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Abstract Assessing the stability of stopes is essen-

tial in open stopemine design as unstable hangingwalls

and footwalls lead to sloughing, unplanned stope

dilution, and safety concerns compromising the prof-

itability of the mine. Over the past few decades,

numerous empirical tools have been developed to

dimension open stope in connection with its stability,

using the stability graph method. However, one of the

principal limitations of the stability graph method is to

objectively determine the boundary of the stability

zones, and gain a clear probabilistic interpretation of

the graph. To overcome this issue, this paper aims to

explore the feasibility of artificial neural network

(ANN) based classifiers for the design of open stopes.

A stope stability database was compiled and included

the stope dimensions, rock mass properties, and the

stope stability conditions. The main parameters

included the modified stability number (N’), and the

stope stability conditions (stable, unstable, and failed),

and hydraulic radius (HR). A feed-forward neural

network (FFNN) classifier containing two hidden

layers (110 neurons each) was employed to identify

the stope stability conditions. Overall, the outcome of

the analysis showed good agreement with the field

data; most stope surfaces were correctly predicted

with an average accuracy of 91%. This shows an

improvement over using the existing stability graph

method. In addition, for a better interpretation of the

results, the associated probability of occurrence of

stable, unstable, or caved stope was determined and

shown in iso-probability contour charts which were

compared with the stability graph. The proposed

FFNN-based classifier outperformed the conventional

stability graph method in terms of accuracy and better

prabablistic interpretation. It is suggested that the

classifier could be a reliable tool that can complement

the conventional stability graph for the design of open

stopes.

Keywords Open stope stability � Hydraulic radius �
ANN classifiers � Stability graph � Hangingwall �
Footwall

1 Introduction

In open stope mining, the stability of the stopes

influence the productivity of the mine as instabilities in

the stope walls including blasting overbreak,
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sloughing, caving or failure of the hangingwalls may

lead to delays in production, a high cost of mainte-

nance, high dilution, destruction to machinery, and

compromise the safety of the personnel. One of the

charateristics of the open stope mining methods is the

high productivity where large stopes are developed

with a high level of mechanization. However, stopes

of large dimensions can be associated with large

volume of overbreak, reducing stability and ultimately

leading to poor profitability if the practicable maxi-

mum dimensions are overlooked (Pakalnis 2015;

Pakalnis et al. 1995). While dimensioning the open

stopes, it is necessary to account for influencing

factors such as induced stress, rock mass mechanical

properties, stope geometries, operational constraints,

and geological features. Nevertheless, it may not be

always practical to consider each of these factors when

designing the stopes. This has obviously contributed to

the development of many design tools.

As matter of fact, over the past few decades several

tools or methods have been successfully proposed for

the design of open stope. These include numerical

modelling (Heidarzadeh et al. 2018; Henning and

Mitri 2007), analytical methods (Diederichs and

Kaiser 1999), back analysis of stope performance data

in situ measurements (Cepuritis et al. 2010), and

empirical tools (Clark 1998; Mathews et al. 1981;

Mawdesley et al. 2001; Sunwoo et al. 2006; Suorineni

2010; Vallejos et al. 2017). Each has their advantages

and limitations. For example, the analycal methods

which rely on the classical analysis of instability

around excavtions based on stress criteria for stress

driven failure and on limit equilibrium analysis for

structurally controlled failure, cannot be always

realistic due to the different assumptions involved in

these analyses. While numerical modeling is a conve-

nient tool to simulate the mechanical response of the

stopes, it may require a lot of modelling effort. This is

especially true for realistic simulation of complex

conditions since the mechanisms involved in the

physical process of open stope mining would neces-

sitate a thorough knowledge of the modelling theory.

Besides reliable rock mass properties data that must be

used as imputs for the simulation can be difficult to

obtain before the stope development. These limita-

tions make the empirical methods more desirable. The

stability graph method and its variants appear to be the

most commonly used in practice due to their simplicity

(Diederichs and Kaiser 1996; Mawdesley et al. 2001;

Zhalel et al. 2020).

Nevertheless, a major downside of the stability

graph is the subjectivity in the stability’s determina-

tion zones, which represents a challenge for a less

experienced user of the stability graph method. Hence,

this inherent subjectivity has resulted in the proposi-

tion of several stability graphs with varying stability

zones. This variety is due to the fact that the rock mass

sloughing and instabilities around mine stope involve

several factors that unfortunately can not all be

considered in the stability graph method, which was

originally introduced as a non-rigourous but handy

method (Stewart and Forsyth 1995). Hence, to reduce

the subjectivity associated with the determination of

the design zones of the graph, it seems very appropri-

ate to interprete the graph in terms of probability.

Diederichs and Kaiser (1996) through probabilitic

simulation with the consideration of the variability of

the imputs of the stability graph, indentified the

isoprobability contours of the design limits to account

for the uncertainties inherent in the design process.

This enabled them to determine the probabilities of

stability, failure, and major failure for a given design.

Since then, there have been various attempts to

remove or at least reduce the subjectivity in the

delineation of the zones by generating isoprobability

contours using logistic regression techniques (Capes

2009;Mawdesley et al. 2001; Zhalel et al. 2020) and as

well as through Bayesian discriminant analysis

(Suorineni et al. 2001).

Similarly, the objective of this study is to explore

the feasibility of using artificial neural network (ANN)

classifiers for the design of open stopes. This is

justified by the need for a continual improvement and

optimization of the use of the empirical stability graph

method in the mining industry. Stope performance

data have become increasily available and ANN is a

useful tool to that can enable to evaluate the stope

walls geo-mechanical responses on the basis of

available data. The literature reveals a number of

recent applications of artificial intelligence techniques

related to stope design and underground excavation

excavations. These include for instance, the design of

underground excavation spans using artificial neural

network (Wang et al. 2002); hard-rock stope span

design in entry-type excavations using learning clas-

sifiers (Garcı́a-Gonzalo et al. 2016); open stope

stability analysis using the random forest algorithm

123

678 Geotech Geol Eng (2022) 40:677–696



(Qi et al. 2018a); prediction of stope stability based on

several machine learning algorithms (Qi et al.

2018b, 2018c); open stope stability assessment

through artificial intelligence (Santos et al. 2020);

and mine stope performance assessment through

classifers (Adoko et al. 2019). While in these studies,

the focus was mainly on the development of models

capable of achieveing a high prediction capability,

very limited effort was dedicated to the practical

implementation of the ANN for open stope design.

Thereofore, in this paper ANN classifiers are used to

bridge the existing gaps, and new stability charts will

be developed on the basis of the network output,

without any hard stability delineation (as commonly

used in the conventional stability graph method).

2 Brief Review of the Stability Graph Method

Introduced by Mathews et al. (1981), the stability

graph method uses the concept of a stope stability

number (N) which incorporates rockmass quality and

induced stress, to evaluate the critical dimensions of

the stope. This is expressed in terms of the hydraulic

radii (HR) of the roof and walls, that ensure stability of

the stope. Since the establishment of the original

stability graph, several contributions including the

modification of the adjustment factors of the stability

number, expanding the stability database and extend-

ing the stability graph to other mining methods, were

made in form of either a qualitative or quatitative

stability graph with the purpose of improving the

method and reducing the subjectivity in the determi-

nation of the stability zones (Capes 2009; Clark 1998;

Mathews et al. 1981; Mawdesley et al. 2001; Stewart

and Trueman 2004; Stewart and Forsyth 1995; Valle-

jos et al. 2016). As a result, the literature counts today

many versions of stability graphs. Among these, the

original stability graph (Mathews et al. 1981) and the

modified stability graph (Potvin 1988) are the most

widely adopted graphs for a qualitative assessement of

stope stability, while the Equivalent linear overbreak

or slough (ELOS) stability graph is used to quantify

dilution in stopes, hence the quantitative stability

graph (Clark and Pakalnis, 1997). However, the ELOS

graph was devised to apply to narrow vein deposits

and relatively smaller stopes (Clark 1998).

