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Abstract 

Vibration signature analysis is considered as an advanced and economical methods to 

evaluate transformer operating condition and mechanical integrity. Transformer condition 

monitoring and fault prognosis have been investigated and discussed from the second decade of 

this century, while the modern and innovative approaches such Artificial Intelligence (AI), are very 

quickly under development in different applications and they have employed recently in this field. 

In this thesis, we first discuss the advantages and disadvantages of the conventional 

techniques along with mathematical/practical approaches that are capable to monitor transformer 

working condition effectively. Afterwards, analytical approach to model the transformer vibration 

is conducted and vibrational model of transformer is provided. Then, for fault prediction deep 

neural networks, namely convolutional neural network (CNN) architectures, were employed. 

Different experimental works to emulate various crucial faults in transformer operational condition 

is conducted, and recorded vibrational data will be analyzed using CNN models. The experimental 

results are also compared with mathematical modeling by validating the recorded data approach in 

this study.   

In this regard, two case studies were examined in the experimental laboratory. Firstly, 

transformer voltage excitation test was conducted to collect transformer vibration data using 

experimental transformer with different loads. Secondly, the transformer vibration waveforms 

were recorded by emulating transformer inter-turn short circuit using variable resistor. The focus 

of the thesis is observing the possibility of applying deep neural networks, in particular, CNNs, for 

time-series vibration signals to predict the transformer excitation and turn-to-turn short circuit fault. 

Therefore, 1D-CNN architecture was constructed by selecting the best predictive model from a 

prespecified space of hyperparameters. 
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The constructed CNN model for transformer excitation voltage exhibited a remarkable 

performance with RRSE of 4.49% and RAE of 2.49%. At the same time, the model constructed for 

the inter-turn short circuit fault classification achieved a remarkable accuracy of 99.86%. Finally, 

the achieved results were compared with previous studies and discussed in detail. 
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Chapter 1 – Introduction  

 In the new century, asset management is one of the main and important tasks for industrial 

companies [1]. Instead of re-establishment of assets after catastrophic collapses and failures, 

intelligent predictive system is becoming beneficial strategy for risk management and fault 

prognosis systems that are able to distinguish the faults using monitoring systems with various 

sensors. The installation and maintenance of predictive assessment can cost far less than the 

restoration of expensive assets such as power transformers [2], [3].  

In electric power systems, power transformer is one of the most crucial and costly 

equipment. Moreover, it is continuously in service under various mechanical and electrical stresses 

as well as in a variety of climate conditions that cause frequent and serious faults for power 

transformer. Beside on this, winding deformation of transformers is main consequence of the 

various stresses and faults in the electrical power system [4]. For instance, winding deformation 

provoked by short-circuits causes transformer out of service, which tends to 15 percent of all 

transformer failure [5].  

 

1.1 Background Information 

Real-time monitoring of transformer’s internal mechanical stability is essential to prevent 

the electrical and mechanical parts from disbalance of their steady state working condition [6]. 

Based on this fact, there are different types of online and offline monitoring methods which have 

been implemented for observing and evaluating mechanical integrity of transformers [7]–[11]. One 

of the crucial methods for winding analysis is the Frequency Response Analysis (FRA) and it is 

still introduced as offline transformer condition monitoring method [7]. From one perspective, 

FRA can be performed in online basis, but it needs to be implemented perfectly [1]. From the other 
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perspective, the transformer mechanical integrity can be analyzed and evaluated using different 

methods such as online transformer sound analysis [12], short circuit impedance measurement [13], 

deformation coefficient [14], communication-based techniques and a locus diagram based methods 

for winding deformation detection of transformers [15]-[17]. Additionally, the transformer fault 

prognosis can be accomplished by vibration analysis that evaluates the repetitive movement of 

transformer inner parts. This approach does not require any complicated and expensive setup. It is 

possible to monitor mechanical integrity of transformer through analyzing the vibration signature 

of windings in real-time [1], [2], [6].  

Modern technological revolutions are upgrading traditional control and classification 

methods into smart systems in the era of Industry 4.0. Nowadays, the simulation of human 

intelligence by machines are dramatically developing and becoming part of human’s life. The 

integration of artificial intelligence (AI) to the industrial technologies, especially, in the power 

engineering sectors is making profound impacts on prolonging lifetime of costly equipment by 

prognosis failure in power systems [18], [19]. With the deployment of machine learning (ML) 

techniques, fault diagnosis process can be accomplished within milliseconds by preventing the 

equipment from significant damages [6]. There are numerous analysis mathematical tools to be 

able to analyze data for predicting a fault in power equipment, particularly, in power transformers 

such as regression methods [1], big data analysis and classification tools [6],[20].  

The fault detection methods mainly have three large groups based on the applied 

techniques, precisely, model-based, signal-based and knowledge-based approach. Model-based 

approach will create a physical model involving analytical formulas for normal operating 

conditions and degradation process of a specified equipment [21]. The model developed by this 

approach is straightforward and very efficient since the model is used to monitor the consistency 

of measured parameters of the in-service equipment with predicted outputs. However, the full and 
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thorough understanding of specific equipment is essential. The signal-based method contains four 

main classes such as time-domain, frequency-domain, enhanced frequency and time-frequency 

analysis that can be employed as the signal processing techniques [22]. The computational cost of 

the method can be increased by complexity of tools, which tends to enhance in fault detection 

capability. The knowledge-based approach does not rely on domain experts and can be 

implemented based on symbolic and machine learning intelligence using collected parameters and 

big data. In other words, artificial intelligence (AI) introduces the knowledge-based approach 

including fault tree, diagraphs, unsupervised learning systems and supervised learning systems. 

Integration of signal processing methods with AI application is suitable for complex fault detection 

and prognosis problems, whereas the performance of this technique depends on the training data 

of algorithms and the quality of the selected features [22].  

 

1.2. Aims and Objectives 

This thesis aims to study and develop a technique for transformer condition and fault 

prognosis using vibration signature, the ML algorithms and forecasting techniques to predict the 

transformer fault based on the vibration patterns are conducted. This research has specifically 

focused on transformer faults such as voltage excitations (overvoltage and undervoltage) and inter-

turn short-circuit. 

The thesis reviews in detail the existing various studies on transformer mechanical 

assessment and winding conditions within analytical and theoretical approach. Moreover, research 

on transformer fault prognosis methods is divided into two main topics and reviewed. Firstly, the 

previous and recent literature about the fault modelling of the power transformer is circumstantially 
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discussed. Then the prognosis method using ML techniques is studied to apply suitable forecasting 

method for the prognosis of faults such as inter-turn short-circuit and voltage excitations. 

Hence, the objectives of this research work are: 

• to provide in detail an analytical approach for transformer vibration modeling; 

• to perform the transformer under- and over-voltage excitation conditions along with the 

inter-turn fault detection, and evaluate them with the prognosis techniques using 

experimental setup vibration signature data in different operational and faulty states; 

• to develop an algorithm for predicting the fault using vibration signal data; 

• to develop a prognosis and predictive model for transformer faults using Convolutional 

Neural Network (CNN). 

 

1.3. Literature Review  

In this section, all the techniques of fault modelling are analyzed and advantages and 

drawbacks of the specific model are introduced. 

1.3.1. Vibration Analysis 

Repetitive movement of transformer inner part, or the movement of active part in 

transformer, can be considered as the transformer vibration, which has the reference position and 

moves around starting state [1],[2]. Transformer vibration can be illustrated by mechanical 

parameters such as acceleration, winding displacement and velocity. All the methods take reference 

position when transformer reaches once out of service moment for interpreting vibration level. 

According to [2], the acceleration is common choice as a parameter of interest for vibration analysis 

to make a proper decision as the mechanical parameter for analyzing and modelling vibration 

signature of transformer. Moreover, this technique is one of the economical methods for real-time 
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monitoring of transformer mechanical integrity as it can be integrated to the transformer inner part 

without any complicated setup while the transformer is in-service. However, it has its own 

drawbacks during data collection and monitoring process because the vibration signals can be 

combined with other vibrational noises dependent on various measurement environment.  

Transformer vibration signal is the combination of mixed vibrations caused by 

environmental noises, background and noises of equipment near to transformer or accelerometer. 

Bagheri et al. [1] believes that the combination of vibration signal with different noise signals such 

as transformer active vibration parts with oil pump, cooling system and tap-changer, may cause 

problem for the development of high-quality vibration monitoring and interpretation system. 

Unpredictable behavior of the different signals will make the vibration signature analysis complex 

and challenging [2],[5].  

To interpret vibration signal of transformer, the analytical model of each inner part has to 

be derived and discussed in detail to understand the vibration signature and its behavior. According 

to literature [1], [2], [15], [23]-[25], mainly three main parts of transformer are necessarily required 

to be modelled using mathematical derivations. They are core [1], [2], [15], winding [1], [2], [15], 

and the tank along with connected parts [23]-[25]. 

 

1.3.2. Frequency Response Analysis 

Frequency response analysis (FRA) is considered as one of the advanced approaches in 

power engineering field. Effectiveness of this method is detecting transformer winding 

deformation and core displacement with the high accuracy, quickness, economy and 

indestructibility [9]. This method is based on swept frequency signal attenuation through the 

transformer winding. The technique helps to interpret faults such as turn-to-turn short-circuit 
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discussed in [5],[26], voltage excitation tested in [13],[14] and winding deformation from different 

faults [7]-[11], [26].  

Zhao et al. [10] believe that the frequency response analysis is effective and powerful tool 

for mechanical deformation diagnosis of power transformer, however, still its interpretation has 

problems and challenges in its application. The cause of that is some frequencies can be produced 

by external disturbances and can be taken and recognized as a fault, incorrectly. Thus, this study 

proposes an improved frequency response analysis-based application that can be performed in 

binary morphology and extreme variations.  

According to Bagheri et al. [11] frequency response analysis (FRA) has been used as the 

effective and economical diagnosis method in electrical machineries. Particularly, it can provide 

more accurate information about winding deformation of power transformers than short-circuit 

impedance (SCI) method. In [11], the off-line SCI and FRA measurements were conducted for a 

failed 400-MVA step-up transformer with the failed B phase winding. Author concludes that FRA 

measurement is faster and more economical, and it can provide more detailed information as 

compared to SCI which is recommended by IEC Standard 60076–5, Ed. 3.0, 20. 

Another study by Bagheri et al. in [5] described a mathematical modeling for the turn-to-

turn short circuit fault that can be explored in frequency response data and vibration signal. Authors 

mentioned that this fault is one of the common faults in transformers and it needs to be prevented 

at early stages before the fault is fully propagated. Otherwise, the maintenance of transformer is 

very challenging task and uneconomical to perform. Authors in [5] purpose to recognize 

transformer fault before it can fully take place, in very initial stages, therefore they have 

recommended to use a correlation between FRA and vibration analysis. The experimental work 

was conducted over a 2 kVA three-phase transformer as a routine distribution transformer. 

Consequently, both methods were sensitive to detect and identify turn-to-turn fault in transformer. 
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However, authors concluded that vibration signal detection in oil-filled transformers can be 

challenging task due to mentioned earlier reasons [1], [2]. In addition, according to [11], winding 

vibration signature is more sensitive to turn-to-turn fault than core vibration. 

 

1.3.3. Lissajous Figure 

According to Liao et al. [17], the voltage and windings’ current values of transformer can 

support to monitor transformer winding deformation using Lissajous figure. It is possible to shape 

an ellipse using voltage and current values. The aim of the study was to identify effect of load on 

Lissajous figure. Liao et al. [17] have shown in results that Lissajous figure is proportional to load 

and the ellipse can be magnified or decreased by the load variation. However, power factor of load 

cannot affect the ellipse. As it can be seen from the Figure 1.1, after applying concepts of the 

following method, the faulty and healthy windings of experimental transformer have shown 

different diagrams in the Lissajous figure. 

 

1.3.4. Locus Diagram 

FRA is considered as one of the popular tools to detect mechanical deformation of the 

power transformer active parts. However, transformer cannot be tested while it is in service or 

connected to the system, which can cause the interruption to the power grid [16].  

Abu-Siada et al. in [16] provided a new online technique to detect the internal faults of 

power transformers just using voltage and current values. This method does not need any 

complicated setup or equipment, it uses the metering devices of transformers. The method can be 

conducted using voltage-current locus diagram. The proposed technique was examined for 

different types of faults and it shows possible fault types correctly. 



18 

 

 

Figure 1.1: Lissajous figures of healthy and faulty winding [17]. 

1.3.5. Forecasting Techniques 

Integration of modern technologies such as internet of things (IoT) and cloud computing 

into power engineering equipment is the next level of upgrading electrical equipment with high 

accuracy forecasting techniques, which tends to prolong in service lifetime of equipment, 

especially, power transformers [1], [2], [15]. In order to perform this, the integrated technologies 

should predict the fault progress signature in early stages [18], [27]. Depending on complexity and 

accuracy of the fault prediction methods using ML, previous studies were divided into two main 

categories: conventional methods and ANN [6]. The reason of naming it as “conventional” is 

simplicity of model construction and lower accuracy than artificial NN. These methods are the 

model tree [28], [29] and regression [1], [2].  

Nowadays, parallel computation hardware has improved ANN technologies into desirable 

levels using a series of algorithmic progresses and achieved breakthrough results in a wide range 

of areas such as classification [6], [22], image recognition, optimization [30], condition monitoring 

[19] and natural language processing [20]. Early fault detection of essential equipment in power 

system is the main goal of industrial companies. For this purpose, ANN are widely in use to 

increase the quickness of fault prediction and accuracy specific fault detection [22]. Tian in [19] 
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claims that ANN methods does not assume any analytical model to perform equipment health 

condition prediction and it aims prediction modelling based on the collected condition monitoring 

data and neural networks. The adaptability, non-linearity and arbitrary function approximation 

ability of the ANN help to increase the efficiency of fault prediction and make it one of the 

promising tools for equipment health condition monitoring.  

In several studies [31]-[34], different approaches of ANN technique are proposed. In [31], 

ANN-based approach with 13 training data and nine validation data patterns was applied to 

diagnose stator faults in induction machines. The accuracy of the predicted fault condition was 

more than 97.6%. Li et al. [32] developed motor bearing fault diagnosis using a NN methods with 

time and frequency-based features. The average accuracy rate of fault detection model with 

different hyperparameters (hidden layers and neurons) was between 88.75% and 96.25%. In [33], 

classification accuracy of healthy and damaged bearings was 85% applying two types of neural 

detectors such as feed-forward multilayer perceptron (MLP) and self-organized Kohonen’s 

network. Lastly, Tung et al. [34] developed a classifier based on adaptive neuro-fuzzy inference 

system with 180 training and 90 test samples for six different fault diagnosis of induction motors. 

The predicted parameters were vibration and current signals, and the classification accuracy was 

91.11% and 76.67%, respectively.  

