enhancement of Pseudopotential Lattice Boltzmann Modeling of CO2 Flow in Homogeneous Porous Media. *Fluids*, 6(12), 434.
- In Progress
 - Numerical Study of the Effect of Viscosity Ratio on the CO2 Injection Through a Homogeneous Aquifer Using a Crossover-EoS Pseudopotential Lattice Boltzmann Model

Outline

- 1. Motivation
- 2. Aims and objectives
- 3. Lattice Boltzmann Method, its principles and governing equations
- 4. Method for grid verification
- 5. Validation of formulation
- 6. Domain verification; Results of multiphase analysis
- 7. Conclusion

Motivation

- Fluid flows with multiscale and multiphase phenomena
- Energy systems: power plants, fuel cells, generators, turbines
- Medicine: blood flow
- Geoscience: CO2 sequestration, oil recovery

(Cordero et al., 2018)

Motivation: CO₂ sequestration

- Long-term storage of excess carbon dioxide captured from the atmosphere
- One of the key strategies for reducing CO2 emission rates
- The global emission of CO2 alone can rise by 6.41 billion tonnes, 18% of 2021, by 2030 by estimations of EIA

Injection of CO₂ into the porous medium of water saturated oil

Motivation: CO₂ sequestration modeling

- CO₂ sequestration involves modeling of porous medium, which is small scale and multiphase
- Is analyzed using different approaches and methods
- Lattice Boltzmann method was tried, however only with color-fluid model, and without discretization verification
- Hypothesis: pseudopotential LBM modeling, verified with domain size analysis, can give useful insight into mechanics of CO₂ sequestration

Aims and objectives

- Main goal: model the immiscible displacement flow in a porous medium and apply grid verification
 - 1. Introducing the multi-component LBM formulation
 - 2. To develop validation static case to confirm formulation stability
 - 3. To develop and perform domain size verification procedure

Lattice Boltzmann Method

- Finite volume, the volume of fluid, and level-set methods most used models, traditional FVM CFD
- Those methods are macroscopic, with assumption of fluid as a continuum

- Lattice Boltzmann Method (LBM) mesoscale method
- Assumes fluid as a collection of particles

LBM Principles

- Particle interactions but focus on macroscopic behavior
- Fluid is treated as a collection of discrete particles on a uniform grid
- Based on microscopic models and kinetic theory
- Deals with interactions of particles

LBM lattice, probability function and directions, 2D case ("Lattice Boltzmann Method", 2021)

Governing equations

$$f_i^{\ j}(\mathbf{x} + \mathbf{e_i}\Delta t, t + \Delta t) - f_i^{\ j}(\mathbf{x}, t) = -\frac{1}{\tau^j} \Big(f_i^{\ j}(\mathbf{x}, t) - f_i^{\ j, eq}(\mathbf{x}, t) \Big)$$

streaming (LHS) and collision (RHS) steps of distribution function, derived from Boltzmann equation

$$f_i^{j,eq}(\mathbf{x},t) = \omega_i \rho^j \left[1 + \frac{\mathbf{e_i} \cdot \mathbf{u^j}}{c_s^2} + \frac{\left(\mathbf{e_i} \cdot \mathbf{u^j}\right)^2}{2c_s^4} - \frac{\left(\mathbf{u^j}\right)^2}{2c_s^2} \right]$$

Maxwell-Boltzmann equilibrium

 $\rho^{j} \mathbf{u}^{j} = \sum_{i} f_{i}^{j} \mathbf{e}_{i}$ momentum – relation to physical density

Governing equations (cont.)

$$\mathbf{F}_{int}{}^{j}(\mathbf{x},t) = -G(\mathbf{x},\mathbf{\dot{x}}) \rho^{j}(\mathbf{x},t) \sum_{i} \omega_{i} \psi^{j}(\mathbf{x}+\mathbf{e}_{i}\Delta t,t) \mathbf{e}_{i} \quad \text{interaction between components}$$

$$\mathbf{F}_{wet}{}^{j}(\mathbf{x},t) = -g_{wall}{}^{j}\rho^{j}(\mathbf{x},t) \sum_{i} \omega_{i}s(\mathbf{x}+\mathbf{e}_{i})\mathbf{e}_{i} \quad \text{interaction with obstacles}$$

$$\mathbf{u}_{eq}{}^{j} = \mathbf{u}^{j} + \frac{\tau^{j}}{\rho^{j}}(\mathbf{F}_{int} + \mathbf{F}_{wet})^{j}\Delta t \quad \text{forces effect transferring to distribution function}$$

