
Received: 22 September 2021 Revised: 9 December 2021 Accepted: 21 December 2021 IET Renewable Power Generation

DOI: 10.1049/rpg2.12389

ORIGINAL RESEARCH

Execution of synthetic Bayesian model average for solar energy

forecasting

Oveis Abedinia Mehdi Bagheri

Department of Electrical and Computer
Engineering, Nazarbayev University, Nursultan,
Kazakhstan

Correspondence

Oveis Abedinia, Department of Electrical and
Computer Engineering, Nazarbayev University,
Nursultan 010000, Kazakhstan.
Email: oveis.abedinia@gmail.com,
oveis.abedinia@nu.edu.kz

Funding information

Collaborative Research Project (CRP) Grant of
Nazarbayev University, Grant/Award Number:
021220CRP0322

Abstract

Accurate photovoltaic (PV) forecasting is quite crucial in planning and in the regular oper-
ation of power system. Stochastic habit along with the high risks in PV signal uncertainty
and a probabilistic forecasting model is required to address the numerical weather pre-
diction (NWP) underdispersion. In this study, a new synthetic prediction process based
on Bayesian model averaging (BMA) and Ensemble Learning is developed. The pro-
posed model is initiated by the improved self-organizing map (ISOM) clustering K-fold
cross-validation for the training process. To provide desirable learning model for different
input samples, three learners including long short-term memory (LSTM) network, gen-
eral regression neural network (GRNN), and non-linear auto-regressive eXogenous NN
(NARXNN) are employed. The proposed BMA approach is combined with the output
of the learners to obtain accurate and desirable outcomes. Different models are precisely
compared with the obtained numerical results over real-world engineering test site, that is,
Arta-Solar case study. The numerical analysis and recorded results validate the performance
and superiority of the proposed model.

1 INTRODUCTION

1.1 Problem definition

Due to increasing the renewable energies in power network,
that is, wind power and solar energy, an excessive alarm for
power system operators as well as planners have been proposed
and created [1]. Penetration of stochastic energy generators will
potentially threaten the power system’s efficiency and reliabil-
ity. To address this issue and overcome the challenge, it is cru-
cial to employ an accurate forecasting approach [2]. A power-
ful method to handle this issue is development of an accurate
solar power forecasting system [3]. For this purpose, different
research works have been published in recent years (determin-
istic models and probabilistic approaches) however, the proba-
bilistic approaches are able to support and cover the prediction
uncertainty entirely.

1.2 Literature review

Several prediction methods have been implemented over
solar signal, that is, autoregressive moving average (ARMA)
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[4], autoregressive integrated moving average (ARIMA) [5],
and autoregressive moving average with eXogenous inputs
(ARMAX) [6]. Due to nonlinear behaviour of solar signal, the
linear methods are unable to support the uncertainty of the
input signal and will terminate to low accuracy in forecasting
model. To tackle this drawback, different machine learning
approaches have been considered such as neural network (NN)
[7–9], support vector machine (SVM) [10] etc.; even tough, such
models might trick in an unrealistic optimal point for training
the solar energy mapping function in multi-modal input/output
model.

In recent years, different methods have been examined for
numerical weather prediction (NWP) which mitigates the bias
and underdispersion of the solar signal. In [11], two step post-
processing approach has been presented for solar energy pre-
diction. In [12], ensemble model output statistics (EMOS) with
variance deficit is provided through fitting the normal distribu-
tion of parametric truncated. This approach has been utilized
for wind speed [13], as well as for the electricity price prediction
[14]. The combination of EMOS with Bayesian model averag-
ing (BMA) is discussed in [15] over aggregated solar irradiance
prediction.
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The BMA has been applied inn different forecasting
approaches, that is, wind speed [16], visibility [17], and precip-
itation [18]. This approach is a kernel-dressing model based
on dressed ensemble members by probability density function
(PDF). This model is a non-parametric approach same as
kernel density estimation (KDE) which is discussed in [19–22]
for wind and solar signals. In [22], a general framework is
offered for renewable energies probabilistic forecasts based on
k-nearest neighbour and KDE method. In [19], a new time-
adaptive quantile-copula estimator is presented based on KDE
to pick the adequate kernels for modelling various variables of
the problem. In [21], new ensemble algorithm based on KDE
is proposed to predict distributed generation from renewable
energy resources. In [23], a new short-term PV generation
prediction model based on ensemble adaptive boosting random
forests is proposed. In [24], a novel pattern-recognition-
based transient stability assessment model is offered based
on an ensemble of OS-extreme learning machine through the
binary Jaya-based feature selection by considering the phasor
measurement units data.