In addition, CNN has the inherent property that can unite the feature extraction and 

classification methods into one adaptive structure to monitor transformer condition accurately and 

detect the fault early and very fast [22]. This method can be conducted using vibration signal data 

that have time series vibration signature [21]. 
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1.3.6. Convolutional Neural Networks 

In recent years, DL has grown in popularity and many achievements have been made in a 

short period of time. One of the DL approaches is Convolutional Neural Network (CNN). CNN 

mostly used for image recognition, but nowadays there is the framework for time series 

classification and segmentation. In [22], authors have integrated adaptive 1-D CNN model and 

implemented a novel motor condition monitoring system. The advantage of the approach is 

combining the two main important steps of traditional and comprehensive fault detection methods 

such as feature extraction and classification into a single block of learning system. Ince et al. [22] 

believe that proposed monitoring system can be employed using any motor data and have the ability 

to train the model by extracting optimal features to get high classification accuracy. In this 

approach, convolutional layers of 1-D CNN with the back propagation training are used to extract 

optimized features from equipment condition data and perform fault classification with MLP 

layers. The effectiveness of the system was tested using motor current data and real-time condition 

monitoring potential of motor was demonstrated. The fault detection accuracy of the proposed 

method was more than 97%, which shows the high efficiency of the developed CNN model. The 

discussed method was tested for time series data, whereas CNN mainly employs to image data that 

has different characteristics than time series data. Liu et al. [21] explained that the main and 

important component of time series data is time, whereas image data generally involve RGB three 

channels and do not have time information. Therefore, time series data was converted to three-

dimensional tensors. This success in results inspires the industry and it is the innovative opening 

that gives opportunity apply CNN to time series data [21]. 
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Chapter 2 – Transformer Vibration Modeling  

2.1. Transformer Core Vibration Modelling 

Magnetostriction forces are applied to the ferromagnetic material causing the length 

alteration and vibration when the magnetic field is present in the core of the transformer. The 

several steady-state vibration oscillations with different frequencies can be created as the harmonic 

components and the fundamental component can be increased by the loosened sheets in the core, 

which also tends to appear high frequency components. The vibration signal pass through the 

transformer oil (if transformer is oil-immersed) to reach the transformer tank and tank walls start 

oscillation. The cause of the vibration is receiving orientation of magnetic domains in transformer 

core material. Under application of magnetic field magnetic domains are heading in one direction 

by themselves [1].  

The relationship of the applied voltage and magnetic field in the core can be represented by 

equation (1), 

 
𝑈0 sin 𝜔𝑡 = −𝑁𝑤

𝑑𝜙

𝑑𝑡
= −𝑁𝑤𝐴𝑐

𝑑𝐵

𝑑𝑡
, 

(2.1) 

where, 

𝑈0 amplitude of the voltage-driving source; 

𝜔 angular frequency; 

𝑁𝑤 number of winding turns; 

𝐵 magnetic induction; 

𝐴𝑐 cross-sectional area of single core arm. 

 

Therefore, the magnetic induction can be formulated as 

 
𝐵 =

−𝑈0

𝑁𝑤𝐴𝑐
∫ 𝑠𝑖𝑛 𝜔𝑡𝑑𝑡  =

𝑈0

𝑁𝑤𝐴𝑐𝜔
𝑐𝑜𝑠 𝜔𝑡  = 𝐵0 𝑐𝑜𝑠 𝜔𝑡, (2.2) 
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where 𝐵0 is the magnitude of magnetic induction and it is equal or less than saturation level of 

magnetic induction (𝐵𝑠) [1]. The magnetic intensity (H) is related to magnetic induction with 

magnetic permeability (𝜇). Once the magnetic intensity reaches the highest value (Hc), the 

magnetic induction can be calculated by 

 
𝐵 =

𝐵𝑠

𝐻𝑐
𝐻. (2.3) 

By replacing (2) in (3), 

 
𝐻 =

𝐻𝑐𝐵0

𝐵𝑠
𝑐𝑜𝑠 𝜔𝑡, (2.4) 

the magnetic field intensity (H) can be calculated and the variation of H alternates the length of the 

core laminate [1]. The maximum movement of the core laminate can be obtained by,  

 
𝑥𝑐𝑜𝑟𝑒 =

𝑑𝐿

𝐿
=

𝜆𝑠

𝐻𝑐
2

∫ 𝐻𝑑𝐻
𝐻

−𝐻

=
2𝜆𝑠

𝐻𝑐
2

∫ |𝐻|𝑑𝐻
𝐻

0

=
𝜆𝑠𝐻2

𝐻𝑐
2

=
𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2

𝐵0
2 𝑐𝑜𝑠2 𝜔𝑡 

=
𝜆𝑠

𝐻𝑐
2

𝐻𝑐
2

𝐵𝑠
2

(
𝑈0

𝑁𝑤𝐴𝑐𝜔
)

2

𝑐𝑜𝑠2𝜔𝑡 =
𝜆𝑠𝑈0

2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2𝜔2

𝑐𝑜𝑠2𝜔𝑡 

(2.5) 

where, 𝜆𝑠 is the value of maximum magnetostriction. Lastly, the acceleration of core laminate can 

be calculated by  

 
�̈�𝑐𝑜𝑟𝑒 =

𝑑2𝑥𝑐𝑜𝑟𝑒

𝑑𝑡2
= −

2𝜆𝑠𝐿𝑈0
2

𝐵𝑠
2𝑁𝑤

2 𝐴𝑐
2

𝑐𝑜𝑠 2𝜔𝑡. (2.6) 

According to (2.6), it can be seen that the fundamental frequency of core laminate vibration 

is proportional to fundamental frequency of the system. Therefore, if the system has the 50 or 60 

Hz fundamental frequency, the core vibration frequency will be 100 or 120 Hz, respectively. 

However, there can be harmonic orders with more frequency value due to the loosened core 

laminates and they can be random numbers [1]. Also, the core vibration magnitude is proportional 

to the applied voltage square and can be increased if there is the excitation of applied voltage. 
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2.2. Transformer Winding Vibration Modeling 

The applied electromagnetic force to the transformer winding part is induced by leakage 

magnetic flux, which flows through winding current, and main cause of the vibration in transformer 

winding [1]. Mechanical force direction in winding can be changed by changing electromagnetic 

force direction. The direction of the electromagnetic force depends on direction of leakage flux. 

According to [1], transformer winding is mechanically spring and can be derived using spring force 

model, which helps to model transformer winding vibration.  

 

2.2.1. Free Vibration Without Damping Factor 

Transformer winding can have simple string form without mechanical constraints and force 

applied to the string can be represented by,   

 𝐹 = −𝑘𝑥, (2.7) 

where, k is the spring factor and x is displacement, F is applied mechanical force. Thus, there is 

the spring weight and single impulse. Applying the Newton’s second law, 

 𝑚𝑎 = 𝐹′ = 𝑊 − 𝐹 = 𝑊 − (𝑊 + 𝑘𝑥) 

        =
𝑊

𝘨
𝑎 =

𝑊

𝘨
�̈� = 𝑊 − (𝑊 + 𝑘𝑥), 

(2.8) 

where, W is the spring (winding) weight, a is acceleration factor, g is the gravity acceleration. Thus, 

natural motion of winding can be obtained by,  

 𝑊

𝘨
�̈� + 𝑘𝑥 = 0,   �̈� +

𝘨

𝑊
𝑘𝑥 = 0. (2.9) 

Simplifying it,  
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 𝘨𝑘

𝑊
= 𝛼2,   �̈� + 𝛼2𝑥 = 0. (2.10) 

The solution is  

 𝑥1 = 𝐶1𝑐𝑜𝑠𝛼𝑡 + 𝐶2𝑠𝑖𝑛𝛼𝑡, (2.11) 

where, 𝐶1 and 𝐶2 are initial condition constants and 𝛼 is  

 

𝛼 =
2𝜋

𝜏𝑛
, 𝜏𝑛 = 2𝜋√

𝛿𝑠𝑡

𝘨
,   𝑓𝑛 =

1

2𝜋
√

𝘨

𝛿𝑠𝑡
 ,  (2.12) 

where, 𝑓𝑛 is natural oscillation frequency and damping factor is ignored [1]. 

 

2.2.2. Free Vibration with Damping Factor 

The instantaneous force is the main cause of considering the damping factor for avoiding 

natural oscillation of windings and motion equation with damping factor (c) is  

 𝑊

𝘨
�̈� + 𝑐�̇� + 𝑘𝑥 = 0. (2.13) 

Simplification of (13) gives [1],  

 �̈� + 2𝛽�̇� + 𝛼2𝑥 = 0,
𝘨𝑐

𝑊
= 2𝛽. (2.14) 

This linear equation (14) was solved by two ways [1]. First one is  

 𝑥 = 𝑒𝜇𝑡, 

𝜇1 = −𝛽 + 𝑗𝛼1, 𝜇2 = −𝛽 − 𝑗𝛼1 

(2.15) 

where, t is the time. 

The second solution has the winding displacement model below,  

 𝑥 = 𝑒−𝛽𝑡(𝐶1𝑐𝑜𝑠𝛼1𝑡 + 𝐶2𝑠𝑖𝑛𝛼1𝑡) . (2.16) 
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Chapter 3 – Methodology 

In [1],[2],[6] several classification and prediction techniques were applied to forecast the 

fault using regression, classification methods, feature selection types for increasing the accuracy, 

Gated Recurrent Unit (GRU) and Long-Short Term Memory (LSTM) based Recurrent Neural 

Network (RNN). All the applied methods for predicting transformer faults were studied to reach 

the higher forecasting efficiency. In previous study [6], GRU and LSTM based RNN method is 

imposed to model and predict the transformer fault. In this work, it is planned to implement CNN 

along with a wide range of hyperparameters over new data obtained from a transformer in 

laboratory scale. In addition, the forecasting model with the best performance is going to be chosen 

according to accuracy of the fault prognosis.  

 

3.1. Convolutional Neural Network 

 Various deep learning techniques have been previously implemented for vibration signal 

prognosis and transformer fault modelling [1, 2]. In [1], authors have estimated the essential 

features from unknown dataset and used them for different conventional regression techniques, 

such as support model regression, model tree, multilayer perceptron, and linear regression. All the 

features were extracted from vibration signals with a sum of sinusoids. However, in another study 

[6], prognosis models were constructed depending on the behavior of collected time series vibration 

signal dataset, with ignoring mathematical and analytical assumptions. In addition, the important 

patterns of the vibration signals were estimated and extracted over the model construction process. 

The predictive model was trained using LSTM unit of RNN architecture, specifically bi-directional 

LSTM.  
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 In the present study, one of the popular approaches of DL, CNN architecture has been used 

to predict the transformer under and over excitations, and inter-turn short-circuit fault. CNN is a 

feedforward and constrained class of ANN that has similar ability based on cells in the human 

visual cortex [22], which helps it to be applied on data with grid-like topology such as time-series 

and images. Moreover, CNN has demonstrated state-of-the-art performances with dramatical 

achievements in pattern recognition [35].  

 CNNs have typically different layers that are responsible for specific tasks and targeted 

goals: convolutional layer, pooling layer and fully connected layer (Figure 3.1). The fundamental 

and essential parts of CNN, which distinguishes it from other ANNs, are convolutional layers [36]. 

In CNN, the kernels are used to extract features from input data by backpropagation algorithm 

using multidimensional input array with parameters (multidimensional array). The main operation 

of the convolutional layer is based on a mathematical linear operation, namely, convolution. In our 

study, the collected data is time-series vibration signals, and the kernel is slid in one-dimension in 

multivariate time-series input data, therefore, 1D CNN is used.  

 

 

Figure 3.1. General structure of 2D-CNN. 

Input 
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Pooling layer Pooling layer Fully connected 

layer 

Convolution Convolution Subsampling Subsampling 
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3.1.1. 1D Convolutional Neural Network (1D-CNN) 

 1D-CNNs are mostly developed for applications analyzing sensor data in time-series 

domain. The main focus of this study is to analyze vibration signals of transformer under various 

faults and conditions, where data is measured in time domain.  

 The useful property of CNN is its feature extraction ability of convolutional and pooling 

layers. As it was discussed before, the input data of vibration signals with combined features 

(different frequencies and noises) is sent to convolutional kernel to extract and construct the feature 

vector. The pooling layer reduces the dimensions of the vector. The size of one-dimensional feature 

vector depends on convolutional layer parameters. The general architecture of 1D-CNN is 

illustrated in Figure 3.2. 

 

Figure 3.2. General structure of 1D-CNN. 

3.2. Data Preparation  

3.2.1. Transformer Under and Over Excitation 

 The experimental transformer, described in Section 4.1, was supplied by power source from 

80 percent to 110 percent of rated nominal voltage. The core and winding vibration signals of 
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Convolution 
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transformer under no-load, 50 percent load and full load were collected using three-dimensional 

Kistler sensor. However, vibration signals of only one dimension were chosen, because the core 

and winding vibrations accelerate mainly in one single dimension, i.e., the acceleration of one 

dimension is quite more dominant rather than other dimensions. This was also obvious in 

mathematical modeling of transformer core and winding.  Hence, the input of the 1D-CNN model 

is the core and winding vibrations signals. The output of the model is the voltage rate supplied to 

the transformer.  

 Then the collected data was segmented by 50 samples per segment and there are 60 

individual observations or segments in one second that is used for training 1D-CNN model as input 

raw data. After segmentation process, observations were randomly shuffled and 25 percent of the 

train dataset was decided to use as validation data. Rest of the training part was set aside as training 

data. Moreover, both training and validation datasets are normalized by dividing the maximum 

value of training data. In this way, all observations are scaled between -1 and 1. The model selection 

process is described in the next subsections in detail.      

 

3.2.2. Transformer Inter-turn Short Circuit 

 Transformer inter-turn short circuit current measurement was discussed and described in 

Section 4.2.1. In this part, only the winding vibration signal was employed as an input dataset, 

because short circuit fault occurs in between turns (turn-to-turn short circuit) of the transformer. 

The output of the dataset was declared as “0” (non-fault) and “1” (fault). As it was discussed in 

Section 4.2.1, the turn-to-turn short-circuit current was initiated from 11 A to 15 A. The sampling 

rate of the winding vibration signals was remained unchanged for under and over excitation 

conditions, 3000 Hz. 50 samples of data per 1 segment and 60 segments in a second. Training and 
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validation sets are 75% and 25% of the total training data, respectively. All observations were 

randomly shuffled and all the values were normalized by dividing the maximum value of winding 

vibration. The input and out range was between -1 and 1. The training 1D-CNN model was selected 

by the assumptions below. 

 

3.3. Training Model Selection 

 The space of CNN hyperparameters was defined based on the following assumptions: 

• The batch sizes: 32 and 64; 

• The epoch numbers: from 1 to 150 (without early stopping); 

• The learning rates: 0.001 and 0.0001 with Adam optimizer; 

• The number of convolutional layers (L): from 1 to 6; 

• The number of filters in each layer: 22+l (increasing) and 2l+3-l (decreasing) for l = [1:L]; 

•  Kernel sizes: from 2 to 7; 

• Activation function of each convolution layer: a ReLU function. 