In the stability graph method two main parameters

have to be calculated: the stability number N and the

hydraulic radius HR. The stability numberN is defined

in Eq. 1 as:

N ¼ Q0 � A� B� C ð1Þ

where A is the rock stress factor, B is the joint

orientation adjustment factor, and C is the gravity

adjustment. These factors are determined using Fig. 2.

Q’ characterizes the rock mass quality and defined in

Eq. 2 as:

Q0 ¼ RQD

Jn
� Jr
Ja

ð2Þ

where RQD is rock quality designation, Jn is joint set

number, Jr is joint roughness number, and Ja is joint

alteration number.

Hydraulic radius (HR) refers to the ratio of the stope

face area to the stope face perimeter as shown in Eq. 3:

HR ¼ Area (m2)

Perimeter (m)
ð3Þ

Some of the versions of stability graphs are shown

in Fig. 1a–c. The use of these chart is quite simple. A

new stope data point given by its N value is

superimposed on the chart to determine the corresond-

ing HR value of stope surface (roof or walls) that falls

within the stability zone (i.e. ensuring stability)

(Fig. 1a–c).

3 Methods

3.1 Neural Network Based Classifiers

Artificial neural networks (ANNs) are simulation tools

that can detect complex relations such as patterns,

correlation, or clusters that exist in a sample data.

They do this by mimicking cognitive processes of the

human brain through several layers of input and output

sample data. The ANN is comprised of compactly

interconnected neurons that forms the basic processing

units of the network. Hence, hefty analogous compu-

tations are executed by the neurons. ANNs can be

grouped as feed-forward, back-propagation, dynamic,

and counter-propagation networks depending on the

training algorithm. A neuron accepts an n input data,

and processes the data to present a single output

expressed in Eq. 4 as:
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Fig.1 a The original

stability graph (Mathews

et al. 1981) b Modified

stability graph (Potvin 1988)

c Extended stability graph

after Mawdesley et al.

(2001)
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y ¼ f
Xn

i¼1

wixi þ h

 !
ð4Þ

where f ,wi,xi and h represents the values of the

activation function of the neuron, the ith weight, the

ith input and the bias of the neuron respectively.

Equation 4 is simply rewritten as seen in Eq. 5

y ¼ f wxþ bð Þ ð5Þ

where the input vector is x which takes the form

n� 1;is bias vector and is the output vector with both

being1 � 1; the weight matrix w is1� n and the

activation function represented by f, is a1� 1 vector.

Each of the network layers has a particular function

as either an input layer, hidden layers, and output

layer. A layer possesses at least two neurons. There are

several kinds of network which are commonly clas-

sified based on the network configuration. The feed-

forward neural network (FFNN), is a type of ANN

which does not require feedback element. An illustra-

tion of a typical FFNN structure is provided in Fig. 3.

The inputs are established and transmitted forward

through all the subsequent layers to obtain the ultimate

outputs. The FFNN can equitably approximate any

function as recommended by the literature (Engel-

brecht 2007). During the beginning of the network

training process, initial values of the weights and

biases are randomnly assigned. Later, these biases and

weights are further attuned to comparing the target and

output values until a point where the network outputs

Fig. 2 Adjustment factors of the stability graph after Mathews et al. (1981)

Fig. 3 FFNN schematic diagram
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correspond to the targets. The quick performance

indicator commonly used here, is the sum of squared

errors. Meanwhile to minimize the errors, the Leven-

berg–Marquardt algorithm is used (Engelbrecht

2007). However, ANNs have been criticized for not

performing well when there is a need for extrapolation

or when the range surpasses that of the database

employed in the calibration of the network. In

addition, the training data experiences over-fitting,

where the training dataset has been memorized by the

network, and hence, the network fails to properly

generalize the learned relationship between input and

target (Demuth and Beale 2002).

According to Engelbrecht (2007), the feed-forward

network (FFNN) can be used as a classifier and can be

also employed to fit data as it can fairly estimate any

kind of function.

Depending on the feature of the patterns to be

recognized in a classification task, the structures to be

used are countless (Lam et al. 2014). The basic

principle of these classifiers is their input pattern

which is presented as xðkÞ ¼ x1ðkÞ; x2ðkÞ; :::; xnðkÞf g
and is the featured vector of an object of interest being

identified. This allows the feature patterns to be

grouped into classes of N through a supervised

learning. As an illustration of the principle, for

example, in the one-against-all classifier, which is

characterized by a multiple-input–single-output,

FFNN which is fully connected the x(k) is then

processed as input and correlated to the target to

generate a single value yðkÞ ¼
y1ðkÞ; y2ðkÞ; :::; ynðkÞf g as output. The target output

ydðkÞ ¼ yd1ðkÞ; yd2ðkÞ; :::; ydnðkÞ
� �

yd(k) takes value of

Ci ¼ ci1; ci2; :::; cinf g; i ¼ 1; :::N. Each time the input

feature pattern x(k) corresponds to the class i. A

training algorithm allows the output yðkÞ to be in the

maximum proximity to ydðkÞ under the class, where

x(k) corresponds to. The output class j is being

represented by:

j ¼ argmin
i

jyðkÞ � Cij; i 2 f1; :::Ngf g ð6Þ

where |.| refers to the Euclidean norm. In case the set

j comprises over one element, then the element

emerging first in the set is then recognized as the

class label.

3.2 Data Source and Data Description

A total of 225 stope case histories were recorded over

three months across three different underground mines

in Ghana, West Africa. Of the 225 case histories, 132

of them were obtained from Paboase underground

mine of Kinross Chirano Gold Mine Limited, and 76

cases were recorded from B, an undisclosed mine

because of confidentiality agreement undertaken cov-

ering the case histories. Hence the company’s identity

is represented by B, while the remaining 17 cases were

obtained from AngloGold Ashanti, Obuasi.

The orebody from AngloGold Ashanti mine,

Obuasi comprises mainly sulphides and some per-

centage of quartz material. It is characterized by cross

joints forming rock blocks at the back of the excava-

tion. Foliation planes are present and they are parallel

to the walls of the excavation. The ground condition is

good. The average width of the the orebody in the

study range between 4 and 21 m with the dip ranging

from 60 to 87�. The rock mass quality of the main rock

units is generally fairly good with Q’ in the range of

0.97–71. The rock mass of Paboase and Mine B

comprise of strong tonalite, quartz dolerite, and

dolerite (footwall, orebody, and hanging wall rock

masses), and are classed as good to very good rock

mass quality with similar rock mass properties.

Because of silicification of the rockmass, the orebody

has high intact rock strength. The footwall and

hanging wall intact rock strength is slightly lower

than that of the orebody due to the influence of shears

next to the orebody contact. All domains contain two

major joint sets plus several minor random joint sets

which are moderate to widely spaced joints.