 $\psi^{j}(\mathbf{x},t) = \rho_{0} - exp(-\rho(\mathbf{x},t)/\rho_{0})$ pseudopotential

$$v = c_s^2 \sum_j \chi^j (\tau^j - 0.5)$$
 kinetic viscosity

Grid verification

- Lack of studies to perform the proper domain verification
- In 3D typically done by increasing number of directions (D3Q15 \rightarrow D3Q27)
- Not commonly applied in 2D, and is not trivial with lack of software capabilities

Grid verification – issues

Simple increase in domain size

Coordinate scaling

Grid verification – proposed solution

- Conversion of the domain into pixelated image, each lattice point is one pixel
- Color and opacity may be used to decode state of lattice point (e.g. components, initial velocities)
- Perform scaling using image scaling techniques

Domain converted to image

Grid verification – proposed solution

Scaling using image processing, nearest neighbor scaling

Grid verification

Original

Coordinate scaling

Proposed solution

Validation – droplet test

201×201 lattice unites

$$g = 1$$

$$\rho_{water} = 4.3, \, \rho_{CO2} = 1$$

 $\tau_{water} = \tau_{CO2} = 1$

Density profile (in LU) at the crosssection of the domain taken at the horizontal

Water in red, CO_2 is in blue

Validation – contact angle, wettability

θ_{eq}	$g_{CO_2,wall}$	$g_{H_2O,wall}$		
70°	0.2	-0.2		
90°	0	0		
120°	-0.2	0.2		
130°	-0.3	0.3		

Porous medium model

0 ts

Water in blue, CO_2 in red, $\theta_{eq} = 70^{\circ}$ viscosity ratio of 1

4800 ts

7100 ts

Domain size verification

Line probe location (shown in black) in the gridindependence analysis of CO_2 penetration LBM model

Domain size verification

Velocity over line probe

• 401x201 • 601x301 • 801x401

Grid size, LU ²	CO_2 flux, ×10^-7 LU/ts	Relative error (%)
401×201	3.590	-
601×301	3.651	1.7%
801×401	3.679	0.76%

Time-space average CO_2 flux over a probe line integrated over 7100 timesteps

Average velocity magnitude along the probe line versus timesteps

CO₂ sequestration conditions

Temperature (K)	308	318	328	338
Water viscosity (Pa · s)	7.4×10^{-4}	6.1×10^{-4}	5.2×10^{-4}	$4.4 imes 10^{-4}$
CO_2 viscosity (Pa · s)	7.2×10^{-5}	$6.2 imes 10^{-5}$	$5.0 imes 10^{-5}$	4.2×10^{-5}
Water density (kg/m ³)	994	990	986	980
CO_2 density (kg/m ³)	815	735	645	535
Interfacial tension (mN/m)	36.0	34.5	33.4	32.7
log(Ca)	-3.40	-3.53	-3.73	-3.87
log(M)	-1.01	-0.99	-1.01	-1.02

LBM lattice, probability function and directions,

(Gooya et al., 2019)

²D case

Porous medium models, viscosity ratio of 8.427

0 ts

7100 ts

Water in blue, CO_2 in red

Water in blue, CO_2 in red

Porous medium models, comparison at same timestep

Viscosity ratio of 1

Viscosity ratio of 8.427

Conclusion

- Pseudopotential LBM was applied to the problem of modeling CO₂ sequestration, achieving stable models and giving useful insight into parameters. Domain verification was applied and confirmed grid independence of the model.
 - Validation test using channel model
 - Porous medium model at 1:1 viscosity and 8.427:1 viscosity done
 - Grid verification performed

Future work

- Capture more details of CO₂ and H₂O interaction featuring both density and viscosity ratios
- Adaption of Peng-Robinson and crossover EoS models, which capture more physics of fluids