Each convolution layer has the max-pooling operation (except the last convolutional layer). Based 

on the aforementioneed assumptions, the cardinality of the hyperparameter space is 43,200: 2 

(batch size) × 150 (epoch number) × 2 (learning rate) × 12 (convolutional layers or filters) × 6 

(kernel size). For each element in this space of hyperparameters, a 1D-CNN model was trained and 

the model with best performance (lowest MSE) on the validation set was identified. Nonetheless, 

for each constructed models we also record other performance metrics such as RRSE, RAE and 

MAE. . All these metrics will be explained in the next subsections. Both case studies were trained 

with the same hyperparameter space, but with their own dataset.  
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3.4. Error Rate Calculation Methods 

3.4.1. Mean Squared Error (MSE) 

 MSE is an absolute calculation of error and it is very efficient for the training the regression 

models. The loss function of the training model was chosen the MSE and it is defined as  

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑝𝑣𝑖 − 𝑎𝑣𝑖)

2𝑛
𝑖=1 , (3.1) 

where, n is the total number of the observations or segments in this study. MSE is the average of 

the squared deviation value of predicted value and actual value. 

3.4.2. Mean Absolute Error (MAE) 

 MAE is the average of the absolute difference of the predicted and actual values and its 

formulation is obtained as,  

 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑝𝑣𝑖 − 𝑎𝑣𝑖|

𝑛
𝑖=1 , (3.2) 

where n is the number of the observations. 

3.4.3. Relative Absolute Error (RAE) 

 The next model evaluation type is RAE. This is one of the solutions to check the 

performance level of the predictive model. It takes the sum of absolute errors and normalizes it by 

dividing total absolute error. 

 𝑅𝐴𝐸 =  
∑ |𝑝𝑣𝑖−𝑎𝑣𝑖|𝑛

𝑖=1

∑ |𝑝𝑣𝑖−𝑎𝑣𝑖|𝑛
𝑖=1

, (3.3) 

where, n is the number of observations, 𝑝𝑣𝑖 , 𝑎𝑣𝑖  𝑎𝑛𝑑 𝑎𝑣𝑖 are predicted, actual and mean of actual 

values, respectively. 

3.4.3. Root Relative Squared Error (RRSE) 

 RRSE calculates the total squared error and normalizes it by dividing by the total square 

error.  
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𝑅𝑅𝑆𝐸 =  √
∑ |𝑝𝑣𝑖−𝑎𝑣𝑖|𝑛

𝑖=1
2

∑ |𝑝𝑣𝑖−𝑎𝑣𝑖|𝑛
𝑖=1

2, (3.4) 

where, n is the number of observations, 𝑝𝑣𝑖 , 𝑎𝑣𝑖  𝑎𝑛𝑑 𝑎𝑣𝑖 are predicted, actual and mean of actual 

values, respectively. 
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Chapter 4 – Experimental Study  

 A set of vibration data is needed to construct the fault prognosis model. In this chapter, 

assembling of the experimental setup for data collection process is explained. As it was discussed 

before, the most common two types of the transformer faults, namely, transformer voltage 

excitations and inter-turn short circuit fault were chosen. For each fault, data was collected from 

separate experimental setups in the experimental laboratory.  

 

4.1. Case Study 1: Transformer Under and Over Excitations 

A three-phase transformer with three-phase resistive and reactive load connected to three-

phase power supply is built as a practical setup and emulator of the small electrical grid system 

(Figure 4.1). The transformer characteristics is: 1200 VA, 42V/230V and 50-60 Hz (Figure 4.2). 

The accelerometer with the device DEWE 43 A is integrated to the transformer. DEWE 43 A is 

the 8 channel USB data acquisition system with the integrated DEWESOFTX software, which 

helps to convert analog vibration signals from the accelerometer to digital signals and visualize is 

using software device. The sampling rate of recording vibration data is 20 kHz. The sensor of the 

digital accelerometer is mounted to the transformer core and winding parts. Data acquisition part 

in this case was planned to collect the transformer vibration signal for under and over excitations 

with the injected voltage range between 80-110 percent of rated voltage with steps of 5 percent for 

three types of loads: no load, 50 percent load and full load, see Table 4.1. Vibration signals of core 

and winding of three-phase transformer were recorded in time domain using accelerometer (Kistler 

sensor). 

The schematic diagram of the experimental setup is shown in Figure 4.3. Three-phase 

transformer was connected to the power supply using circuit breakers and CEM-U/EV equipment 
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was connected in parallel to the transformer input turns to record the injected voltage values. 

Variable resistor and motor were connected to the transformer via circuit breaker. The vibration 

sensors were mounted on top of core and winding parts of the transformer. During data acquisition 

process both data recorder equipment (DEWE 43 A and CEM-U/EV) recorded the vibration and 

input voltage data in parallel. Data collection process was conducted as following: 

1. Setting the injected voltage to 80% of transformer rated input 

2. Recording all data for 30 seconds for undervoltage and 10 seconds for overvoltage  

3. Step up the injected voltage to 5% of rated input and repeat steps 2 and 3 until the 

injected voltage value reaches 110% of rated voltage 

After data collection process data was collected into one file. Data preparation process is discussed 

in Chapter 5. 

Table 4.1. Under and over excitation voltages of experimental transformer. 

Excitation Voltage, % 80 85 90 95 100 105 110 

Injected Voltage, V 320 340 360 380 400 420 440 

 

 

Figure 4.1. Experimental test set-up with three-phase transformer with active and reactive 

loads. 
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Figure 4.2. Three-phase experimental transformer. 

 

 
Figure 4.3. Schematic diagram of experimental setup. 

 

4.2. Case Study 2: Inter-Turn Short-Circuit Fault 

In the second case study inter-turn short-circuit fault was studied through the recording and 

analyzing the vibration data of transformer winding. The aim of this part study was to recognize 

the transformer inter-turn fault using the transformer windings’ vibration signals. In this practical 

study a transformer was energized and loaded with different resistive loads to collect the data for 

training a new model. The data collection process was conducted using an open wounded 

240/30/30 V, 252 VA single-phase transformer.  
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The rated nominal current for the transformer secondary side was 4.2 A. The primary side 

of the transformer was supplied by 240 V from the voltage sources and the secondary side of the 

transformer was connected to a variable resistive load. To increase the performance of the 

predictive model, the load value was increased step by step to obtain more different vibration signal 

and acceleration values as shown in Table 4.2. The two vibration sensors were mounted on top of 

the core and transformer windings. However, as the inter-turn short-circuit fault occurs over the 

transformer windings; only the winding vibration data was utilized for training the predictive 

model.  

The experimental transformer has third winding and it was used to emulate turn-to-turn 

short circuit practically. The terminals of third winding were connected to a variable resistor to 

control the short-circuit current (Figure 4.4). Finally, the short circuit current was taken from 11 A 

to 15 A for the predictive model once the lower current values show the normal operational 

condition of transformer, and higher values should a real short-circuit in the secondary winding. 

Data preparation process for model construction is discussed in Chapter 5. 

 

 

Figure 4.4. Single-phase transformer fault emulation scheme 

Winding 1 

Winding 2 

Winding 3 
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Chapter 5 – Results & Discussion 

 In this thesis, two different datasets collected by experimental setup and equipment at the 

High Voltage Laboratory of Nazarbayev University. The data was collected from two different 

transformers for two different fault prognosis scenarios: the first one includes vibration signals 

under transformer voltage excitation and injected voltage values; the second dataset includes 

vibration signals under inter-turn short circuit fault and load values. In further subsections, the 

results of each prognosis model for each fault types are illustrated, analyzed and technically 

discussed. 

5.1. Transformer Voltage Excitation Prognosis 

Using the experimental setup, discussed in Section 4.1, overvoltage and undervoltage data 

together with transformer vibration signals were measured and collected into one dataset table. It 

has two input features and one single output. The list of the features is shown below: 

• Transformer winding vibration signals 

• Transformer core vibration signals 

• Transformer injected voltage (under, rated and over voltage values) 

 

5.1.1. Data Collection and Preparation  

Data was recorded by two different equipment at the laboratory: DEWE 43 A with Kistler 

sensor was used for measuring vibration signals of transformer core and winding under different 

load and injected voltage, and injected voltage values were recorded by CEM-U/EV equipment. 

The sampling rate of the vibration signals measured by DEWE 43 A data acquisition system (DAQ) 

using Kistler sensor (accelerometer) was 20 kHz. The injected voltage was in the range of 80 to 

110% of rated voltage with steps of 5%. In each step of input voltage, the vibration data was 
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collected for 30 seconds until including rated voltage (100%). From 105% of the nominal voltage, 

time period for collecting data was decreased to 10 seconds to avoid any risks and hazards.  Using 

DEWESOFTX software, the vibration sampling rate was decreased to 3000 Hz, which means 3000 

data samples per second were recorded. The first 100 milliseconds of collected core and winding 

vibration signals for each step of 80% to 110% under full load condition was demonstrated in 

figures (a) to (g) in Figure 5.1, respectively.  
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(c) 
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(e) 

 

-10

-5

0

5

10
A

cc
el

er
at

io
n
 [

m
/s

^
2
]

Time [ms]

-10

-5

0

5

10

A
cc

el
er

at
io

n
 [

m
/s

^
2
]

Time [ms]

-9

-6

-3

0

3

6

9

A
cc

el
er

at
io

n
 [

m
/s

^
2
]

Time [ms]



39 

 

 
(f) 

 

 
(g) 

Figure 5.1. Transformer core and winding vibration signals under full load: (a) 80%, (b) 85%, 

(c) 90%, (d) 95%, (e) 100%, (f) 105%, (a) 110% of rated voltage injected to transformer. 

       
(a)         (b) 

 

5.2. Transformer (a) core and (b) winding vibration signals in frequency domain. 
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To check the fundamental frequency of the core and winding vibration signals, Fourier 

analysis was applied to the collected transformer vibration signals. As it was discussed in Chapter 

2, according to equation (2.6) the fundamental frequency of the core vibration should be 

proportional to system frequency or double of the system frequency. In the experimental part, the 

frequency of the power supplier was 50 Hz, which means the frequency of the system is 50 Hz. 

Therefore, the fundamental frequency of the vibration signals should be 100 Hz. According to 

Figure 5.2, both transformer core and winding frequency signals have dominant frequency of 100 

Hz. However, there are some harmonic frequency orders because of the loosened core laminates 

and harmonics created by loads. 

Firstly, data was not ready to predict voltage excitation, because some values of the features 

were missing or not available (NA). Also, the measured values were collected in different time 

units and it had different sampling rates. The reason of that is the equipment frequency for reading 

data from sensors. For instance, vibration signals were collected by 20 kHz and injected voltage of 

transformer was measured each 500 milliseconds. During data preparation process extra range of 

data values were dropped, such as the values of vibration and voltage under transition period of 

injected voltage, specifically, when injected voltage value is increased or decreased by power 

supplier. Also, all input and output features were normalized between -1 to 1. Normalized core and 

winding vibration signals with normalized injected voltage before segmentation process is shown 

in Figure 5.3. As it was discussed in Chapter 2, the amplitude and peak-to-peak values of the 

transformer vibration is proportional to square of input voltage, which means that in each step the 

vibration magnitude will be increased. Accordingly, Figure 5.3 illustrates the proportionality of 

vibration signal magnitudes on injected voltage value. 
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(a) 

 

(b) 

Figure 5.3. Normalized (a) core and (b) winding vibration signals with normalized injected 

voltage. 

 

Figure 5.4. Segmentation process for a portion of collected vibration waveforms for 80% 

excitation. 

Each segment is 0.0167 sec and 50 observations 
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 After normalization of dataset, vibration signal data was chosen as the main input value of 

CNN model. Before starting to train the model, dataset was divided into segments. The reason of 

segmentation of the dataset is clear from the Figure 5.4. Actually, the sampling frequency of the 

data is 3 kHz, which means 3000 sample data in one second. 1 sample of the data does not give 

any information about vibration signal such as amplitude, peak-to-peak value, behavior or 

frequency of one cycle. Therefore, 50 samples or 0.0167 seconds of data were chosen as 1 segment 

of data, which contains approximately 2 cycle signals of the vibration as shown in Figure 5.4. 

Overall, 50 observations in one segment and 60 segments in one second data. All the segments 

were shuffled to increase the performance of the model. Lastly, testing data consists of 25 percent 

of whole dataset, 75 percent of remaining dataset was used as training data and 25 percent was left 

for validation part. 

5.1.2. Model Construction, Selection and Validation Results 

 The listed assumptions in model selection section (Section 3.3) were constructed to search 

the best and high-performance models from possible space of established hyperparameters. 43200 

models were trained from the combination of those choices of all possible parameters and only one 

epoch with the lowest validation loss was chosen from each 150 epochs. The remaining 288 CNN 

models with MSE, RRSE, and RAE values are listed in Table A.1 in Appendix. The best 30 models 

were given with all hyperparameters such as layer size, filter number in each layer, Adam 

optimizer, batch and kernel size in Table 5.1 and sorted by validation MSE value. Also, RRSE and 

RAE values were calculated for each constructed model and added in Table 5.1. According to 

Table 5.1, the best 10 models have at least 4 convolution layers, minimum kernel size 5 and Adam 

optimizer 0.001, which means 1D-CNN architecture constructed with more than 4 layers, and with 
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higher kernel size has better accuracy and performance for transformer voltage excitation 

prognosis.  

Table 5.1. The selected 1D-CNN architecture for transformer excitation based on lowest MSE 

on the validation set (top 30 models). 