The BMA make the KDE better through offering enhanced
customization. In this process, each kernel will not be centred
in NWP data point as a biased correction step. The input mem-
bers are separately specified for the weights and bandwidth. In
this model, more dependable members are marked as higher
weight which cause the spreading of uncertainty. To remedy
the ensemble bias and underdispersion problems, each mem-
ber is weighted and shaped by BMA. Additionally, this approach
employs accurate method at longer time horizons as inputs to
a mixture-model, which are unable to present through a single
parametric distribution.

As a remedy of the highlighted problems, in this study a
novel synthetic forecasting method based on BMA and Ensem-
ble learning is provided and discussed technically for the solar
energy signal. In this line, the input data is divided for train-
ing by the improved Self organizing map clustering with K-
fold cross validation (K-FCV) method. This problem provides
suitable diversity for input samples of the learners. Afterwards,
the proposed hybrid forecast engine including the long short-
term memory (LSTM) network, general regression neural net-
work (GRNN), and non-linear auto-regressive eXogenous NN
(NARXNN) are utilized in training the signal based on multi-
ple ensemble learning combination. Hence, to reach a better
performance and reliability, combination approach of BMA is
examined based on the mentioned learners’ output precision.
In view of this, the contribution and novelties of this work can
be listed as:

1.3 Contributions

a. Combination of ISOM clustering with K-FCV for training
approach. This synthetic model increases the diversity of dif-
ferent learners.

b. Different leaners are developed in this study as LSTM,
GRNN and NARXNN. The outputs of these learners are

different while, the Ensemble learning provides suitable and
accurate performance.

c. A new model of BMA is discussed through theoretical con-
straints on applying a beta kernel. This model is quantified
based on different probabilistic metrics.

d. Suitable precision and high stability have been provided by
proposed approach in prediction performance based on sug-
gested BMA and Ensemble learning methods.

1.4 Paper structure

Section 2 provides the new probabilistic forecasting approach
based on Ensemble learners and training approach. In Section 3
the suggested BMA model is developed. Section 4, provides the
numerical analysis and Section 5 will conclude the results and
study.

2 PROPOSED PV POWER
FORECASTING APPROACH

In PV energy forecasting, the historical signal values (the auto-
regression part), the irradiation and weather condition (exoge-
nous variables) are completely critical factors for the forecasting
engine development. The weather parameters, that is, temper-
ature, cell temperature etc., are considered as exogenous data
based on their correlation with PV signal.

2.1 The data of Arta-Solar

In this study, the Arta-Solar power plant as a real practical imple-
mented and operational test case is taken into consideration
which is located in North West of Iran, that is, Latitude 38.5576
and Longitude 48.1432. This power plant has been constructed
as the first part of 6 MW power plant includes of 2060 modules,
that is, 700 kW. The average annual output of this site is about
1081 MWh with 1873 kWh/m2 per year with the title angle 34◦

horizontally. It is able to support around 450 households load
demand. For this plant, 12 Huawei inverters (60 kW per each)
have been utilized. This plant started energy generation in May
5, 2020. This power plant is planned to be extended to 2 MW
at the end of 2021 and grow to 6 MW within 2 years. The data
have been recorded from 5 May 2020 till 5 May 2021. The aver-
age hourly profile for total PV power output (kWh) is provided
in Figure 1.

2.2 Training procedure

Due to application of different forecasting engines, the Ensem-
ble learning approach is considered to be able to combine
the learners’ output. In addition, to improve the input can-
didates’ differences, the diversity of the training subset is
increased.
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FIGURE 1 The average hourly profile of Arta-Solar test case

FIGURE 2 The SOM diagram and key definition

This issue is considered due to important time periodic-
ity of weather and seasonal data. Over the classic models, a
bulk quantity of redundant data are observed in training due
to uneven distribution of candidates for various weather condi-
tions. Hence, to rise the diversity of the training subset excluding
data rising, the improved SOM clustering model based K-FCV
is offered in this study. In this way, the input signal will be clus-
tered into sample sets before considering as the input of learn-
ers. Subsequently, the K-FCV is performed to decrease the data
redundancy in training process.

2.2.1 Proposed self organizing map

In this section, the proposed ISOM is discussed while the main
construction of this approach is depicted in Figure 2. According
to Figure 2, the model is a two-layer, non-supervised NN which
evaluates the output based on the input data nature. The output
layer includes of weighted nodes organized on a 2D map. The
learning approach of this model is working as [25];

1. Initialization of output nodes weight by accidental real value.
2. Selection one input arbitrarily from the training data
3. Evaluation the Euclidean space (ES) among the chosen

node’s weight and input vector and (1).
4. Selection of lower ES from nodes as the best matching unit

(BMU).
5. Evaluation of BMU neighbourhood function (2).