The stope data were obtained from the block and

stope notes and other geotechnical reports of the

respective companies. The actual hydraulic radii of the

stopes were verified using the cavity monitoring

system data and mine planning and design files, while

the stability number corresponding to each stope

surface (N’) was determined using the geotechnical

database of the various mines which included the stope

performance. Meanwhile the adjustment factors to

calculate N’ were determined per Sect. 2.1. A thor-

ough review of the geotechnical databases was

undertaken to eliminate outliers and to recover some

missing data. The 225 stope surface cases were

grouped as stable (102 cases), unstable (85 cases),

and caved (38 cases) representing 45%, 38% and 17%
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of the database, respectively. A data sample and a

statistical description of the employed dataset are

given in Table 1 and Table 2, respectively. Mean-

while, the whole data is provided in Appendix 1

(supplementary material).

4 Results

4.1 Model Configuration

The stope stability dataset (225 cases) that have been

compiled for the research was randomly split into

three datasets; the training, validation, and testing

datasets consisting of 70%, 15%, and 15% of the data,

respectively, as commonly suggested (Demuth and

Beale 2002; Rafiai and Moosavi 2012). The vectors

(1,0,0), (0,1,0) and (0,0,1) were assigned to the

dependent parameters to be classified (i.e. stope

surface stability condtions): stable (Class 1), unsta-

ble (Class 2), and caved (Class 3), respectively. The

computations were done using the the MATLAB

software (Neural Network toolbox). To arrive at a

decisive result, there was the need to identify the

optimal network architecture. Hence, an iterative

series of trials were performed using 1 to 3 hidden

layers while varying the number of neurons to a

maximum of 200 in each case. Logsig in Eq. (7) and

softmax in Eq. (8) transfer functions were applied to

the the hidden and output layers, respectively.

log sigðnÞ ¼ 1

1þ e�n
ð7Þ

softmaxðnÞ ¼ enP
en

ð8Þ

The performance of the networks was evaluated

using the cross-entropy algorithm as illustrated in

(Fig. 4), with the best validation performance during

the experiments being 0.14 at epoch 76. A summary of

some of the trials is provided in Table 3 where the

network sizes, the validation errors, and the confusion

values are shown. It can be seen that the 2-hidden layer

FFNN (highlighted in bold) with 110 neurons in each

layer was the most appropriate. However, the network

with one hidden layer (also highlighted in bold)

containing 36 neurons yielded lowest validation error;

but inspection of the training error showed quite large

value which means the network has not been properly

trained. Hence this network was not selected as the

optimum of the experiments.

Table 1 Data sample

Stope surfaces Orebody width (m) HR (m) Q’ A B C N’ Stope condition

Back 10.7 3.73 4.70 1.00 1.00 1.00 4.70 Unstable

Hanging Wall 12.00 7.89 3.81 0.60 0.28 7.06 4.52 Caved

Hanging Wall 6.40 8.84 1.50 1.00 0.50 8.00 6.00 Caved

Foot Wall 6.40 8.84 4.70 1.00 0.80 8.00 30.08 Unstable

Back 5.24 2.30 4.70 1.00 1.00 1.00 4.70 Stable

Vertical End 5.24 2.23 4.70 1.00 1.00 8.00 37.60 Stable

Hanging Wall 5.24 8.38 0.20 1.00 0.50 8.00 0.80 Caved

Foot Wall 5.24 8.38 4.70 1.00 0.80 8.00 30.08 Unstable

Back 6.00 2.80 4.70 1.00 1.00 1.00 4.70 Stable

Vertical End 6.00 2.50 4.70 1.00 1.00 8.00 37.60 Stable

Table 2 Statistical description of the dataset

Parameters HR Q’ N’ Stope condition

Unit m % – Logic

Max 19.22 71.25 570.00 Stable

Min 1.90 0.10 0.40 Caved

Mean 6.66 11.63 28.07 –

St. dev 2.88 14.56 68.52 –
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4.2 Classification Results and Classification

Evaluation

The confusion matrix of the model was obtained and

the results of the classifications are summarized in

Tables 4, 5. In Table 4. It can be seen that 96 cases of

stable stopes were properly classified; 6 cases were

misclassified as unstable; no cases were classified as

caved. The overall percentage of correct classification

is 90.7% which corresponds to a confusion (misclas-

sification) of 9.3%. This value indicates the fraction of

samples misclassified during the modelling. It was

found that for the training, the validation, and the

testing, the specifc confusion values were 8.9%, 8.8%

and 11.8% respectively. The overall confusion value

was 9.3%. These values are relatively low in compar-

ison with some existing results (see section). This

means if 100 new cases of stope surface conditions

were to be presented to the FFNN-classifer, 10 cases

would likely be misclassified. No stable cases will be

misclassified as caved (and vice versa) which is very

useful. Hence, the FFNN-classifier yielded high

classification accuracy in recognizing the stope wall

stability conditions. Nevertheless, it should be noted
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Fig. 4 a Distribution of the
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Table 3 Summary of the FFNN experiments

Neuron number in hidden

layer

Validation

error

Confusion

value

Neuron number in hidden

layers

Validation

error

Confusion

value

8 0.39 0.27 10–10 0.29 0.17

10 0.26 0.16 20–20 0.20 0.10

12 0.21 0.14 30–30 0.19 0.12

14 0.38 0.30 60–60 0.29 0.34

16 0.46 0.32 80–80 0.28 0.17

18 0.18 0.14 100–100 0.21 0.13

20 0.29 0.31 110–110 0.14 0.09

30 0.49 0.29 112–112 0.24 0.46

36 0.12 0.11 120–120 0.23 0.14

50 0.38 0.20 160–160 0.35 0.20

60 0.20 0.16 200–200 0.26 0.20

70 0.36 0.26 10–10–10 0.14 0.13

80 0.31 0.16 20–20–20 0.34 0.16

90 0.39 0.19 100–100–100 0.31 0.13

100 0.30 0.16 160–160–160 0.32 0.21

110 0.31 0.20 180–180–180 0.25 0.14

150 0.28 0.14 190–190–190 0.17 0.11

200 0.70 0.23 200–200–200 0.20 0.12
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that cross validation was not performed on the

validation data since the data were already randomly

split into training, testing, and validation datasets. This

procedure is commonly used when cross validation is

not implemented (Adoko et al. 2020).

The classification performance of the FFNN clas-

sification is evaluated using the classification indices

such as the accuracy, sensitivity (true positive rate),

and specificity (false positive rate) as they represent an

indicator of the quality of the classification. These can

be calculated using Eqs.9–11 where, Fp, Tp,Fn Tn, and

stand for: false positive, true positive, false negative,

and true negative, respectively.

Accuracy ¼ Tp þ Tn
Tp þ Tn þ Fp þ Fn

ð9Þ

Sensitivity ¼ Tp
Tp þ Fn

ð10Þ

Specificity ¼ Tn
Tn þ Fp

ð11Þ

Table 6 provides a summary of the performance of

the FFNN-classifier. It shows that the average accu-

racy of the classification (as defined in Eq. 9) is

93.78%. The sensitivity of caved cases of stope

condition is 84.21%, being the lowest sensitivity

values (true positive rate). This also indicates that

caved cases are likely to be more misclassified than

other cases (Fig. 5).

The receiver operating characteristic (ROC) curve

(another indicator of the quality of classifiers) of the

classification is plotted in Fig. 6. The ROC uses a

specific value of the outputs (threshold) to identify the

class to be recognized (i.e. stable, unstable or caved

stope walls). Two quantities are evaluated in the

curves: false positive rates and true positive rates.

When the ROC curves are located on the top left

corner and further from the diagonal, the better the

performance of the classification. Conversely, when

the curve gets closer to the diagonal, a low classifi-

cation performance is observed. The results comfirm

that a very good classification was obtained as the

three curves are located on the top left corner.

Moreover, the curve corresponding to stable stope

(class 1 in blue) is above the other two, which indicates

that stable stope surfaces have better performance

(highest true positive and lowest false positive rates).