Layer 

size, N 

Filter number, L Batch 

size 

Kernel 

size 

Adam 

optimizer 

MSE RRSE RAE 

5 [256, 128, 64, 32, 16] 32 6 0.001 7.7364E-

06 

4.4938 2.4863 

4 [256, 128, 64, 32] 32 7 0.001 7.8655E-

06 

4.1612 2.7553 

5 [256, 128, 64, 32, 16] 32 5 0.001 8.2211E-

06 

3.7985 1.4734 

5 [256, 128, 64, 32, 16] 64 6 0.001 8.6697E-

06 

4.0723 2.0035 

6 [256, 128, 64, 32, 16, 

8] 

32 5 0.001 9.2483E-

06 

3.7092 2.2312 

5 [256, 128, 64, 32, 16] 64 7 0.001 9.3912E-

06 

3.9514 2.6350 

4 [256, 128, 64, 32] 32 6 0.001 9.4796E-

06 

5.3838 3.1683 

6 [256, 128, 64, 32, 16, 

8] 

64 7 0.001 9.4955E-

06 

4.6614 3.1618 

6 [256, 128, 64, 32, 16, 

8] 

32 6 0.001 1.0342E-

05 

3.8244 2.0618 

5 [256, 128, 64, 32, 16] 32 4 0.001 1.0545E-

05 

5.1230 3.1113 

5 [256, 128, 64, 32, 16] 64 5 0.001 1.0814E-

05 

4.3217 2.4508 

4 [256, 128, 64, 32] 64 5 0.001 1.0972E-

05 

4.4159 2.6754 

4 [256, 128, 64, 32] 64 6 0.001 1.2035E-

05 

6.8311 5.3368 

5 [8, 16, 32, 64, 128] 32 4 0.001 1.2840E-

05 

6.1684 4.5713 

4 [256, 128, 64, 32] 32 4 0.001 1.3091E-

05 

4.7992 2.6838 

5 [8, 16, 32, 64, 128] 32 7 0.001 1.3106E-

05 

5.1883 2.2773 

6 [256, 128, 64, 32, 16, 

8] 

64 4 0.001 1.3316E-

05 

4.6016 3.0866 

5 [8, 16, 32, 64, 128] 32 5 0.001 1.3667E-

05 

8.7269 8.9118 
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5 [256, 128, 64, 32, 16] 64 4 0.001 1.3844E-

05 

5.3139 3.8888 

3 [256, 128, 64] 32 5 0.001 1.4450E-

05 

5.2235 4.1084 

3 [256, 128, 64] 64 7 0.001 1.4935E-

05 

5.0575 3.8788 

3 [256, 128, 64] 64 6 0.001 1.5077E-

05 

4.8116 3.6929 

5 [256, 128, 64, 32, 16] 32 3 0.001 1.5170E-

05 

7.1981 5.3865 

5 [8, 16, 32, 64, 128] 32 6 0.001 1.5598E-

05 

6.4959 3.5408 

6 [8, 16, 32, 64, 128, 

256] 

32 7 0.001 1.5641E-

05 

5.3445 3.1393 

4 [256, 128, 64, 32] 32 3 0.001 1.5798E-

05 

6.4545 4.8613 

6 [8, 16, 32, 64, 128, 

256] 

64 7 0.001 1.5874E-

05 

7.0629 6.3522 

3 [256, 128, 64] 32 6 0.001 1.5880E-

05 

4.9369 3.7870 

4 [256, 128, 64, 32] 64 4 0.001 1.6624E-

05 

5.4340 4.2352 

3 [256, 128, 64] 32 7 0.001 1.6744E-

05 

5.3343 4.0709 

 

 Table 5.2. The CNN model for transformer voltage excitation prognosis: batch size 32, 

convolution layers [256, 128, 64, 32, 16], kernel size 6. 

Layer (type) Output Shape 

conv1d (45, 256) 

max_pooling1d (22, 256) 

conv1d (22, 128) 

max_pooling1d (11, 128) 

conv1d (11, 64) 

max_pooling1d (5, 64) 

conv1d (5, 32) 

max_pooling1d (2, 32) 

conv1d (2, 16) 

flatten (32) 

dense (50) 

dense (1) 
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All CNN models were trained with all the assumed parameter combinations on training 

dataset by evaluating on both the training and validation sets. Training and validation processes 

were monitored by evaluating the MSE metric at each epoch, then the trained model with a lower 

validation loss is stored as the “best” model. MSE is chosen as the main evaluator of training and 

validation loss. After 150 epochs, the constructed model with the lowest validation loss is saved as 

the final model with specific hyperparameters.  

Figure 5.5 depicts the training (blue dash line) and validation loss (red line) for the best 12 

constructed models. For each model, the RRSE and RAE values the best epoch (the epoch that led 

to lowest MSE) is shown in each plot. After analyzing the graphs, it can be clearly seen that all 

models have the best epoch between 100 and 150 epochs. Moreover, training and validation losses 

of the models are very close to each other, which indicates that how well constructed model fits 

the training and new data. The structure of the best constructed CNN architecture is summarized 

in Table 5.2.  

The comparison between performances of the constructed 1D-CNN models tabulated in Table 5.1 

can be simplified using graphical visualization as shown in Figure 5.6. In this figure, the 

performance of the best 10 models was plotted using -log10(MSE) value. According to given graph, 

the best model in terms of the lowest MSE on the voltage excitation dataset is 1D-CNN model with 

kernel size is 6, batch size is 32, layer size is 5, filter number in each pair is [256, 128, 64,32,16] 

and epoch number is 139. In addition, RRSE and RAE values of this model are 4.49% and 2.49%, 

respectively. 
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Figure 5.5. Performance of the best 12 1D-CNN models from Table 5.1 with arrows showing 

the best models. 
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Figure 5.6. Performance of the top 10 constructed 1D-CNN models in terms of -log10(MSE). 

  

5.2. Transformer Inter-Turn Short-Circuit Fault 

Transformer inter-turn short-circuit is very costly and can easily destroy the transformer. It 

can occur in all distribution transformers as well as in power transformers. The main cause of it is 

insulation failure between winding turns of the transformer. This fault was emulated in laboratory 

level to collect data from experimental transformer and the setup for data collection process was 

explained in detail in Section 4.2. But in this experiment only winding vibration is taken as the 

main attribute for collecting dataset by measuring the value of applied load of transformer. 
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Therefore, dataset has one input features and one output column. The list of the features is shown 

below: 

• Transformer winding vibration signals; 

• Transformer applied load. 

5.2.1. Data Collection and Preparation 

 While emulating the turn-to-turn short circuit fault, the third turn of the experimental 

transformer was connected to variable resistor and its value was decreased to increase the load step 

by step. At each step winding vibration signals were measured and collected in parallel to load 

value. The loads applied to transformer is tabulated in Table 5.3. The short circuit fault starts from 

11 A load. Thus, it was considered that from 11 A to 15 A is faulty condition and if load is less 

than 10 A it worked under non-fault state. 

 The data preparation process is similar to discussed process in Section 5.1.1 and normalized 

also in the same way between -1 and 1. The collected data, demonstrated in Figure 5.7, was 

segmented to 50 samples per segment or 0.0167 seconds in time duration same as in Figure 5.4. 

Thus, there are 60 segments per 1 second, because sampling rate is 3 kHz. The dataset was shuffled 

and divided into train, validation and testing set. Testing data was 25% of whole dataset. 75% of 

remaining dataset was used as training data and another 25% for validation set.  

Table 5.3. Different loads and its values passing through experimental transformer including 

turn-to-turn short circuit current. 

Load [p.u] 0.71 0.95 1 1.19 1.31 1.42 1.66 1.9 

Load 

current 

[A] 

3 4 4.2 5 5.5 6 7 8 

Load [p.u] 2 2.14 2.26 2.38 2.61 2.85 3.09 3.57 

Load 

current 

[A] 

8.4 9 9.5 10 11 12 13 15 
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Figure 5.7. Normalized winding vibration and its value under non-faulty and faulty condition. 

5.2.2. Model Construction, Selection and Validation Results 

 The CNN models were constructed with identical assumptions about hyperparameter space 

indicated in Section 3.3, such as optimizer type and learning rate, convolutional layer size and filter 

numbers in each layer, batch size, size and ReLu function. In previous case study, CNN regression 

model was constructed for voltage excitation prognosis. However, in this part, CNN model was 

constructed for classification. In other words, the model was developed to identify the faulty 

condition (fault or non-fault) of the transformer inter-turn windings. Model selection process relied 

on accuracy of the trained all possible 43200 models. From 150 epoch, only the best epoch was 

chosen and 288 models were trained and listed in Table A.2 in Appendix. The best 30 models from 

Table A.2 were illustrated in Table 5.4. Models accuracy was calculated by dividing all correct 

outputs to all outputs. 
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Table 5.4. The selected 1D-CNN architecture for transformer inter-turn fault based on highest 

accuracy on the validation set (top 30 models). 

Layer size Filter number, L Batch size Kernel 

size 

Adam optimizer Accuracy, 

% 

1 [256] 64 3 0.001 99.8629 

4 [256, 128, 64, 32] 32 3 0.0001 99.8458 

3 [256, 128, 64] 64 5 0.001 99.8458 

4 [8, 16, 32, 64] 32 6 0.001 99.8458 

3 [256, 128, 64] 32 2 0.0001 99.8287 

2 [256, 128] 32 2 0.0001 99.8287 

1 [256] 64 7 0.001 99.8287 

3 [8, 16, 32] 64 6 0.001 99.8287 

2 [256, 128] 64 3 0.0001 99.8115 

2 [256, 128] 32 4 0.0001 99.8115 

1 [256] 64 5 0.001 99.7944 

2 [256, 128] 32 5 0.0001 99.7944 

1 [256] 64 4 0.001 99.7944 

6 [256, 128, 64, 32, 16, 8] 64 7 0.001 99.7944 

2 [256, 128] 64 5 0.001 99.7944 

1 [256] 32 6 0.001 99.7944 

1 [8] 32 4 0.001 99.7944 

3 [256, 128, 64] 64 7 0.001 99.7944 

2 [8, 16] 32 7 0.001 99.7944 

5 [256, 128, 64, 32, 16] 32 4 0.0001 99.7944 

2 [8, 16] 64 2 0.001 99.7944 

4 [256, 128, 64, 32] 64 6 0.0001 99.7944 

2 [8, 16] 64 3 0.001 99.7944 

2 [256, 128] 64 4 0.0001 99.7773 

4 [8, 16, 32, 64] 64 3 0.001 99.7773 

2 [256, 128] 64 6 0.0001 99.7773 

3 [256, 128, 64] 64 3 0.001 99.7773 

2 [256, 128] 32 7 0.0001 99.7773 

3 [256, 128, 64] 64 7 0.0001 99.7773 

4 [8, 16, 32, 64] 64 6 0.001 99.7773 

  

According to best models in Table 5.4, it is better to construct the 1D-CNN model with less 

than four convolutional layers and kernel size can be less than 5. Both learning rate of Adam 

optimizer shows same result, which means effect of learning rate is not important. Batch size of 32 

and 64 are preferable to construct CNN model for inter-turn short-circuit fault prognosis. All the 
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models listed in Table 5.4 can be used to identify the faulty condition of transformer, because all 

of them have very high accuracy more than 99.77%. However, the model with one layer and 256 

filters in layer, batch size of 64, kernel size of 3 and Adam optimizer with learning rate 0.001 was 

chosen to predict the short circuit fault in transformer inter-turn and its accuracy is 99.86%. 

 

5.3. Discussion 

In the previous research [1], authors considered only a mathematical sum of sinusoids with 

undetermined amplitudes, model order, frequencies, and phases in order to model the transformer 

vibration signals. Those parameters are then further calculated using the time-series data. This 

concept of applying the sum of sinusoids with unidentified parameters to model the small duration 

time-series segments is known to be the segmented Prony’s approach for spectral line estimation. 

When the transformer is under operation, we can anticipate seeing a sinusoidal time series with a 

frequency of 2ω (where ω is the fundamental frequency) for vibration in the winding and core, as 

previously stated in [1] and [3]. Nevertheless, since the transformer vibration spectrum may face a 

higher harmonic order (>2ω), this sinusoidal model may not fully meet expectations to its analytical 

promises. Thus, to avoid such limitations, the segmented Prony's approach used - the sum of 

sinusoids on segmented observation windows. Following the features of these sinusoidal models 

were calculated on each segmented window, they had the option of making their prediction based 

on extracted features using a variety of machine learning techniques (multilayer perceptron, 

support vector regression, linear regression, and model trees). In study [3], authors have considered 

only data-driven techniques such as deep RNNs to thoroughly capture the hidden patterns of the 

vibration data with no intervention of any separate modelling of the winding vibration. In this 

regard, GRU, Bi-GRU, LSTM, and Bi-LSTM was taken into account. The results of [1] are 
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somewhat similar and comparable to the performances of these RNN techniques. However, it was 

not aimed at concluding about the GRU performance compared to LSTM in the scope of fault 

prognosis. On top of that, no machine learning community drew any conclusion about the 

outperformance of one of these techniques over the other. This can be clearly seen from the 

summary of the authors of [38]. Leaving aside, both cases of estimating the load current and 

excitation voltage based on the vibration samples depict that in the same batch size and learning 

rate, the bidirectional models are superior to the unidirectional ones. Furthermore, both cases were 

concerned in [3], a Bi-LSTM was the model of choice in the case of load current, whereas a Bi-

GRU was selected model to predict the excitation voltage. Moreover, it is observed that the 

interturn fault prognosis is a way more challenging issue than over-/under-excitation in the 

framework of accomplishing a lower forecast error rate. It might have been caused by a random 

behaviour of interturn short-circuit fault in the transformers compared to over-/under-excitation 

fault.  

In [3], the transformer excitation voltage and the load current can be estimated (predicted) 

with the trained RNN architectures by samples of the transformer vibration waveforms of in the 

previous 0.02 secs, which is a one-cycle 50 Hz fundamental frequency. It verifies that the electrical 

classical parameters indicating the transformer fault (i.e., load current and excitation voltage) are 

mapped to the measured vibration waveforms with 0.02 secs interval. It literally means that the 

vibration data enable to detect the fault in its early stages.  In addition to this, transformer prognosis 

is some knowledge on how the transformer behaviour tends to turn out with accessing to the usual 

course of the fault. Going beyond a binary classification problem, where categorical variables are 

merely estimated (fault or non-fault conditions based on the vibration waveform), this study has 

dedicated to formulating a regression problem with continuous variables in terms of the excitation 

voltage and load current. Nevertheless, when it comes to practicality, there is a flexibility of 
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interpreting the faulty conditions based on the over-/under-excitation and/or short-circuit current 

rather than imposing the orthodox ‘faulty’ definition. In such circumstance, the detection of the 

faulty condition given the definition is directly correlated with how accurate the fault parameters 

were predicted such as excitation voltage and load current. Moreover, the duration of decision-

making can be considered as another sophisticated point of our predictive models. It is impressive 

that authors employed the duration of 0.02 secs for vibration waveform for the RNNs to be trained 

for decision-making since previous study [1] was fed by the duration of as 5 times long as one-

cycle vibration waveform. On the other hand, predictive RNN models are not perfectly accurate. 

The CNN models in this thesis can predict the transformer inter-turn short circuit fault and 

voltage excitation by recorded vibration signals for 0.0167 seconds, which is less than fundamental 

frequency (50 Hz) of the electrical system. In other words, trained CNN models take 0.0167 

seconds of recorded vibration signals to indicate the electric parameter of the transformer faulty 

conditions. Especially, the constructed models under this thesis are able to detect the faults named 

above in early stages or faulty transformer in initial phase, when it becomes suspicious, considering 

vibration waveforms. One of the main privileges of CNN is fastness in terms of the time 

complexity. In addition, CNN model constructed in this thesis for turn-to-turn short circuit fault 

detection in early stages has very good performance compared to results of previous two studies 

[1] and [3]. 
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Chapter 6 – Conclusion and Future Work 

 In this thesis, various approaches to predict transformer voltage excitation and inter-turn 

short circuit fault using time-series vibration signals were discussed in detail. After reviewing 

previous studies, classical techniques that can be applied to detect faults using vibration data is 

following: 

• Modelling the vibration signals using the mathematical approach (sum of sinusoids) 

• Estimation of mathematical parameters in segmented short period of signals 

• Constructing predictive mathematical models using feature extracting techniques. 

The approaches that combine feature extraction methods with classical machine learning 

techniques are applied to time-series vibration data in the study [1]. They have compared the 

performance of different machine learning methods such as model trees, multilayer perceptron, 

support vector regression and linear regression. The results of constructed models to predict 

transformer underexcitation and overexcitaion voltage and turn-to-turn short circuit fault were 

measured by RAE value, 2.42% and 11.37%, respectively. 

Another recent study [6] has demonstrated the potentials of recent developments in machine 

learning, particularly, in deep learning architectures. In [6], stacked unidirectional and bidirectional 

RNN models were constructed to extract important features from transformer vibration waveforms 

and train predictive models for under-excitation, over-excitation and inter-turn short circuit faults. 

Applying a brute-force model selection method with the four architectures (GRU, Bi-GRU, LSTM, 

and Bi-LSTM) discussed in Section 5.3, and 48 000 models were trained. The performance of the 

best predictive model was reported by RAE values of 0.56% and 17.58% for the voltage excitation 

and inter-turn short circuit faults, respectively.  
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 In this research work, another high-performance approach of deep learning techniques was 

also conducted through different experimental works. One-dimensional CNNs (1D-CNN) were 

employed as they have ability to extract patterns of interest from input dataset, in this research it 

was transformer vibration waveforms, and construct predictive models. In other words, feature 

extraction and model construction are the combined process and not required further separate 

feature extraction process. After setting assumptions on hyperparameters for model selection, 1D-

CNN architecture was considered to train 2 (batch size) × 150 (epoch number) × 2 (learning rate) 

× 12 (convolutional layers or filters) × 6 (kernel size) = 43 200 models for predicting transformer 

excitation voltage and inter-turn short circuit fault in early stages. The predictive performances of 

two faults were reported with different methods, as the predictive model for the case one was 

regression and for the second case it was classification. The best predictive model of the case 1 

(transformer voltage excitation) revealed RRSE value of 4.49% and RAE value of 2.49%. The 

accuracy of the predictive model of case 2 was obtained also for 99.86%. The performance of the 

CNN models is comparable and shows that deep learning approaches have ability to capture all 

patterns of vibration waveforms in predicting the specific fault. Lastly, the future work over this 

research work are to improve the performance of the transformer voltage excitation prediction and 

employ further machine learning techniques. Developing a pipeline and system to be able to 

analyze the transformer vibration signal for fault prognosis is also suggested as the future work in 

this study.  

 

 

 

 

 

 



57 

 

Bibliography 

[1] M. Bagheri, A. Zollanvari, and S. Nezhivenko, “Transformer fault condition prognosis using vibration 

signals over cloud environment,” IEEE Access, vol. 6, pp. 9862–9874, 2018.  

[2] M. Bagheri, S. Nezhivenko, M. Naderi, and A. Zollanvari, “A new vibration analysis approach for 

transformer fault prognosis over cloud environment,” International Journal of Electrical Power and 

Energy Systems, vol. 100, pp. 104–116, Sept. 2018.  

[3] S. Saponara, “Distributed measuring system for predictive diagnosis of uninterruptible power supplies 

in safety-critical applications,” Energies, vol. 9, no. 5, 2016.  

[4] P. M. Joshi and S. V. Kulkarni, “Transformer winding diagnostics using deformation coefficient,” in 

2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy 

in the 21st Century, pp. 1–4, 2008.  

[5] M. Bagheri and B. T. Phung, “Frequency response and vibration analysis in transformer winding turn-

to-turn fault recognition,” in 2016 International Conference on Smart Green Technology in Electrical 

and Information Systems (ICSGTEIS), pp. 10–15, 2016.  

[6] A. Zollanvari, K. Kunanbayev, S. Akhavan Bitaghsir, and M. Bagheri, “Transformer fault prognosis 

using deep recurrent neural network over vibration signals,” IEEE Transactions on Instrumentation and 

Measurement, vol. 70, pp. 1–11, 2021.  

[7] M. H. Samimi and S. Tenbohlen, “Fra interpretation using numerical indices: State-of-the-art,” 

International Journal of Electrical Power Energy Systems, vol. 89, pp. 115–125, 2017.  

[8] M. F. M. Yousof, C. Ekanayake, and T. K. Saha, “Frequency response analysis to investigate 

deformation of transformer winding,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 

22, no. 4, pp. 2359–2367, 2015.  

[9] M. Bagheri, S. Nezhivenko, and B. T. Phung, “Loss of low-frequency data in on- line frequency 

response analysis of transformers,” IEEE Electrical Insulation Magazine, vol. 33, no. 5, pp. 32–39, 

2017.  

[10] Z. Zhao, C. Yao, C. Li, and S. Islam, “Detection of power transformer winding deformation using 

improved fra based on binary morphology and extreme point variation,” IEEE Transactions on 

Industrial Electronics, vol. 65, no. 4, pp. 3509–3519, 2018.  

[11] M. Bagheri, M. S. Naderi, T. Blackburn, and T. Phung, “Frequency response analysis and short-circuit 

impedance measurement in detection of winding deformation within power transformers,” IEEE 

Electrical Insulation Magazine, vol. 29, no. 3, pp. 33–40, 2013.  

[12] S. Naiqiu, Z. Can, H. Fang, L. Qisheng, and Z. Lingwei, “Study on ultrasonic measurement device for 

transformer winding deformation,” in Proceedings. International Conference on Power System 

Technology, vol. 3, pp. 1401–1404 vol.3, 2002.  

[13] E. Arri, A. Carta, F. Mocci, and M. Tosi, “Diagnosis of the state of power transformer windings by on-

line measurement of stray reactance,” IEEE Transactions on Instrumentation and Measurement, vol. 

42, no. 2, pp. 372–378, 1993.  

[14] M. A. Hejazi, G. B. Gharehpetian, G. Moradi, H. A. Alehosseini, and M. Mohammadi, “Online 

monitoring of transformer winding axial displacement and its extent using scattering parameters and 

k-nearest neighbour method,” IEE proceedings.Generation, transmission, and distribution., vol. 5, no. 

8, pp. 824–832, 2011. Copyright - Copyright The Institution of Engineering Technology 2011.  

[15] T.-T. He, J.-D. Wang, J. Guo, H. Huang, X.-X. Chen, and J. Pan, “A vibration based condition 

monitoring system for power transformers,” in 2009 Asia-Pacific Power and Energy Engineering 

Conference, pp. 1–4, 2009.  

[16] A. Abu-Siada and S. Islam, “A novel online technique to detect power transformer winding faults,” 

IEEE Transactions on Power Delivery, vol. 27, no. 2, pp. 849–857, 2012.  



58 

 

[17] Y. X. Liao, T. Y. Zhu, Y. Q. Sun, J. Zhang, T. Cheng, and Y. Wang, “Load influence on lissajous 

figure for online transformer winding diagnosis,” in 2016 IEEE International Conference on High 

Voltage Engineering and Application (ICHVE), pp. 1–4, 2016.  

[18] Y. Eroglu and S. U. Sec¸kiner, “Early fault prediction of a wind turbine ˘ using a novel ann training 

algorithm based on ant colony optimization,” Journal of Energy Systems, vol. 3, no. 4, pp. 139–147, 

2019.  

[19] Z. Tian, “An artificial neural network method for remaining useful life prediction of equipment subject 

to condition monitoring,” Journal of Intelligent Manufacturing, vol. 23, no. 2, pp. 227–237, 2012.  

[20] J. Benesty, J. Chen, and Y. Huang, “Automatic speech recognition: A deep learning approach,” 2008.  

[21] C.-L. Liu, W.-H. Hsaio, and Y.-C. Tu, “Time series classification with multivariate convolutional 

neural network,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4788–4797, 2019.  

[22] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Realtime motor fault detection by 1-d 

convolutional neural networks,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7067–

7075, 2016.  

[23] B. Garcia, J. Burgos, and A. Alonso, “Transformer tank vibration modeling as a method of detecting 

winding deformations-part i: theoretical foundation,” IEEE Transactions on Power Delivery, vol. 21, 

no. 1, pp. 157–163, 2006.  

[24] J. Shengchang, L. Yongfen, and L. Yanming, “Research on extraction technique of transformer core 

fundamental frequency vibration based on olcm,” IEEE Transactions on Power Delivery, vol. 21, no. 

4, pp. 1981– 1988, 2006.  

[25] S. Saponara, L. Fanucci, F. Bernardo, and A. Falciani, “Predictive diagnosis of high-power transformer 

faults by networking vibration measuring nodes with integrated signal processing,” IEEE Transactions 

on Instrumentation and Measurement, vol. 65, no. 8, pp. 1749–1760, 2016.  

[26] R. Rajamani, M. Rajappa, K. Arunachalam, and B. Madanmohan, “Interturn short diagnosis in small 

transformers through impulse injection: on-line on-load self-impedance transfer function approach,” 

Iet Science Measurement & Technology, vol. 11, pp. 961–966, 2017.  

[27] B. Rao, P. S. Pai, and T. Nagabhushana, “Failure diagnosis and prognosis of rolling-element bearings 

using artificial neural networks: A critical overview,” in Journal of Physics: Conference Series, vol. 

364, p. 012023, IOP Publishing, 2012.  

[28] Y. Wang and I. H. Witten, “Induction of model trees for predicting continuous classes,” 1996.  

[29] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, “Using model trees for classification,” 

Machine learning, vol. 32, no. 1, pp. 63–76, 1998.  

[30] Z. Boger and H. Guterman, “Knowledge extraction from artificial neural network models,” in 1997 

IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and 

Simulation, vol. 4, pp. 3030–3035, IEEE, 1997.  

[31] R. Di Stefano, S. Meo, and M. Scarano, “Induction motor faults diagnostic via artificial neural network 

(ann),” in Proceedings of 1994 IEEE International Symposium on Industrial Electronics (ISIE’94), pp. 

220– 225, IEEE, 1994.  

[32] B. Li, M.-Y. Chow, Y. Tipsuwan, and J. C. Hung, “Neural-network-based motor rolling bearing fault 

diagnosis,” IEEE transactions on industrial electronics, vol. 47, no. 5, pp. 1060–1069, 2000.  

[33] C. T. Kowalski and T. Orlowska-Kowalska, “Neural networks application for induction motor faults 

diagnosis,” Mathematics and computers in simulation, vol. 63, no. 3-5, pp. 435–448, 2003.  

[34] B.-S. Yang, M.-S. Oh, A. C. C. Tan, et al., “Fault diagnosis of induction motor based on decision trees 

and adaptive neuro-fuzzy inference,” Expert Systems with Applications, vol. 36, no. 2, pp. 1840–1849, 

2009. 



59 

 

[35] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural 

networks,” in Proc. Adv. Neural Inf. Process. Syst. Conf., Lake Tahoe, Nevada, Dec. 2012, pp. 1097–

1105. 

[36] A. Serikbay, M. Bagheri, A. Zollanvari and B. T. Phung, "Accurate Surface Condition Classification 

of High Voltage Insulators based on Deep Convolutional Neural Networks," in IEEE Transactions on 

Dielectrics and Electrical Insulation, vol. 28, no. 6, pp. 2126-2133, December 2021, doi: 

10.1109/TDEI.2021.009648. 

[37] Y. Li, L. Zou, L. Jiang and X. Zhou, "Fault Diagnosis of Rotating Machinery Based on Combination 

of Deep Belief Network and Onedimensional Convolutional Neural Network," in IEEE Access, vol. 7, 

pp. 165710-165723, 2019. 

[38] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural 

networks on sequence modeling,” in Proc. NIPS, 2014, pp. 1–9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 

 

Appendix 

Table A.1. The selected 1D-CNN architecture for transformer excitation based on lowest MSE 

on the validation set. 

Layer 

size 

Filter number Batch 

size 

Kernel 

size 

Adam 

optimizer 

MSE RRSE RAE 

5 [256, 128, 64, 32, 16] 32 6 0.001 7.7364E-06 4.4938 2.4863 

4 [256, 128, 64, 32] 32 7 0.001 7.8655E-06 4.1612 2.7553 

5 [256, 128, 64, 32, 16] 32 5 0.001 8.2211E-06 3.7985 1.4734 

5 [256, 128, 64, 32, 16] 64 6 0.001 8.6697E-06 4.0723 2.0035 

6 [256, 128, 64, 32, 16, 8] 32 5 0.001 9.2483E-06 3.7092 2.2312 

5 [256, 128, 64, 32, 16] 64 7 0.001 9.3912E-06 3.9514 2.6350 

4 [256, 128, 64, 32] 32 6 0.001 9.4796E-06 5.3838 3.1683 

6 [256, 128, 64, 32, 16, 8] 64 7 0.001 9.4955E-06 4.6614 3.1618 

6 [256, 128, 64, 32, 16, 8] 32 6 0.001 1.0342E-05 3.8244 2.0618 

5 [256, 128, 64, 32, 16] 32 4 0.001 1.0545E-05 5.1230 3.1113 

5 [256, 128, 64, 32, 16] 64 5 0.001 1.0814E-05 4.3217 2.4508 

4 [256, 128, 64, 32] 64 5 0.001 1.0972E-05 4.4159 2.6754 

4 [256, 128, 64, 32] 64 6 0.001 1.2035E-05 6.8311 5.3368 

5 [8, 16, 32, 64, 128] 32 4 0.001 1.2840E-05 6.1684 4.5713 

4 [256, 128, 64, 32] 32 4 0.001 1.3091E-05 4.7992 2.6838 

5 [8, 16, 32, 64, 128] 32 7 0.001 1.3106E-05 5.1883 2.2773 

6 [256, 128, 64, 32, 16, 8] 64 4 0.001 1.3316E-05 4.6016 3.0866 

5 [8, 16, 32, 64, 128] 32 5 0.001 1.3667E-05 8.7269 8.9118 

5 [256, 128, 64, 32, 16] 64 4 0.001 1.3844E-05 5.3139 3.8888 

3 [256, 128, 64] 32 5 0.001 1.4450E-05 5.2235 4.1084 

3 [256, 128, 64] 64 7 0.001 1.4935E-05 5.0575 3.8788 

3 [256, 128, 64] 64 6 0.001 1.5077E-05 4.8116 3.6929 

5 [256, 128, 64, 32, 16] 32 3 0.001 1.5170E-05 7.1981 5.3865 

5 [8, 16, 32, 64, 128] 32 6 0.001 1.5598E-05 6.4959 3.5408 

6 [8, 16, 32, 64, 128, 256] 32 7 0.001 1.5641E-05 5.3445 3.1393 

4 [256, 128, 64, 32] 32 3 0.001 1.5798E-05 6.4545 4.8613 

6 [8, 16, 32, 64, 128, 256] 64 7 0.001 1.5874E-05 7.0629 6.3522 

3 [256, 128, 64] 32 6 0.001 1.5880E-05 4.9369 3.7870 

4 [256, 128, 64, 32] 64 4 0.001 1.6624E-05 5.4340 4.2352 

3 [256, 128, 64] 32 7 0.001 1.6744E-05 5.3343 4.0709 

3 [256, 128, 64] 64 5 0.001 1.6899E-05 5.0201 4.0050 

6 [256, 128, 64, 32, 16, 8] 64 5 0.001 1.6900E-05 5.0539 4.0316 

4 [8, 16, 32, 64] 32 6 0.001 1.6983E-05 6.4453 4.0874 

5 [256, 128, 64, 32, 16] 64 3 0.001 1.7280E-05 8.6135 8.2298 

3 [256, 128, 64] 32 4 0.001 1.7645E-05 5.1679 3.7378 

6 [8, 16, 32, 64, 128, 256] 32 6 0.001 1.8042E-05 6.1505 4.9852 



61 

 