Meanwhile, unstable stope surfaces (class 2) have the

lowest true positive rate and caved stope surfaces

(class 3) have the highest false positive rate. This is in

unison with the classification performance from

Table 6.

4.3 Comparison of the Ffnn Outputs

with the Stability Graphs

The output vectors of the proposed FFNN are

employed to plot probability contours and compared

to the conventional stability graphs. A sample of the

outputs is provided in Table 7. As seen, the first raw of

Table 7 shows an output vector [0.0, 0.59, 0.41]; this

corresponds to a correct prediction of the target vector

[0, 1, 0] which represents unstable stope walls. Next,

thin-plate spline interpolant were used to fit the

maximum component of the output vectors in Matlab,

and excellent fitting accuracy was obtained (with sum

of square errors almost zero and R2 equal to 1).

The contours of the output values are provided in

Figs.7a–c. The color code indicates the probability of

Table 4 Overall

classification results
Observed Predicted Percent Correct

Stable Unstable Caved

Stable 96 6 0 94.1

Unstable 6 76 3 86.4

Caved 0 6 32 91.4

Overall percentage per class 94.1% 89.4% 84.2% 90.7

Table 5 Positive and Negative counts

Fn Fp Tp Tn

Stable 6 6 96 117

Unstable 9 12 76 128

Caved 6 3 32 184
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the occurrence of the stope surface conditions. Basi-

cally, the transfer function softmax (see Eq. (8) that

has been used in the modelling, returns values in a

range of [0,1] representing the probabilities range of

the output for obtaining each class of stopes which is

very useful.

Figure 7a shows the isoprobability contours for

stable stope walls. It can be seen that a probability of

Table 6 Classification

performance
Performance Acurracy (%) Sensitivity (%) Specificity (%)

Stable 94.67 94.12 95.12

Unstable 90.67 89.41 91.43

Caved 96.00 84.21 98.40

Average 93.78 89.25 94.98

0 20 40 60 80
10

-1

10
0

10
1

Best Validation Performance is 0.14382 at epoch 76

C
ro

ss
-E

nt
ro

py
  (

cr
os

se
nt

ro
py

)

82 Epochs

Train

Validation

Test

Best

Fig. 5 Network performance (errors)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Training ROC

Class 1
Class 2
Class 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Validation ROC

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

Test ROC

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

All ROC

Fig. 6 ROC graphs

Table 7 Sample of the input, target, and output data of the

FFNN

Inputs Targets Output vetors

HR(m) N’ Actual Vectors

7.37 6.70 Unstable 0 1 0 0.00 0.59 0.41

10.26 6.00 Unstable 0 1 0 0.19 0.57 0.24

7.16 4.11 Caved 0 0 1 0.00 0.28 0.72

2.71 37.60 Stable 1 0 0 1.00 0.00 0.00

7.27 6.30 Caved 0 0 1 0.00 0.56 0.44

4.20 13.44 Stable 1 0 0 0.96 0.04 0.00

5.89 15.77 Stable 1 0 0 0.86 0.14 0.00

9.08 30.08 Unstable 0 1 0 0.12 0.88 0.00

9.38 0.40 Caved 0 0 1 0.00 0.03 0.97

7.50 30.08 Stable 1 0 0 0.88 0.12 0.00

8.49 11.42 Unstable 0 1 0 0.00 0.55 0.44

8.84 30.08 Unstable 0 1 0 0.08 0.92 0.00

8.49 4.67 Caved 0 0 1 0.00 0.02 0.98

10.65 30.08 Stable 1 0 0 0.17 0.83 0.00

7.32 25.93 Stable 1 0 0 0.85 0.15 0.00

7.99 1.92 Caved 0 0 1 0.00 0.01 0.99

3.18 37.60 Stable 1 0 0 1.00 0.00 0.00

5.00 13.20 Stable 1 0 0 0.97 0.03 0.00

9.08 10.80 Unstable 0 1 0 0.04 0.59 0.37

10.38 52.00 Stable 1 0 0 0.09 0.91 0.00

6.56 21.60 Stable 1 0 0 0.94 0.06 0.00

4.34 66.40 Stable 1 0 0 1.00 0.00 0.00

4.29 37.60 Stable 1 0 0 1.00 0.00 0.00

3.61 4.70 Stable 1 0 0 0.73 0.27 0.00

7.50 9.84 Unstable 0 1 0 0.00 0.91 0.09

7.37 3.52 Caved 0 0 1 0.00 0.18 0.82

5.56 35.34 Stable 1 0 0 1.00 0.00 0.00

6.00 6.00 Unstable 0 1 0 0.01 0.97 0.01

3.49 37.60 Stable 1 0 0 1.00 0.00 0.00
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more than 0.5 (blue, green, and yellow areas) that

would correspond to stable stope walls are displayed

in the blue, green, and yellow areas. Stope walls with

N’ = 500 are likely to be stable regardless of the HR

values; the same could be said for when N’\ 300 and

HR\ 5 m.

In Fig. 8 the stability graph of the data is shown.

The stable and the caved boundary lines were deter-

mined according to Mawdesley et al. (2001) as N 0 ¼
0:281:9HR and N 0 ¼ 0:061:9HR, respectively, where

logictic regression was used.

Next, a confusion matrix of the graph was estab-

lished by simply counting the number of data points

correctly classified to stope surface conditions as

stable (data point above the stable boundary); unsta-

ble (data point between the two boundaries); and

caved (data point below caved boundary line). The

results are summarized in Tables 8, 9.

The misclassification is almost 40% and much

lower performance indicators were obtained. This

indicates that the proposed FFNN-classifer outper-

formed the conventional stability graph. This is also

true when comparing the results of the present study to

those of some previous studies (see Table 10). It

should be noted that in Table 10 the confusion values

were obtaind based on two categories of the stability

conditions (stable and unstable); here unstable include

failed and caved surfaces. From Table 4, the new

confusion value is has been recalculated as 6%, a bit

higher than the previous situation when three cate-

gories were considered, which makes sense. More-

over, with the classifer model, there no need for any

hard boundary of the stability condition zones. The

probabilistic aspect of classifacation becomes com-

pulsory, more intuitive, and straightforward. For

example, when a stope wall with N’ = 200 is

Fig. 7 a 2D Isoprobability contour for stable stope walls. b 2D

Isoprobability contour for unstable stope walls. c 2D Isoprob-

ability contour for caved stope walls Fig. 8 Stability graph of the data
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dimensioned in such a way its hydraulic radius (HR) is

10 m, it has about a 50% chance of being stable, a 40%

chance of being unstable, and a 10% chance to cave

according to the isoprobability contour maps (Figs.7a–

c). On the other hand, with the stability graph (Fig. 8),

the stope wall will be classifield as stable with an

unknown probability of occurrence. These data high-

light one of the weaknesses of the conventional

stability graph.

5 Discussions

Despite the high accuracy of the classification as

revealed by these results, the outputs demonstrate that

the FFNN-classifier does not identify caved stope

cases very well as 6 out of 38 cases (i.e. 16%) were

misclassified as unstable. If new data (assuming that

the new dataset is statistically identical), were to be

evaluated by the proposed FFNN-classifier, there

would likely be 16 out of 100 misclassified unsta-

ble cases. This still outperforms the stability graph

method (30 out 38 cases of caved stopes were

classified as unstable; and 1 was even classified as

stable). Nonetheless, the classifier can distinguish very

well between the stable and caved cases (zero cases of

caved were misclassified as stable cases). Hence, this

is the most essential capability of the proposed FFNN-

classifier. It is a very useful approach to classifying the

stability of stope faces along with a probabilistic

interpretation of the network outputs in the form of

charts.