5 [8, 16, 32, 64, 128] 64 7 0.001 1.8070E-05 5.5914 3.4748 

3 [256, 128, 64] 64 4 0.001 1.8181E-05 6.4777 5.7205 

6 [8, 16, 32, 64, 128, 256] 32 4 0.001 1.8611E-05 6.0565 2.3971 

6 [8, 16, 32, 64, 128, 256] 64 6 0.001 1.8706E-05 6.3264 3.9414 

2 [256, 128] 64 6 0.001 1.8885E-05 5.4415 4.4918 

6 [8, 16, 32, 64, 128, 256] 32 5 0.001 1.9138E-05 6.5347 3.9383 

2 [256, 128] 64 7 0.001 2.0061E-05 6.6063 6.0393 

4 [8, 16, 32, 64] 32 7 0.001 2.0081E-05 6.6696 5.5829 

4 [256, 128, 64, 32] 64 3 0.001 2.0178E-05 6.0558 4.4276 

2 [256, 128] 32 7 0.001 2.0444E-05 5.9102 4.9733 

5 [8, 16, 32, 64, 128] 64 6 0.001 2.0485E-05 5.6540 3.3889 

3 [256, 128, 64] 64 3 0.001 2.0564E-05 5.5785 4.5500 

6 [8, 16, 32, 64, 128, 256] 64 4 0.001 2.0836E-05 7.5616 4.3605 

2 [256, 128] 32 7 0.0001 2.0849E-05 5.4300 4.6299 

2 [256, 128] 64 4 0.001 2.1668E-05 5.7882 4.7279 

2 [256, 128] 32 6 0.001 2.1736E-05 5.9335 4.6645 

2 [256, 128] 32 6 0.0001 2.1921E-05 5.7647 4.9240 

3 [256, 128, 64] 32 3 0.001 2.2143E-05 7.2858 6.4608 

5 [8, 16, 32, 64, 128] 64 5 0.001 2.2255E-05 6.3297 4.9230 

2 [256, 128] 64 5 0.001 2.2301E-05 7.7729 7.5242 

6 [256, 128, 64, 32, 16, 8] 64 3 0.001 2.2310E-05 5.8031 4.4217 

6 [8, 16, 32, 64, 128, 256] 32 3 0.001 2.2508E-05 5.8951 3.0691 

4 [256, 128, 64, 32] 32 2 0.001 2.2779E-05 5.9170 3.9767 

2 [256, 128] 32 5 0.0001 2.3789E-05 6.1164 5.4296 

2 [256, 128] 32 5 0.001 2.3949E-05 6.0942 4.8935 

3 [256, 128, 64] 32 5 0.0001 2.4388E-05 5.9157 5.0384 

3 [256, 128, 64] 32 6 0.0001 2.4829E-05 6.5525 5.5470 

2 [256, 128] 32 4 0.001 2.4860E-05 5.9293 4.7937 

3 [256, 128, 64] 32 7 0.0001 2.5303E-05 6.3646 5.4387 

4 [256, 128, 64, 32] 32 7 0.0001 2.5446E-05 13.3235 14.2956 

4 [256, 128, 64, 32] 32 6 0.0001 2.6230E-05 7.6760 7.0897 

5 [8, 16, 32, 64, 128] 64 4 0.001 2.6300E-05 7.1410 5.7360 

2 [256, 128] 32 4 0.0001 2.6394E-05 7.3672 6.7771 

3 [8, 16, 32] 32 6 0.001 2.6638E-05 9.8458 9.5144 

2 [256, 128] 64 6 0.0001 2.7226E-05 6.2051 5.2735 

2 [256, 128] 64 7 0.0001 2.7879E-05 7.4899 6.7220 

3 [256, 128, 64] 32 4 0.0001 2.8174E-05 6.3122 5.2046 

5 [256, 128, 64, 32, 16] 64 2 0.001 2.8249E-05 7.5891 6.4662 

5 [256, 128, 64, 32, 16] 32 7 0.0001 2.8626E-05 6.4853 5.3724 

3 [256, 128, 64] 64 6 0.0001 2.8860E-05 6.5586 5.4301 

5 [8, 16, 32, 64, 128] 32 3 0.001 2.8901E-05 10.2785 9.8863 

6 [8, 16, 32, 64, 128, 256] 32 2 0.001 2.9248E-05 6.6350 3.5006 

4 [256, 128, 64, 32] 64 2 0.001 2.9762E-05 10.6401 10.9414 
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2 [256, 128] 64 5 0.0001 2.9797E-05 7.2412 6.3731 

2 [256, 128] 64 3 0.001 2.9913E-05 7.0252 6.0528 

5 [256, 128, 64, 32, 16] 32 4 0.0001 3.0125E-05 9.7618 9.5835 

2 [256, 128] 32 3 0.0001 3.0279E-05 6.6870 5.7165 

4 [256, 128, 64, 32] 32 4 0.0001 3.0423E-05 7.5400 6.7123 

5 [256, 128, 64, 32, 16] 32 6 0.0001 3.0466E-05 6.8638 5.7239 

6 [256, 128, 64, 32, 16, 8] 32 7 0.0001 3.0647E-05 7.1240 6.0459 

2 [256, 128] 32 3 0.001 3.0951E-05 6.6159 5.4601 

6 [8, 16, 32, 64, 128, 256] 64 3 0.001 3.1204E-05 7.0508 4.8351 

5 [256, 128, 64, 32, 16] 32 5 0.0001 3.1269E-05 6.8345 5.6361 

4 [8, 16, 32, 64] 32 5 0.001 3.1772E-05 6.9430 5.5354 

3 [256, 128, 64] 32 3 0.0001 3.1776E-05 7.1414 6.1583 

5 [8, 16, 32, 64, 128] 64 3 0.001 3.2058E-05 6.8249 5.2569 

4 [256, 128, 64, 32] 64 6 0.0001 3.2227E-05 6.8016 5.5634 

4 [256, 128, 64, 32] 32 3 0.0001 3.2274E-05 6.7910 5.6922 

5 [256, 128, 64, 32, 16] 64 6 0.0001 3.2434E-05 7.5764 6.4085 

3 [256, 128, 64] 64 5 0.0001 3.2438E-05 6.7730 5.7008 

2 [256, 128] 64 4 0.0001 3.2973E-05 6.9857 5.9514 

4 [8, 16, 32, 64] 64 7 0.001 3.3032E-05 7.8163 6.9925 

6 [256, 128, 64, 32, 16, 8] 32 6 0.0001 3.3057E-05 6.9676 5.7459 

3 [256, 128, 64] 64 4 0.0001 3.3417E-05 8.0075 7.0559 

5 [256, 128, 64, 32, 16] 64 7 0.0001 3.3667E-05 7.0628 5.7938 

4 [8, 16, 32, 64] 64 5 0.001 3.4126E-05 7.1479 5.9726 

6 [256, 128, 64, 32, 16, 8] 32 5 0.0001 3.4220E-05 7.1739 5.7749 

4 [256, 128, 64, 32] 64 4 0.0001 3.4664E-05 7.4887 6.3650 

5 [256, 128, 64, 32, 16] 64 5 0.0001 3.4893E-05 9.5522 9.1745 

3 [256, 128, 64] 64 3 0.0001 3.5034E-05 8.1297 7.1875 

6 [256, 128, 64, 32, 16, 8] 64 2 0.001 3.5392E-05 8.1108 7.0877 

2 [256, 128] 64 3 0.0001 3.5418E-05 7.2606 6.1968 

5 [256, 128, 64, 32, 16] 32 3 0.0001 3.5419E-05 7.2239 6.0559 

4 [8, 16, 32, 64] 64 6 0.001 3.5442E-05 10.2144 9.9202 

3 [256, 128, 64] 64 2 0.001 3.5517E-05 7.4901 6.3907 

3 [8, 16, 32] 32 5 0.001 3.5822E-05 7.3482 6.1812 

4 [256, 128, 64, 32] 64 3 0.0001 3.6209E-05 7.2035 5.9543 

1 [256] 32 7 0.0001 3.6491E-05 7.4023 6.2946 

3 [256, 128, 64] 32 2 0.001 3.6735E-05 7.5819 6.5463 

4 [8, 16, 32, 64] 32 3 0.001 3.6941E-05 7.2782 6.1920 

1 [256] 32 6 0.0001 3.6944E-05 7.6453 6.5724 

2 [256, 128] 64 2 0.001 3.7366E-05 7.6457 6.5574 

2 [256, 128] 32 2 0.0001 3.7747E-05 8.1517 7.2709 

5 [256, 128, 64, 32, 16] 64 3 0.0001 3.8011E-05 8.6028 7.8046 

4 [8, 16, 32, 64] 64 4 0.001 3.8734E-05 7.8477 6.8590 

3 [8, 16, 32] 64 6 0.001 3.8745E-05 7.4407 6.2585 
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5 [256, 128, 64, 32, 16] 64 4 0.0001 3.8785E-05 7.4677 6.0580 

1 [256] 32 5 0.0001 3.8928E-05 8.6191 7.8591 

5 [8, 16, 32, 64, 128] 32 2 0.001 3.8964E-05 7.4232 5.8983 

6 [256, 128, 64, 32, 16, 8] 32 4 0.0001 3.9530E-05 14.7633 15.8659 

4 [256, 128, 64, 32] 32 2 0.0001 3.9633E-05 8.5976 7.5891 

1 [256] 32 4 0.0001 3.9641E-05 10.9760 10.4847 

3 [256, 128, 64] 32 2 0.0001 3.9812E-05 7.7569 6.6759 

2 [8, 16] 64 5 0.001 3.9864E-05 8.7902 7.8959 

2 [256, 128] 32 2 0.001 3.9949E-05 12.3220 12.4769 

2 [8, 16] 32 6 0.001 3.9969E-05 7.8608 6.8063 

2 [256, 128] 64 2 0.0001 4.0149E-05 7.6364 6.4608 

5 [8, 16, 32, 64, 128] 32 7 0.0001 4.0386E-05 9.2353 8.4358 

5 [256, 128, 64, 32, 16] 32 2 0.0001 4.0488E-05 7.6985 6.4446 

3 [8, 16, 32] 64 7 0.001 4.0502E-05 8.1438 7.0603 

3 [8, 16, 32] 32 4 0.001 4.0567E-05 9.3023 8.4586 

3 [256, 128, 64] 64 2 0.0001 4.1058E-05 8.8311 8.0063 

4 [8, 16, 32, 64] 64 3 0.001 4.1185E-05 10.8772 10.6928 

1 [256] 64 5 0.001 4.1371E-05 8.2350 7.1423 

4 [256, 128, 64, 32] 64 2 0.0001 4.1585E-05 7.6687 6.4220 

1 [256] 64 7 0.0001 4.1657E-05 7.7315 6.4918 

5 [8, 16, 32, 64, 128] 64 2 0.001 4.1731E-05 7.6822 5.9499 

6 [256, 128, 64, 32, 16, 8] 32 3 0.0001 4.1806E-05 9.9034 9.4658 

1 [256] 64 5 0.0001 4.2024E-05 7.9248 6.8086 

6 [256, 128, 64, 32, 16, 8] 64 6 0.0001 4.2242E-05 7.7291 6.2509 

3 [8, 16, 32] 64 5 0.001 4.2549E-05 8.8618 7.9430 

2 [8, 16] 64 7 0.001 4.2832E-05 9.1999 8.3191 

1 [256] 64 7 0.001 4.2959E-05 7.7944 6.6078 

1 [256] 32 3 0.0001 4.3150E-05 8.2791 7.2473 

1 [256] 64 3 0.001 4.3534E-05 14.3531 14.5583 

1 [256] 64 6 0.0001 4.3726E-05 9.0153 8.1073 

6 [8, 16, 32, 64, 128, 256] 32 6 0.0001 4.3766E-05 8.1686 6.9900 

6 [8, 16, 32, 64, 128, 256] 32 4 0.0001 4.4823E-05 9.4509 8.6268 

4 [8, 16, 32, 64] 32 6 0.0001 4.5011E-05 8.5422 7.2933 

6 [256, 128, 64, 32, 16, 8] 32 2 0.0001 4.5054E-05 8.1255 6.8913 

2 [8, 16] 32 5 0.001 4.5176E-05 8.9116 7.9973 

1 [256] 64 4 0.001 4.5336E-05 8.0177 6.9415 

1 [8] 32 6 0.001 4.5565E-05 8.3735 7.3077 

3 [8, 16, 32] 64 3 0.001 4.5701E-05 8.0547 6.9460 

4 [8, 16, 32, 64] 32 7 0.0001 4.5798E-05 10.9760 10.6451 

3 [8, 16, 32] 64 4 0.001 4.5950E-05 8.1253 6.9967 

3 [8, 16, 32] 32 3 0.001 4.6553E-05 9.6739 8.5948 

2 [8, 16] 32 3 0.001 4.6618E-05 9.4216 8.5517 

1 [256] 32 4 0.001 4.6704E-05 10.8536 10.3771 
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4 [8, 16, 32, 64] 32 5 0.0001 4.6747E-05 9.1209 8.1430 

4 [8, 16, 32, 64] 32 2 0.001 4.6883E-05 8.1426 6.7637 

6 [8, 16, 32, 64, 128, 256] 32 3 0.0001 4.6896E-05 8.1504 6.8386 

1 [256] 64 4 0.0001 4.6956E-05 8.3176 7.0890 

6 [8, 16, 32, 64, 128, 256] 32 7 0.0001 4.7151E-05 8.5824 7.4050 

1 [256] 32 6 0.001 4.7219E-05 8.7486 7.6457 

2 [8, 16] 64 6 0.001 4.7555E-05 13.1416 13.3979 

1 [256] 32 3 0.001 4.7669E-05 8.4208 7.2520 

1 [256] 64 6 0.001 4.7922E-05 8.3067 6.9167 

5 [8, 16, 32, 64, 128] 64 7 0.0001 4.7953E-05 8.9456 8.0048 

6 [256, 128, 64, 32, 16, 8] 64 3 0.0001 4.8188E-05 8.8828 7.6803 

1 [256] 32 5 0.001 4.8535E-05 8.9707 7.8452 

2 [8, 16] 64 4 0.001 4.8845E-05 9.4909 8.6136 

2 [8, 16] 32 4 0.001 4.9019E-05 8.3564 7.1980 

6 [8, 16, 32, 64, 128, 256] 32 2 0.0001 4.9800E-05 9.1201 7.9597 

1 [8] 32 7 0.001 4.9924E-05 11.4599 10.9542 

5 [8, 16, 32, 64, 128] 32 4 0.0001 5.0302E-05 9.0543 7.9154 

5 [8, 16, 32, 64, 128] 64 4 0.0001 5.0593E-05 9.2717 8.2716 

2 [8, 16] 32 2 0.001 5.0896E-05 8.7176 7.5590 

3 [8, 16, 32] 32 6 0.0001 5.0945E-05 10.7654 10.1071 

1 [8] 64 7 0.001 5.1190E-05 8.8011 7.7635 

5 [8, 16, 32, 64, 128] 32 3 0.0001 5.1208E-05 11.7008 11.2963 

1 [8] 64 5 0.001 5.1453E-05 8.6886 7.5686 

3 [8, 16, 32] 32 7 0.0001 5.1684E-05 8.9837 7.8358 

1 [256] 64 2 0.001 5.1994E-05 8.7453 7.6658 

6 [8, 16, 32, 64, 128, 256] 64 6 0.0001 5.2152E-05 8.5880 7.3877 

4 [8, 16, 32, 64] 32 3 0.0001 5.2423E-05 12.2273 12.0013 

5 [8, 16, 32, 64, 128] 64 6 0.0001 5.2495E-05 8.6162 7.3447 

3 [8, 16, 32] 32 2 0.001 5.2910E-05 8.8738 7.7278 

1 [8] 32 5 0.001 5.3051E-05 12.7803 12.6718 

1 [8] 32 3 0.001 5.3182E-05 12.5405 11.8025 

6 [256, 128, 64, 32, 16, 8] 64 2 0.0001 5.3589E-05 10.5080 9.7921 

6 [8, 16, 32, 64, 128, 256] 64 4 0.0001 5.3612E-05 8.7074 7.4108 

6 [8, 16, 32, 64, 128, 256] 64 5 0.0001 5.3735E-05 8.9742 7.9781 

1 [8] 64 6 0.001 5.3943E-05 8.9078 7.7393 

4 [8, 16, 32, 64] 32 4 0.0001 5.4198E-05 8.9744 7.8350 

5 [8, 16, 32, 64, 128] 32 2 0.0001 5.4721E-05 9.1934 8.1380 

5 [8, 16, 32, 64, 128] 32 5 0.0001 5.4752E-05 9.7656 8.7175 

4 [8, 16, 32, 64] 64 6 0.0001 5.5013E-05 8.9215 7.6279 

3 [8, 16, 32] 32 5 0.0001 5.5345E-05 8.8501 7.5463 

1 [256] 32 2 0.001 5.5910E-05 11.3640 10.8817 

4 [8, 16, 32, 64] 64 7 0.0001 5.6399E-05 8.9309 7.7435 

1 [8] 32 4 0.001 5.6590E-05 9.4211 8.2691 
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4 [8, 16, 32, 64] 64 2 0.001 5.6628E-05 9.2089 7.9730 

6 [8, 16, 32, 64, 128, 256] 64 3 0.0001 5.6764E-05 9.0866 7.8791 

2 [8, 16] 64 3 0.001 5.6970E-05 10.5624 9.6171 

5 [8, 16, 32, 64, 128] 64 3 0.0001 5.7666E-05 9.0493 7.7355 

2 [8, 16] 32 3 0.0001 5.7684E-05 9.1177 7.9368 

3 [8, 16, 32] 32 4 0.0001 5.7787E-05 10.6995 9.6784 

1 [8] 64 2 0.001 5.8764E-05 10.3674 9.5558 

1 [8] 64 4 0.001 5.9191E-05 9.6411 8.6374 

1 [8] 32 2 0.001 5.9698E-05 9.6269 8.3624 

4 [8, 16, 32, 64] 64 5 0.0001 5.9912E-05 9.2770 8.1124 

3 [8, 16, 32] 64 2 0.001 6.0674E-05 10.1039 9.0388 

2 [8, 16] 32 4 0.0001 6.1486E-05 11.3913 10.7654 

1 [8] 64 3 0.001 6.1858E-05 11.0286 10.1521 

3 [8, 16, 32] 32 2 0.0001 6.2129E-05 10.2622 9.0622 

3 [8, 16, 32] 64 6 0.0001 6.2130E-05 9.5066 8.3071 

2 [8, 16] 64 7 0.0001 6.2380E-05 9.3924 8.1916 

1 [256] 32 2 0.0001 6.2424E-05 10.9937 10.1535 

4 [8, 16, 32, 64] 32 2 0.0001 6.2498E-05 9.4013 8.2449 

4 [8, 16, 32, 64] 64 4 0.0001 6.3379E-05 9.7164 8.3831 

2 [8, 16] 32 7 0.0001 6.3732E-05 9.4937 8.2356 

4 [8, 16, 32, 64] 64 3 0.0001 6.3832E-05 10.0154 8.9515 

3 [8, 16, 32] 64 7 0.0001 6.4387E-05 9.6171 8.4653 

3 [8, 16, 32] 32 3 0.0001 6.4478E-05 10.0395 8.9891 

2 [8, 16] 32 6 0.0001 6.4988E-05 9.7129 8.6144 

1 [256] 64 3 0.0001 6.5383E-05 9.8162 8.6328 

2 [8, 16] 32 2 0.0001 6.5486E-05 9.6234 8.4923 

2 [8, 16] 64 2 0.001 6.5558E-05 10.4136 9.3131 

2 [8, 16] 32 5 0.0001 6.6275E-05 10.1561 8.9875 

2 [8, 16] 64 6 0.0001 6.6614E-05 9.8782 8.7862 

2 [8, 16] 64 3 0.0001 6.7338E-05 9.9258 8.7272 

2 [8, 16] 64 4 0.0001 6.8259E-05 9.9306 8.6978 

3 [8, 16, 32] 64 3 0.0001 6.9511E-05 10.1211 8.9512 

5 [8, 16, 32, 64, 128] 64 2 0.0001 6.9670E-05 10.0463 9.0034 

3 [8, 16, 32] 64 5 0.0001 6.9893E-05 10.1104 8.9060 

2 [8, 16] 64 2 0.0001 7.0501E-05 10.1131 9.1142 

1 [8] 32 5 0.0001 7.1010E-05 10.2512 9.1622 

1 [8] 32 6 0.0001 7.1874E-05 10.7316 9.6821 

2 [8, 16] 64 5 0.0001 7.2323E-05 10.8969 9.8204 

3 [8, 16, 32] 64 2 0.0001 7.2343E-05 10.1147 9.0176 

4 [8, 16, 32, 64] 64 2 0.0001 7.2624E-05 10.2785 9.1403 

1 [8] 32 4 0.0001 7.3905E-05 10.5495 9.3637 

1 [256] 64 2 0.0001 7.5849E-05 10.8004 9.6905 

1 [8] 32 3 0.0001 7.7711E-05 10.7055 9.5225 
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1 [8] 32 2 0.0001 7.8002E-05 10.7104 9.6599 

1 [8] 64 3 0.0001 8.0652E-05 10.8689 9.8926 

1 [8] 64 7 0.0001 8.2221E-05 10.7832 9.6394 

1 [8] 64 6 0.0001 8.5979E-05 11.0268 10.0616 

1 [8] 64 2 0.0001 8.8843E-05 11.2090 10.2801 

1 [8] 64 5 0.0001 8.9671E-05 11.2611 10.2309 

1 [8] 64 4 0.0001 9.3078E-05 11.6804 10.6817 

6 [256, 128, 64, 32, 16, 8] 64 4 0.0001 7.4126E-01 1023.8622 1219.2432 

4 [256, 128, 64, 32] 64 7 0.0001 7.4126E-01 1023.8622 1219.2432 

3 [256, 128, 64] 64 7 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [8, 16, 32, 64, 128, 256] 64 7 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [8, 16, 32, 64, 128, 256] 64 2 0.0001 7.4126E-01 1023.8622 1219.2432 

4 [256, 128, 64, 32] 64 7 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 64 6 0.001 7.4126E-01 1023.8622 1219.2432 

5 [8, 16, 32, 64, 128] 64 5 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [8, 16, 32, 64, 128, 256] 64 5 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 64 7 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [8, 16, 32, 64, 128, 256] 64 2 0.001 7.4126E-01 1023.8622 1219.2432 

3 [8, 16, 32] 64 4 0.0001 7.4126E-01 1023.8622 1219.2432 

4 [256, 128, 64, 32] 64 5 0.0001 7.4126E-01 1023.8622 1219.2432 

5 [256, 128, 64, 32, 16] 64 2 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 64 5 0.0001 7.4126E-01 1023.8622 1219.2432 

2 [8, 16] 32 7 0.001 7.4126E-01 1023.8622 1219.2432 

4 [256, 128, 64, 32] 32 5 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 32 4 0.001 7.4126E-01 1023.8622 1219.2432 

5 [8, 16, 32, 64, 128] 32 6 0.0001 7.4126E-01 1023.8622 1219.2432 

1 [256] 32 7 0.001 7.4126E-01 1023.8622 1219.2431 

5 [256, 128, 64, 32, 16] 32 7 0.001 7.4126E-01 1023.8622 1219.2432 

4 [8, 16, 32, 64] 32 4 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 32 3 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 32 7 0.001 7.4126E-01 1023.8622 1219.2432 

6 [256, 128, 64, 32, 16, 8] 32 2 0.001 7.4126E-01 1023.8622 1219.2432 

5 [256, 128, 64, 32, 16] 32 2 0.001 7.4126E-01 1023.8622 1219.2432 

4 [256, 128, 64, 32] 32 5 0.0001 7.4126E-01 1023.8622 1219.2432 

6 [8, 16, 32, 64, 128, 256] 32 5 0.0001 7.4126E-01 1023.8622 1219.2432 

1 [8] 32 7 0.0001 7.4126E-01 1023.8622 1219.2432 

3 [8, 16, 32] 32 7 0.001 7.4126E-01 1023.8622 1219.2432 
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Table A.2. The selected 1D-CNN architecture for transformer inter-turn fault based on highest 

accuracy on the validation set. 

Layer size Filter number Batch size Kernel size Adam optimizer Accuracy, % 

1 [256] 64 3 0.001 99.8629 

4 [256, 128, 64, 32] 32 3 0.0001 99.8458 

3 [256, 128, 64] 64 5 0.001 99.8458 

4 [8, 16, 32, 64] 32 6 0.001 99.8458 

3 [256, 128, 64] 32 2 0.0001 99.8287 

2 [256, 128] 32 2 0.0001 99.8287 

1 [256] 64 7 0.001 99.8287 

3 [8, 16, 32] 64 6 0.001 99.8287 

2 [256, 128] 64 3 0.0001 99.8115 

2 [256, 128] 32 4 0.0001 99.8115 

1 [256] 64 5 0.001 99.7944 

2 [256, 128] 32 5 0.0001 99.7944 

1 [256] 64 4 0.001 99.7944 

6 [256, 128, 64, 32, 16, 8] 64 7 0.001 99.7944 

2 [256, 128] 64 5 0.001 99.7944 

1 [256] 32 6 0.001 99.7944 

1 [8] 32 4 0.001 99.7944 

3 [256, 128, 64] 64 7 0.001 99.7944 

2 [8, 16] 32 7 0.001 99.7944 

5 [256, 128, 64, 32, 16] 32 4 0.0001 99.7944 

2 [8, 16] 64 2 0.001 99.7944 

4 [256, 128, 64, 32] 64 6 0.0001 99.7944 

2 [8, 16] 64 3 0.001 99.7944 

2 [256, 128] 64 4 0.0001 99.7773 

4 [8, 16, 32, 64] 64 3 0.001 99.7773 

2 [256, 128] 64 6 0.0001 99.7773 

3 [256, 128, 64] 64 3 0.001 99.7773 

2 [256, 128] 32 7 0.0001 99.7773 

3 [256, 128, 64] 64 7 0.0001 99.7773 

4 [8, 16, 32, 64] 64 6 0.001 99.7773 

3 [8, 16, 32] 64 5 0.001 99.7773 

3 [256, 128, 64] 32 7 0.0001 99.7773 

3 [8, 16, 32] 32 7 0.001 99.7773 

2 [256, 128] 64 4 0.001 99.7773 

3 [256, 128, 64] 32 6 0.001 99.7602 

2 [256, 128] 32 6 0.001 99.7602 

2 [256, 128] 32 7 0.001 99.7602 

6 [256, 128, 64, 32, 16, 8] 32 6 0.001 99.7602 

4 [8, 16, 32, 64] 32 7 0.001 99.7602 
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1 [256] 64 6 0.001 99.7602 

4 [256, 128, 64, 32] 64 6 0.001 99.7602 

3 [256, 128, 64] 32 3 0.001 99.7602 

2 [256, 128] 64 5 0.0001 99.7602 

3 [256, 128, 64] 64 5 0.0001 99.7602 

1 [8] 32 5 0.001 99.7602 

3 [256, 128, 64] 64 6 0.001 99.7602 

5 [256, 128, 64, 32, 16] 32 3 0.0001 99.7430 

1 [8] 32 7 0.001 99.7430 

2 [256, 128] 64 6 0.001 99.7430 

2 [8, 16] 32 2 0.001 99.7430 

4 [256, 128, 64, 32] 64 7 0.0001 99.7430 

6 [256, 128, 64, 32, 16, 8] 32 5 0.0001 99.7430 

6 [8, 16, 32, 64, 128, 256] 64 6 0.001 99.7430 

2 [256, 128] 64 2 0.0001 99.7430 

6 [256, 128, 64, 32, 16, 8] 32 7 0.001 99.7430 

1 [256] 32 2 0.001 99.7430 

2 [256, 128] 32 2 0.001 99.7430 

3 [256, 128, 64] 32 2 0.001 99.7430 

4 [256, 128, 64, 32] 32 4 0.001 99.7430 

3 [256, 128, 64] 32 5 0.0001 99.7430 

4 [256, 128, 64, 32] 64 4 0.0001 99.7430 

4 [256, 128, 64, 32] 32 6 0.0001 99.7430 

3 [8, 16, 32] 32 3 0.001 99.7259 

2 [256, 128] 64 7 0.001 99.7259 

2 [8, 16] 64 7 0.001 99.7259 

4 [256, 128, 64, 32] 32 4 0.0001 99.7259 

5 [8, 16, 32, 64, 128] 64 7 0.001 99.7259 

5 [8, 16, 32, 64, 128] 32 4 0.0001 99.7259 

1 [256] 32 7 0.001 99.7259 

4 [256, 128, 64, 32] 32 5 0.0001 99.7259 

3 [256, 128, 64] 64 2 0.0001 99.7259 

5 [256, 128, 64, 32, 16] 32 6 0.0001 99.7259 

3 [256, 128, 64] 64 4 0.0001 99.7259 

2 [256, 128] 64 7 0.0001 99.7259 

5 [8, 16, 32, 64, 128] 32 7 0.0001 99.7088 

2 [8, 16] 64 4 0.001 99.7088 

1 [8] 64 3 0.001 99.7088 

5 [256, 128, 64, 32, 16] 32 5 0.0001 99.7088 

6 [256, 128, 64, 32, 16, 8] 32 7 0.0001 99.7088 

4 [256, 128, 64, 32] 32 7 0.0001 99.7088 

5 [256, 128, 64, 32, 16] 64 4 0.001 99.7088 

3 [256, 128, 64] 32 4 0.0001 99.7088 
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6 [256, 128, 64, 32, 16, 8] 64 5 0.001 99.7088 