The results suggest that the conventional stability

graph is not a good predictor of stope surface stability.

Usually, in order to enhance the performance of the

stability graph, outliers are eliminated from the data.

This implies that deep knowledge of the site condi-

tions is important to properly identify outliers. For

example, the stope surface corresponding to the

datapoint (N’ = 437; HR = 5.43 m; unstable) could

be an outlier since the instability could be due to some

operational constraints (blasting effects) or local

geological conditions. Even if this outlier was

removed from the database, there will not be signif-

icant improvement of the stability graph method.

Conversely, when the outlier was removed and the

Table 8 Classification

results based on the stability

graph

Observed Predicted Percent Correct

Stable Unstable Caved

Stable 96 6 0 94.1%

Unstable 40 45 0 52.9%

Caved 1 30 7 18.4%

Overall percentage per class 70.1% 55.5% 100% 65.77%

Table 9 Classification

performance
Performance Acurracy (%) Sensitivity (%) Specificity (%)

Stable 79.11 94.12 66.67

Unstable 66.22 52.94 74.29

Caved 86.22 18.42 100.00

Average 77.19 55.16 80.32

Table 10 Comparison of the FFNN with other studies

Method Confusion value (%)

Confusion matrix of the conventional stability graph (Potvin 1988; Suorineni et al. 2001) 16–34

Random forest (Qi et al. 2018a) 14–18

Several machine learning algorithms (Qi et al. 2018b) 22–34

Logistic regression (Stewart and Trueman 2004) 10–22

Feedforward Neural Network Classifier (This study) 6
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FFNN output plot showed significant changes, as

given in Fig. 9, in short, the FFNN-classifer could be

considered as an improved version of the stability

graph as they use/share the same imputs.

Some of the limitations linked to this study include

the quality, the range, and the size of the data used

because this ANN-classifier performance depends

heavily on the input data. Imbalance in the dataset

results in the model prediction ability to be biased

toward the most representative stable class. In this

study, 45%, 38%, and 17% of stable, unstable, and

caved cases of stope faces respectively. In order to use

the proposed model to assess fresh cases of stope

stability, it is recommended that new data be of similar

proportion for optimal performance. Hence, this could

bias the inputs and prediction ability of the FFNN-

classifier. Therefore, sound engineering judgment

must follow the implementation of this classifier.

Another limitation is that the proposed model does not

quantify the uncertainty related to the input parame-

ters. So it should not be used for that purpose. In

addition, the results of the study imply that the model

is highly site-sensitive. In other words, the results will

vary depending on the specific site (with specific data

range) where the stopes are excavated. However, some

reseachers have argured that site-specificity has little

effect on the stope surface stability assessment using

the stability graph method (Mawdesley et al. 2001).

The FFNN model has the capability to accommodate

more input parameters. The whole parameters of the

database could be used to train the model without

necessarily using the concept of stability number and

hydraulic radius, and without any limitation of com-

putation capacity thanks to the current availability of

faster computers. Further studies could explore that

possibility, further enhancing the modeling of stope

surface stability conditions in open stope mining.

Finally, as a suggestion for practical use of this

method to evaluate the stability conditions of open

stope walls, users no not have develop their own

FFNN. The network may be recalibrated to reflect the

data range of the specific site. Once a new data point is

presented to the network, the network returns the

stability condition but also the probability as well.

This allows selecting the dimensions of the stope (i.e.

HR) that would reduce instabilities such as sloughing.

However, for those users who prefer using empirical

charts, they can use the porposed chart (Fig. 9) which

can be also considered as an enhanced version of the

stability graph for open stope design.

6 Conclusion

In this study, a stope wall stability classifier model was

proposed. Case histories of underground mine stope

surfaces (hangingwall, footwall, and back) stability

data were collected. The data included the geometry of

the stopes, the rock mass parameters, and stability

conditions of stopes (stable, unstable, and caved).

A FFNN-classifier having two hidden layers and 110

neurons in each layer is applied to identify each of the

the stability classes. The classification results showed

an excellent performance of the model. The FFNN-

classifier could distinguish each stope surface condi-

tion with high accuracy. The overall misclassification

was less than 10% while the conventional stability

graph methods yielded a misclassication of almost

40%. This indicates improvement over the conven-

tional stability graph method. In addition, probability

contour plots were established using the model output.

These plots offer a better interpretation of the model

results and provide the associated probability of

occurrence of stable, unstable, or caved stope surfaces.

It should be noted that the current results are

dependent on the range and dimension of the dataset

used; therefore generalisation can only be possible for

a similar dataset. The current results can help establish

more detailed stability charts for tunneling and mining

applications. Further studies may look into increasing
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Fig. 9 2D Isoprobability contour for stable stope walls with an

outlier removed
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the size of the database (and the range of the data), and

recalibrating the FFNN-classifier to achieve better

accuracy. Also, more parameters known to affect the

stope surface conditions could included in the FFNN-

model. It is recommended that the FFNN-classifier

could serve as a basis for underground excavation

design and the mitigation of stope stability problems

along with existing empirical charts, and adequate

engineering judgment.
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Appendix 1

See Table 11.

Table 11 Dataset

Mine

Portal

Level Orebody

Thickness

Stope

Surface

Surface

Dip (8)
Height

(m)

Span

(m)

Length

(m)

HR

(m)

Q’ A B C N’ Status

PAB 2000 11.9 Back 90 30.0 11.9 20.0 3.7 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2000 11.9 VerticalEnd 90 30.0 11.9 30.0 4.3 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 11.9 HangingWall 90 30.0 20.0 30.0 6.0 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2000 11.9 FootWall 90 30.0 20.0 30.0 6.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2000 22.3 Back 90 30.0 22.3 43.0 7.3 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2000 22.3 VerticalEnd 90 30.0 22.3 30.0 6.4 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 22.3 HangingWall 90 30.0 30.0 43.0 8.8 1.5 1.0 0.5 8.0 6.0 Caved

PAB 2000 22.3 FootWall 90 30.0 30.0 43.0 8.8 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2000 10.0 Back 90 30.0 10.0 20.0 3.3 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2000 10.0 VerticalEnd 90 30.0 10.0 30.0 3.8 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 10.0 HangingWall 90 30.0 20.0 30.0 6.0 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2000 10.0 FootWall 90 30.0 20.0 30.0 6.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2000 27.0 Back 90 30.0 27.0 26.0 6.6 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2000 27.0 VerticalEnd 90 30.0 27.0 30.0 7.1 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 27.0 HangingWall 90 30.0 26.0 30.0 7.0 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2000 27.0 FootWall 90 30.0 26.0 30.0 7.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2000 9.2 Back 90 30.0 9.2 20.0 3.2 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2000 9.2 VerticalEnd 90 30.0 9.2 30.0 3.5 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 9.2 HangingWall 90 30.0 20.0 30.0 6.0 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2000 9.2 FootWall 90 30.0 20.0 30.0 6.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2000 6.4 Back 90 30.0 6.4 43.0 2.8 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2000 6.4 VerticalEnd 90 30.0 6.4 30.0 2.6 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 6.4 HangingWall 90 30.0 30.0 43.0 8.8 1.5 1.0 0.5 8.0 6.0 Caved
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Table 11 continued

Mine

Portal

Level Orebody

Thickness

Stope

Surface

Surface

Dip (8)
Height

(m)

Span

(m)

Length

(m)

HR

(m)

Q’ A B C N’ Status

PAB 2000 6.4 FootWall 90 30.0 30.0 43.0 8.8 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2000 5.2 Back 90 30.0 5.2 38.0 2.3 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2000 5.2 VerticalEnd 90 30.0 5.2 30.0 2.2 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 5.2 HangingWall 90 30.0 30.0 38.0 8.4 0.2 1.0 0.5 8.0 0.8 Caved

PAB 2000 5.2 FootWall 90 30.0 30.0 38.0 8.4 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2000 6.0 Back 90 30.0 6.0 85.0 2.8 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2000 6.0 VerticalEnd 90 30.0 6.0 30.0 2.5 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2000 6.0 HangingWall 90 30.0 30.0 85.0 11.1 0.1 1.0 0.5 8.0 0.4 Caved

PAB 2000 6.0 FootWall 90 30.0 30.0 85.0 11.1 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2025 6.2 Back 90 30.0 6.2 30.2 2.6 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2025 6.2 VerticalEnd 90 30.0 6.2 22.0 2.4 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 6.2 HangingWall 90 30.0 22.0 30.2 6.4 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2025 6.2 FootWall 90 30.0 22.0 30.2 6.4 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2025 6.6 Back 90 30.0 6.6 20.0 2.5 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2025 6.6 VerticalEnd 90 30.0 6.6 30.0 2.7 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 6.6 HangingWall 90 30.0 20.0 30.0 6.0 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2025 6.6 FootWall 90 30.0 20.0 30.0 6.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2025 13.0 Back 90 30.0 13.0 10.0 2.8 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2025 13.0 VerticalEnd 90 30.0 13.0 30.0 4.5 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 13.0 HangingWall 90 30.0 10.0 30.0 3.8 2.7 1.0 0.5 8.0 10.8 Stable

PAB 2025 13.0 FootWall 90 30.0 10.0 30.0 3.8 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2025 19.0 Back 90 30.0 19.0 46.0 6.7 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2025 19.0 VerticalEnd 90 30.0 19.0 30.0 5.8 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 19.0 HangingWall 90 30.0 30.0 46.0 9.1 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2025 19.0 FootWall 90 30.0 30.0 46.0 9.1 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2025 7.2 Back 90 60.0 7.2 60.0 3.2 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2025 7.2 VerticalEnd 90 60.0 7.2 61.0 3.2 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 7.2 HangingWall 90 60.0 61.0 35.0 11.1 1.5 1.0 0.5 8.0 6.0 Caved

PAB 2025 7.2 FootWall 90 60.0 61.0 35.0 11.1 2.7 1.0 0.8 8.0 17.3 Caved

PAB 2025 8.1 Back 90 60.0 8.1 43.0 3.4 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2025 8.1 VerticalEnd 90 60.0 8.1 60.0 3.6 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 8.1 HangingWall 90 60.0 61.0 43.0 12.6 1.5 1.0 0.5 8.0 6.0 Caved

PAB 2025 8.1 FootWall 90 60.0 61.0 43.0 12.6 2.7 1.0 0.8 8.0 17.3 Caved

PAB 2025 7.0 Back 90 60.0 7.0 83.0 3.2 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2025 7.0 VerticalEnd 90 60.0 7.0 60.0 3.1 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2025 7.0 HangingWall 90 60.0 61.0 83.0 17.6 1.5 1.0 0.5 8.0 6.0 Caved

PAB 2025 7.0 FootWall 90 60.0 61.0 83.0 17.6 2.7 1.0 0.8 8.0 17.3 Caved

PAB 2050 9.5 Back 90 30.0 9.5 30.0 3.6 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2050 9.5 VerticalEnd 90 30.0 9.5 30.0 3.6 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2050 9.5 HangingWall 90 30.0 30.0 20.0 6.0 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2050 9.5 FootWall 90 30.0 30.0 20.0 6.0 2.7 1.0 0.8 8.0 17.3 Stable

PAB 2050 6.6 Back 90 30.0 6.6 20.0 2.5 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2050 6.6 VerticalEnd 90 30.0 6.6 30.0 2.7 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2050 6.6 HangingWall 90 30.0 30.0 20.0 6.0 2.7 1.0 0.5 8.0 10.8 Unstable
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Table 11 continued

Mine

Portal

Level Orebody

Thickness

Stope

Surface

Surface

Dip (8)
Height

(m)

Span

(m)

Length

(m)

HR

(m)

Q’ A B C N’ Status

PAB 2050 6.6 FootWall 90 30.0 30.0 20.0 6.0 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2050 5.6 Back 90 30.0 5.6 30.0 2.4 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2050 5.6 VerticalEnd 90 30.0 5.6 30.0 2.4 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2050 5.6 HangingWall 90 30.0 30.0 30.0 7.5 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2050 5.6 FootWall 90 30.0 30.0 30.0 7.5 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2100 9.3 Back 90 30.0 9.3 43.0 3.8 4.7 1.0 1.0 1.0 4.7 Stable

PAB 2100 9.3 VerticalEnd 90 30.0 9.3 30.0 3.6 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2100 9.3 HangingWall 90 30.0 30.0 43.0 8.8 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2100 9.3 FootWall 90 30.0 30.0 43.0 8.8 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2100 12.0 Back 90 30.0 12.0 35.0 4.5 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2100 12.0 VerticalEnd 90 30.0 12.0 30.0 4.3 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2100 12.0 HangingWall 90 30.0 30.0 35.0 8.1 1.5 1.0 0.5 8.0 6.0 Caved

PAB 2100 12.0 FootWall 90 30.0 30.0 35.0 8.1 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2100 18.0 Back 90 30.0 18.0 60.0 6.9 71.3 1.0 1.0 1.0 71.3 Stable

PAB 2100 18.0 VerticalEnd 90 30.0 18.0 30.0 5.6 71.3 1.0 1.0 8.0 570.0 Stable

PAB 2100 18.0 HangingWall 90 30.0 30.5 60.0 10.1 8.1 1.0 0.5 8.0 32.5 Unstable

PAB 2100 18.0 FootWall 90 30.0 30.5 60.0 10.1 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2100 17.0 Back 90 30.0 17.0 60.0 6.6 71.3 1.0 1.0 1.0 71.3 Stable

PAB 2100 17.0 VerticalEnd 90 30.0 17.0 30.0 5.4 71.3 1.0 1.0 8.0 570.0 Stable

PAB 2100 17.0 HangingWall 90 30.0 31.0 60.0 10.2 8.0 1.0 0.5 8.0 32.0 Unstable

PAB 2100 17.0 FootWall 90 30.0 31.0 60.0 10.2 4.5 1.0 0.8 8.0 28.8 Unstable

PAB 2100 18.0 Back 90 30.0 18.0 60.0 6.9 71.2 1.0 1.0 1.0 71.2 Stable

PAB 2100 18.0 VerticalEnd 90 30.0 18.0 30.0 5.6 71.2 1.0 1.0 8.0 569.6 Stable

PAB 2100 18.0 HangingWall 90 30.0 33.0 60.0 10.6 7.9 1.0 0.5 8.0 31.6 Unstable

PAB 2100 18.0 FootWall 90 30.0 33.0 60.0 10.6 4.7 1.0 0.8 8.0 30.1 Stable

PAB 2125 17.0 Back 90 30.0 17.0 65.0 6.7 71.3 1.0 1.0 1.0 71.3 Stable

PAB 2125 17.0 VerticalEnd 90 30.0 17.0 30.0 5.4 71.3 0.8 1.0 8.0 437.7 Unstable

PAB 2125 17.0 HangingWall 90 30.0 30.5 65.0 10.4 6.0 1.0 0.8 6.8 32.6 Unstable

PAB 2125 17.0 FootWall 90 30.0 30.5 65.0 10.4 13.0 1.0 0.5 8.0 52.0 Stable

PAB 2125 6.6 Back 90 30.0 6.6 52.0 2.9 3.0 1.0 1.0 1.0 3.0 Stable

PAB 2125 6.6 VerticalEnd 90 30.0 6.6 30.0 2.7 3.0 1.0 1.0 8.0 24.0 Stable

PAB 2125 6.6 HangingWall 78 30.0 30.0 52.0 9.5 6.0 0.5 0.5 6.8 10.2 Stable

PAB 2125 6.6 FootWall 90 30.0 30.0 52.0 9.5 13.0 0.5 0.5 8.0 26.0 Stable

PAB 2150 8.1 Back 90 30.0 8.1 52.0 3.5 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2150 8.1 VerticalEnd 90 30.0 8.1 30.0 3.2 4.7 1.0 1.0 8.0 37.6 Stable