2 [8, 16] 64 6 0.001 99.7088 

2 [8, 16] 64 5 0.001 99.7088 

6 [256, 128, 64, 32, 16, 8] 64 7 0.0001 99.7088 

5 [256, 128, 64, 32, 16] 64 7 0.001 99.7088 

5 [8, 16, 32, 64, 128] 32 4 0.001 99.7088 

4 [256, 128, 64, 32] 64 5 0.0001 99.7088 

2 [8, 16] 32 3 0.001 99.7088 

4 [256, 128, 64, 32] 64 3 0.0001 99.7088 

6 [256, 128, 64, 32, 16, 8] 32 5 0.001 99.7088 

4 [256, 128, 64, 32] 32 2 0.0001 99.7088 

2 [256, 128] 32 4 0.001 99.6916 

5 [256, 128, 64, 32, 16] 64 4 0.0001 99.6916 

6 [8, 16, 32, 64, 128, 256] 32 4 0.001 99.6916 

4 [8, 16, 32, 64] 64 4 0.001 99.6916 

5 [256, 128, 64, 32, 16] 32 4 0.001 99.6916 

2 [8, 16] 32 5 0.001 99.6916 

6 [8, 16, 32, 64, 128, 256] 64 5 0.0001 99.6916 

5 [8, 16, 32, 64, 128] 64 5 0.0001 99.6916 

3 [256, 128, 64] 64 6 0.0001 99.6916 

5 [256, 128, 64, 32, 16] 32 5 0.001 99.6916 

6 [256, 128, 64, 32, 16, 8] 32 6 0.0001 99.6916 

1 [8] 32 6 0.001 99.6916 

4 [8, 16, 32, 64] 32 3 0.001 99.6916 

6 [256, 128, 64, 32, 16, 8] 32 2 0.001 99.6916 

5 [256, 128, 64, 32, 16] 32 7 0.001 99.6916 

5 [256, 128, 64, 32, 16] 32 2 0.001 99.6916 

4 [8, 16, 32, 64] 64 2 0.001 99.6916 

5 [256, 128, 64, 32, 16] 64 7 0.0001 99.6916 

2 [256, 128] 32 3 0.001 99.6745 

1 [256] 64 2 0.001 99.6745 

6 [256, 128, 64, 32, 16, 8] 64 3 0.001 99.6745 

1 [256] 32 7 0.0001 99.6745 

1 [256] 32 4 0.001 99.6745 

6 [256, 128, 64, 32, 16, 8] 64 6 0.001 99.6745 

3 [8, 16, 32] 64 2 0.001 99.6745 

1 [256] 32 5 0.0001 99.6745 

6 [8, 16, 32, 64, 128, 256] 32 2 0.0001 99.6745 

4 [256, 128, 64, 32] 32 6 0.001 99.6745 

5 [256, 128, 64, 32, 16] 64 5 0.001 99.6745 

6 [8, 16, 32, 64, 128, 256] 32 6 0.001 99.6745 

3 [256, 128, 64] 32 5 0.001 99.6745 

4 [8, 16, 32, 64] 32 2 0.001 99.6574 
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4 [256, 128, 64, 32] 32 2 0.001 99.6574 

5 [8, 16, 32, 64, 128] 64 2 0.001 99.6574 

2 [256, 128] 32 3 0.0001 99.6574 

5 [8, 16, 32, 64, 128] 64 3 0.0001 99.6574 

3 [256, 128, 64] 64 2 0.001 99.6574 

5 [256, 128, 64, 32, 16] 64 2 0.001 99.6574 

6 [8, 16, 32, 64, 128, 256] 64 7 0.0001 99.6574 

3 [256, 128, 64] 32 4 0.001 99.6574 

5 [8, 16, 32, 64, 128] 64 5 0.001 99.6574 

4 [256, 128, 64, 32] 32 3 0.001 99.6574 

3 [256, 128, 64] 32 6 0.0001 99.6574 

3 [8, 16, 32] 64 3 0.001 99.6574 

2 [8, 16] 32 4 0.001 99.6574 

2 [256, 128] 64 3 0.001 99.6574 

6 [8, 16, 32, 64, 128, 256] 64 6 0.0001 99.6574 

3 [8, 16, 32] 32 6 0.0001 99.6574 

3 [8, 16, 32] 32 5 0.001 99.6574 

5 [8, 16, 32, 64, 128] 64 6 0.0001 99.6574 

5 [8, 16, 32, 64, 128] 64 4 0.001 99.6574 

6 [256, 128, 64, 32, 16, 8] 64 4 0.0001 99.6402 

4 [256, 128, 64, 32] 64 2 0.0001 99.6402 

5 [8, 16, 32, 64, 128] 64 7 0.0001 99.6402 

1 [8] 64 2 0.001 99.6402 

5 [8, 16, 32, 64, 128] 32 7 0.001 99.6402 

6 [8, 16, 32, 64, 128, 256] 32 4 0.0001 99.6402 

4 [8, 16, 32, 64] 32 4 0.0001 99.6402 

5 [8, 16, 32, 64, 128] 32 3 0.0001 99.6402 

6 [256, 128, 64, 32, 16, 8] 32 3 0.001 99.6402 

5 [256, 128, 64, 32, 16] 32 2 0.0001 99.6402 

2 [256, 128] 32 5 0.001 99.6402 

1 [256] 32 6 0.0001 99.6402 

4 [256, 128, 64, 32] 32 7 0.001 99.6402 

6 [256, 128, 64, 32, 16, 8] 32 4 0.0001 99.6231 

3 [8, 16, 32] 64 4 0.001 99.6231 

1 [8] 64 4 0.001 99.6231 

1 [8] 64 7 0.001 99.6231 

6 [8, 16, 32, 64, 128, 256] 64 7 0.001 99.6231 

1 [8] 32 2 0.001 99.6231 

3 [8, 16, 32] 32 6 0.001 99.6231 

6 [8, 16, 32, 64, 128, 256] 32 5 0.001 99.6231 

4 [8, 16, 32, 64] 32 4 0.001 99.6231 

1 [256] 32 3 0.001 99.6231 

4 [8, 16, 32, 64] 32 7 0.0001 99.6231 
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2 [256, 128] 64 2 0.001 99.6231 

6 [8, 16, 32, 64, 128, 256] 32 7 0.0001 99.6231 

6 [8, 16, 32, 64, 128, 256] 64 5 0.001 99.6231 

2 [8, 16] 32 6 0.001 99.6060 

4 [8, 16, 32, 64] 64 6 0.0001 99.6060 

4 [8, 16, 32, 64] 32 3 0.0001 99.6060 

6 [8, 16, 32, 64, 128, 256] 32 3 0.0001 99.6060 

4 [256, 128, 64, 32] 64 5 0.001 99.6060 

5 [256, 128, 64, 32, 16] 32 7 0.0001 99.6060 

6 [8, 16, 32, 64, 128, 256] 32 6 0.0001 99.6060 

5 [8, 16, 32, 64, 128] 32 5 0.0001 99.6060 

4 [8, 16, 32, 64] 32 5 0.0001 99.5888 

5 [8, 16, 32, 64, 128] 32 2 0.001 99.5888 

5 [8, 16, 32, 64, 128] 32 6 0.0001 99.5888 

6 [256, 128, 64, 32, 16, 8] 64 6 0.0001 99.5888 

5 [256, 128, 64, 32, 16] 64 6 0.0001 99.5888 

6 [256, 128, 64, 32, 16, 8] 32 2 0.0001 99.5888 

4 [256, 128, 64, 32] 32 5 0.001 99.5888 

5 [256, 128, 64, 32, 16] 64 3 0.0001 99.5888 

6 [8, 16, 32, 64, 128, 256] 64 3 0.001 99.5888 

6 [8, 16, 32, 64, 128, 256] 64 4 0.001 99.5888 

2 [256, 128] 32 6 0.0001 99.5888 

6 [8, 16, 32, 64, 128, 256] 64 4 0.0001 99.5717 

4 [8, 16, 32, 64] 64 4 0.0001 99.5717 

1 [256] 32 5 0.001 99.5717 

6 [256, 128, 64, 32, 16, 8] 64 3 0.0001 99.5546 

6 [256, 128, 64, 32, 16, 8] 64 5 0.0001 99.5546 

6 [8, 16, 32, 64, 128, 256] 32 5 0.0001 99.5546 

3 [8, 16, 32] 32 4 0.001 99.5546 

5 [256, 128, 64, 32, 16] 64 5 0.0001 99.5546 

1 [8] 64 5 0.001 99.5546 

3 [256, 128, 64] 32 3 0.0001 99.5374 

4 [8, 16, 32, 64] 64 7 0.0001 99.5374 

3 [256, 128, 64] 32 7 0.001 99.5374 

5 [256, 128, 64, 32, 16] 64 2 0.0001 99.5374 

3 [8, 16, 32] 32 2 0.001 99.5374 

6 [8, 16, 32, 64, 128, 256] 64 2 0.001 99.5374 

5 [256, 128, 64, 32, 16] 64 6 0.001 99.5374 

4 [8, 16, 32, 64] 64 5 0.0001 99.5374 

4 [8, 16, 32, 64] 64 5 0.001 99.5203 

4 [8, 16, 32, 64] 64 3 0.0001 99.5203 

3 [256, 128, 64] 64 3 0.0001 99.5203 

4 [8, 16, 32, 64] 32 5 0.001 99.5032 
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4 [8, 16, 32, 64] 64 7 0.001 99.5032 

4 [256, 128, 64, 32] 64 3 0.001 99.5032 

4 [8, 16, 32, 64] 32 2 0.0001 99.5032 

3 [8, 16, 32] 32 4 0.0001 99.5032 

1 [256] 64 3 0.0001 99.5032 

4 [256, 128, 64, 32] 64 2 0.001 99.4860 

5 [8, 16, 32, 64, 128] 64 2 0.0001 99.4860 

6 [256, 128, 64, 32, 16, 8] 32 3 0.0001 99.4860 

2 [8, 16] 32 4 0.0001 99.4860 

4 [256, 128, 64, 32] 64 4 0.001 99.4689 

6 [256, 128, 64, 32, 16, 8] 64 4 0.001 99.4689 

4 [256, 128, 64, 32] 64 7 0.001 99.4689 

1 [256] 32 3 0.0001 99.4518 

6 [8, 16, 32, 64, 128, 256] 32 2 0.001 99.4518 

3 [8, 16, 32] 32 7 0.0001 99.4518 

1 [8] 32 3 0.001 99.4518 

5 [8, 16, 32, 64, 128] 64 3 0.001 99.4518 

3 [8, 16, 32] 64 7 0.001 99.4346 

4 [8, 16, 32, 64] 32 6 0.0001 99.4346 

1 [256] 64 5 0.0001 99.4175 

3 [256, 128, 64] 64 4 0.001 99.4175 

5 [8, 16, 32, 64, 128] 32 3 0.001 99.4004 

3 [8, 16, 32] 64 7 0.0001 99.4004 

3 [8, 16, 32] 64 6 0.0001 99.3490 

1 [256] 32 2 0.0001 99.3318 

5 [8, 16, 32, 64, 128] 32 6 0.001 99.3318 

6 [256, 128, 64, 32, 16, 8] 64 2 0.001 99.3318 

5 [8, 16, 32, 64, 128] 64 4 0.0001 99.3147 

2 [8, 16] 32 6 0.0001 99.2805 

1 [256] 64 6 0.0001 99.2633 

3 [8, 16, 32] 32 5 0.0001 99.2633 

3 [8, 16, 32] 32 3 0.0001 99.2462 

3 [8, 16, 32] 32 2 0.0001 99.2291 

6 [8, 16, 32, 64, 128, 256] 64 2 0.0001 99.2291 

6 [256, 128, 64, 32, 16, 8] 32 4 0.001 99.2119 

5 [8, 16, 32, 64, 128] 32 2 0.0001 99.2119 

5 [256, 128, 64, 32, 16] 32 6 0.001 99.1948 

1 [256] 64 7 0.0001 99.1777 

5 [8, 16, 32, 64, 128] 32 5 0.001 99.1605 

6 [8, 16, 32, 64, 128, 256] 32 3 0.001 99.1605 

3 [8, 16, 32] 64 5 0.0001 99.1263 

6 [8, 16, 32, 64, 128, 256] 64 3 0.0001 99.1263 

2 [8, 16] 32 3 0.0001 99.0920 
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2 [8, 16] 64 3 0.0001 99.0920 

1 [256] 32 4 0.0001 99.0749 

6 [256, 128, 64, 32, 16, 8] 64 2 0.0001 99.0749 

5 [8, 16, 32, 64, 128] 64 6 0.001 99.0577 

2 [8, 16] 32 5 0.0001 99.0577 

1 [256] 64 2 0.0001 99.0577 

5 [256, 128, 64, 32, 16] 32 3 0.001 99.0577 

1 [8] 64 6 0.001 99.0406 

2 [8, 16] 32 7 0.0001 99.0235 

4 [8, 16, 32, 64] 64 2 0.0001 99.0063 

6 [8, 16, 32, 64, 128, 256] 32 7 0.001 98.9721 

5 [256, 128, 64, 32, 16] 64 3 0.001 98.9207 

3 [8, 16, 32] 64 3 0.0001 98.9207 

1 [256] 64 4 0.0001 98.8008 

3 [8, 16, 32] 64 4 0.0001 98.8008 

2 [8, 16] 64 5 0.0001 98.7836 

2 [8, 16] 32 2 0.0001 98.7665 

1 [8] 32 2 0.0001 98.7665 

2 [8, 16] 64 7 0.0001 98.7151 

2 [8, 16] 64 6 0.0001 98.5780 

1 [8] 32 4 0.0001 98.5609 

2 [8, 16] 64 2 0.0001 98.3553 

3 [8, 16, 32] 64 2 0.0001 98.3553 

1 [8] 32 5 0.0001 98.3382 

1 [8] 64 6 0.0001 98.3211 

1 [8] 32 6 0.0001 98.2183 

1 [8] 32 3 0.0001 98.0983 

1 [8] 64 7 0.0001 97.9270 

2 [8, 16] 64 4 0.0001 97.9099 

1 [8] 64 4 0.0001 97.7386 

1 [8] 64 3 0.0001 97.7214 

1 [8] 32 7 0.0001 97.6872 

1 [8] 64 2 0.0001 97.4302 

1 [8] 64 5 0.0001 97.2417 
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