PAB 2150 8.1 HangingWall 90 30.0 30.0 52.0 9.5 2.7 1.0 0.5 8.0 10.8 Caved

PAB 2150 8.1 FootWall 90 30.0 30.0 52.0 9.5 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2150 13.0 Back 90 30.0 13.0 50.0 5.2 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2150 13.0 VerticalEnd 90 30.0 13.0 30.0 4.5 8.3 1.0 1.0 8.0 66.4 Stable

PAB 2150 13.0 HangingWall 90 30.0 30.0 50.0 9.4 0.1 1.0 0.5 8.0 0.4 Caved

PAB 2150 13.0 FootWall 90 30.0 30.0 50.0 9.4 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2150 13.0 Back 90 30.0 13.0 50.0 5.2 4.7 1.0 1.0 1.0 4.7 Unstable

PAB 2150 13.0 VerticalEnd 90 30.0 13.0 30.0 4.5 8.3 1.0 1.0 8.0 66.4 Stable

PAB 2150 13.0 HangingWall 90 30.0 30.0 50.0 9.4 0.1 1.0 0.5 8.0 0.4 Caved
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Thickness

Stope

Surface
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Q’ A B C N’ Status

PAB 2150 13.0 FootWall 90 30.0 30.0 50.0 9.4 4.7 1.0 0.8 8.0 30.1 Unstable

PAB 2200 15.0 Back 90 107.0 15.0 60.0 6.0 2.7 1.0 1.0 8.0 21.6 Stable

PAB 2200 15.0 VerticalEnd 90 107.0 15.0 105.0 6.6 2.7 1.0 1.0 8.0 21.6 Stable

PAB 2200 15.0 HangingWall 90 107.0 107.0 60.0 19.2 8.3 1.0 0.5 8.0 33.2 Caved

PAB 2200 15.0 FootWall 90 107.0 107.0 60.0 19.2 4.7 1.0 0.8 8.0 30.1 Caved

PAB 2175 7.1 Back 90 30.0 7.1 65.0 3.2 2.7 1.0 1.0 1.0 2.7 Unstable

PAB 2175 7.1 VerticalEnd 90 30.0 7.1 30.0 2.9 2.7 1.0 1.0 8.0 21.6 Stable

PAB 2175 7.1 HangingWall 90 30.0 30.0 65.0 10.3 1.5 1.0 0.5 8.0 6.0 Unstable

PAB 2175 7.1 FootWall 90 30.0 30.0 65.0 10.3 4.7 1.0 0.8 8.0 30.1 Caved

PAB 2175 9.2 Back 90 30.0 9.2 55.0 3.9 8.3 1.0 1.0 1.0 8.3 Stable

PAB 2175 9.2 VerticalEnd 90 30.0 9.2 30.0 3.5 8.3 1.0 1.0 8.0 66.4 Stable

PAB 2175 9.2 HangingWall 90 30.0 30.0 55.0 9.7 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2175 9.2 FootWall 90 30.0 30.0 55.0 9.7 8.3 1.0 0.8 8.0 53.1 Unstable

PAB 2175 12.5 Back 90 30.0 12.5 40.0 4.8 8.3 1.0 1.0 1.0 8.3 Stable

PAB 2175 12.5 VerticalEnd 90 30.0 12.5 30.0 4.4 8.3 1.0 1.0 8.0 66.4 Stable

PAB 2175 12.5 HangingWall 90 30.0 30.0 40.0 8.6 2.7 1.0 0.5 8.0 10.8 Unstable

PAB 2175 12.5 FootWall 90 30.0 30.0 40.0 8.6 8.3 1.0 0.8 8.0 53.1 Stable

PAB 2175 12.2 Back 90 30.0 12.2 40.0 4.7 8.3 1.0 1.0 1.0 8.3 Stable

PAB 2175 12.2 VerticalEnd 90 30.0 12.2 30.0 4.3 8.3 1.0 1.0 8.0 66.4 Stable

PAB 2175 12.2 HangingWall 90 30.0 30.0 40.0 8.6 4.7 1.0 0.5 8.0 18.8 Unstable

PAB 2175 12.2 FootWall 90 30.0 30.0 40.0 8.6 2.7 1.0 0.8 8.0 17.3 Unstable

GAR 335L 10.2 FootWall 63 24.0 24.0 34.0 7.0 14.9 0.4 0.3 4.8 8.6 Caved

GAR 385L 6.0 FootWall 65 26.0 26.0 33.0 7.3 17.1 0.5 0.3 4.5 10.4 Unstable

GAR 285L 12.0 FootWall 81 27.0 27.0 38.0 7.9 25.4 0.6 0.3 2.7 12.3 Unstable

GAR 435L 6.0 FootWall 87 26.0 26.0 30.0 7.0 14.4 0.8 0.2 7.7 17.5 Unstable

GAR 235L 9.0 FootWall 79 25.0 25.0 34.0 7.2 29.8 1.0 0.3 6.7 55.8 Stable

GAR 435L 4.0 FootWall 72 26.0 26.0 22.0 6.0 17.0 0.6 0.3 6.2 16.4 Stable

GAR 435L 9.3 FootWall 56 31.0 31.0 27.0 7.2 36.6 0.3 0.3 4.6 12.8 Unstable

GAR 410L 6.0 FootWall 58 32.0 32.0 35.0 8.4 17.1 0.4 0.3 4.8 9.7 Caved

GAR 335L 12.7 FootWall 64 23.0 23.0 38.0 7.2 18.0 0.6 0.2 5.4 10.8 Unstable

GAR 335L 10.0 FootWall 80 25.0 25.0 30.0 6.8 13.4 0.5 0.3 3.1 5.7 Unstable

GAR 360L 6.7 FootWall 53 26.0 26.0 38.0 7.7 8.9 0.6 0.3 4.4 6.4 Caved

GAR 385L 7.7 FootWall 84 26.0 26.0 34.0 7.4 11.7 0.4 0.2 7.4 7.6 Unstable

GAR 485L 6.0 FootWall 61 27.0 27.0 35.0 7.6 18.5 0.3 0.3 5.1 7.4 Unstable

GAR 510L 5.0 FootWall 67 27.0 27.0 32.0 7.3 24.7 0.6 0.3 5.7 25.9 Stable

GAR 360L 15.0 FootWall 65 29.0 29.0 41.0 8.5 18.3 0.4 0.3 5.5 11.4 Unstable

GAR 235L 9.0 FootWall 82 25.0 25.0 40.0 7.7 21.4 0.8 0.2 3.9 13.3 Unstable

GAR 385L 9.0 FootWall 74 26.0 26.0 34.0 7.4 27.9 0.8 0.2 5.9 26.0 Stable

GAR 410L 8.0 FootWall 71 26.0 26.0 31.0 7.1 13.1 0.8 0.3 3.5 9.5 Unstable

GAR 385L 9.5 FootWall 53 30.0 30.0 30.0 7.5 8.7 0.8 0.2 4.4 7.4 Unstable

GAR 360L 9.0 FootWall 62 32.0 32.0 28.0 7.5 36.4 0.8 0.2 5.2 30.1 Stable

GAR 335L 10.2 HangingWall 63 24.0 24.0 34.0 7.0 5.4 0.7 0.3 4.8 5.4 Caved

GAR 385L 6.0 HangingWall 65 26.0 26.0 33.0 7.3 6.4 0.6 0.3 5.5 6.3 Caved

GAR 285L 12.0 HangingWall 81 27.0 27.0 38.0 7.9 3.8 0.6 0.3 7.1 4.5 Caved
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GAR 435L 6.0 HangingWall 87 26.0 26.0 30.0 7.0 6.8 1.0 0.2 3.5 4.8 Caved

GAR 235L 9.0 HangingWall 79 25.0 25.0 34.0 7.2 6.5 0.8 0.3 3.3 4.9 Caved

GAR 435L 4.0 HangingWall 72 26.0 26.0 22.0 6.0 11.6 0.5 0.3 3.6 5.9 Unstable

GAR 435L 9.3 HangingWall 56 31.0 31.0 27.0 7.2 34.7 0.7 0.3 5.5 36.0 Stable

GAR 410L 6.0 HangingWall 58 32.0 32.0 35.0 8.4 34.1 0.5 0.3 5.0 23.9 Unstable

GAR 335L 12.7 HangingWall 64 23.0 23.0 38.0 7.2 9.8 0.6 0.2 3.5 4.1 Caved

GAR 335L 10.0 HangingWall 80 25.0 25.0 30.0 6.8 7.4 0.6 0.3 7.0 8.4 Unstable

GAR 360L 6.7 HangingWall 53 26.0 26.0 38.0 7.7 5.3 0.6 0.3 5.6 5.5 Caved

GAR 385L 7.7 HangingWall 84 26.0 26.0 34.0 7.4 17.8 0.4 0.2 4.7 7.0 Unstable

GAR 485L 6.0 HangingWall 61 27.0 27.0 35.0 7.6 10.1 0.5 0.3 5.0 7.3 Unstable

GAR 510L 5.0 HangingWall 67 27.0 27.0 32.0 7.3 22.8 0.4 0.3 4.4 11.1 Unstable

GAR 360L 15.0 HangingWall 65 29.0 29.0 41.0 8.5 7.7 0.5 0.3 4.5 4.7 Caved

GAR 235L 9.0 HangingWall 82 25.0 25.0 40.0 7.7 9.9 0.7 0.2 3.9 5.0 Caved

GAR 385L 9.0 HangingWall 74 26.0 26.0 34.0 7.4 8.7 0.3 0.2 6.4 3.5 Caved

GAR 410L 8.0 HangingWall 71 26.0 26.0 31.0 7.1 11.1 0.7 0.3 3.5 6.6 Unstable

GAR 385L 9.5 HangingWall 53 30.0 30.0 30.0 7.5 12.4 0.7 0.2 5.1 9.8 Unstable

GAR 360L 9.0 HangingWall 62 32.0 32.0 28.0 7.5 15.4 0.7 0.2 3.7 7.4 Unstable

YAL 283L 22.0 HangingWall 75 25.0 25.0 30.0 6.8 46.0 0.6 0.2 3.5 19.3 Unstable

YAL 283L 22.0 FootWall 75 25.0 25.0 30.0 6.8 32.0 0.6 0.2 3.5 13.4 Unstable

YAL 308L 28.0 HangingWall 66 25.0 25.0 30.0 6.8 44.0 0.8 0.2 4.4 31.0 Stable

YAL 308L 28.0 FootWall 66 25.0 25.0 30.0 6.8 25.0 0.8 0.2 4.4 17.6 Unstable

YAL 308L 30.0 HangingWall 79 25.0 25.0 20.0 5.6 38.0 1.0 0.3 3.1 35.3 Stable

YAL 308L 30.0 FootWall 79 25.0 25.0 20.0 5.6 25.6 1.0 0.3 3.1 23.8 Stable

YAL 383L 17.0 HangingWall 84 24.0 24.0 51.0 8.2 39.0 0.8 0.3 6.8 63.6 Stable

YAL 383L 17.0 FootWall 84 24.0 24.0 51.0 8.2 29.0 0.8 0.3 6.8 47.3 Unstable

YAL 408L 9.0 HangingWall 65 29.0 29.0 30.0 7.4 32.0 0.3 0.2 6.2 11.9 Unstable

YAL 408L 9.0 FootWall 65 29.0 29.0 30.0 7.4 18.0 0.3 0.2 6.2 6.7 Unstable

YAL 433L 22.0 HangingWall 72 25.0 25.0 51.0 8.4 14.9 0.6 0.2 7.4 13.2 Caved

YAL 433L 22.0 FootWall 72 25.0 25.0 51.0 8.4 21.1 0.6 0.2 7.4 18.7 Unstable

YAL 458L 13.0 HangingWall 71 28.0 28.0 55.0 9.3 27.3 0.8 0.2 3.9 17.0 Unstable

YAL 458L 13.0 FootWall 71 28.0 28.0 55.0 9.3 12.1 0.9 0.2 3.9 8.5 Caved

YAL 458L 6.0 HangingWall 63 26.0 26.0 41.5 8.0 12.0 0.6 0.2 4.7 6.8 Caved

YAL 458L 6.0 FootWall 63 26.0 26.0 41.5 8.0 3.4 0.6 0.2 4.7 1.9 Caved

YAL 458L 15.0 HangingWall 57 25.0 25.0 35.0 7.3 20.0 1.0 0.3 5.0 30.0 Stable

YAL 458L 15.0 FootWall 57 25.0 25.0 35.0 7.3 12.0 1.0 0.3 5.0 18.0 Unstable

YAL 483L 3.0 HangingWall 81 25.0 25.0 30.0 6.8 31.0 0.3 0.3 2.9 8.1 Unstable

YAL 483L 3.0 FootWall 81 25.0 25.0 30.0 6.8 9.0 0.3 0.3 2.9 2.3 Caved

YAL 483L 11.0 HangingWall 68 25.0 25.0 35.0 7.3 10.0 0.9 0.2 6.4 11.5 Unstable

YAL 483L 11.0 FootWall 68 25.0 25.0 35.0 7.3 7.0 0.9 0.2 6.4 8.1 Caved

YAL 508L 8.0 HangingWall 75 25.0 25.0 55.0 8.6 17.4 0.5 0.3 6.7 17.5 Unstable

YAL 508L 8.0 FootWall 75 25.0 25.0 55.0 8.6 19.7 0.6 0.3 6.7 23.8 Unstable

YAL 508L 4.0 HangingWall 60 25.0 25.0 31.0 6.9 25.0 0.2 0.2 7.2 7.2 Unstable

YAL 508L 4.0 FootWall 60 25.0 25.0 31.0 6.9 9.0 0.2 0.2 7.2 2.6 Caved

YAL 508L 5.0 HangingWall 79 26.0 26.0 30.0 7.0 20.0 0.5 0.2 3.1 6.2 Unstable
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