6. Updating the node’s weight using (2) and (3).
7. Repeating till convergence criteria, that is, best ES value

between the node’s weight and input vector:

Dist =

√√√√ i=n∑
i=0

(Vi −Ui )
2 (1)

In (1), the input vector is defined by Vi and node’s weight is
presented by Ui. to evaluate the BMU’s neighbourhood func-
tion, it can be written as:

Wbi (t ) = 𝛼(t )e
sd (b,i )

2𝛿2(t ) (2)

where, the iteration depicted by t, the BMU defined by b, the
learning rate is shown by α(t), δ(t) defines the neighbourhood
radius, and the square distance of BMU and output plane (i) is
defined by sd(b,i). The node’s weight function update, is given
by:

Ui (t ) = Ui +Wbi (t )[Vi −Ui ] (3)

This process will be continuing till the convergence criteria
is satisfied, that is, providing the feature map while the nodes
are clustered based on high similarities. To improve the SOM
model, the diagnosis process is separated into two steps. The
first step is the training of SOM and the second one is test-
ing (validation process) of ISOM. The proposed model for this
improvement is presented in Figure 3.

2.2.2 Proposed learners

The proposed learners, that is, LSTM, GRNN and NARXNN
are discussed separately in this section.

■ General regression neural network: As a first learner, the
GRNN is discussed to provide detailed information on the
proposed method. This model is topologically similar to
NN with lower variables in comparison to SVR and NN
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FIGURE 3 The main structure of ISOM feature map

FIGURE 4 GRNN architecture

which potentially make it simpler for implementation and
practice. The main approach of the proposed method is
depicted in Figure 4 where four level layers with a special
function for each one was taken into consideration. More-
over, GRNN does not simply trap in local points which
increase its performance through the large-scale training
datasets and well process with high volatility signals [26].
The mathematical modelling of this method is working with
PDF v and u as f(v,u). This regression can be presented
as [26]:

û(vr ) = E
[
u |vr ] =

∫ ∞

−∞
u f (vr , u)du

∫ ∞

−∞
u f (vr , u)du

(4)

In this equation, once the f(v,u) is unpredictable it will be eval-
uated from a sample of y and v. In addition, to have the f (vr ; u)
function [26], the Parzen distribution free is applied on (4) so:

f (vr , u) =
1

n(2𝜋)
g+1

2 w1w2 … wgwu

n∑
i=1

e−D(vr ,vi )e−D(u,ui ) (5)

D(vr , vi ) =
(vr − vi )

2

2𝜎2
,D(u, ui ) =

(u − ui )
2

2𝜎2
(6)

Over this model, the σ is one of the critical variables which
named smooth and will have impact on GRNN’s forecasting
accuracy. The large and low value of this parameter can influ-
ence the input signal and then accuracy of forecasting. This
parameter is enhanced by an optimization algorithm through
the forecasting error minimization. By substituting (5) in (4), it
can be obtained that [26]:

û(vr ) =

∑n

i=1

(
e−D(vr ,vi ) ∫ ∞

−∞
ue−D(u,ui )du

)
∑n

i=1

(
e−D(vr ,vi ) ∫ ∞

−∞
e−D(u,ui )du

) (7)

where, the û(vr ) is the weighted mean of all ui parameters.
By the solving the two integrals in this equation it can be writ-

ten: û(vr ) =
∑n

i=1 ui e
−D(vr ,vi )∑n

i=1 e−D(vr ,vi )

To solve the proposed optimization algorithm (minimiza-
tion the forecasting error as objective function), improved bear
smell search algorithm (IBSSA) is considered in this stage. This
algorithm is proposed recently in [27]. In this model, the bear
absorbs various odours particle to find the pray (optimal solu-
tion). The matrix of initial solution is OM= [Oi]n×k = [ocj

i]n×k,
therefore the odour components can be obtained as:

DS
j

i =

⎧⎪⎨⎪⎩
MGi (t − tinhale ) + DS

tinhale

i , tinhale ≤ t ≤ texhale

DS
texhale

i exp

(
texhale − t

𝜂exhale

)
, texhale ≤ t

(8)

where, exhalation time defined by texhale , inhalation time by tinhale

and constant value for exhalation time defined by 𝜂exhale . Fur-
thermore, receptor sympathies and the odour absorption as well
as individuality (see Figure 5) presented by MG = {MG1, MG2,
…, MGi, …, MGn} while, the non-negative MG is evaluated as:

MGi (Oi ) =
1
k

k∑
j=1

f (oc
j

i ), f (oc
j

i ) =

⎧⎪⎨⎪⎩
1, T1 ≤ oc

j

i

0, T1 > oc
j

i

(9)

where, the odour length in ith odour presented by k, and thresh-
old variable is depicted by T1. All data are shifted to mitral to
obtain the best response by implementation of Li–Hopfield
and the Erdi as [27]:

Ẋ = −H0Ψy (Y ) − 𝛼xX +
∑

L0Ψx (X ) + DS

Ẏ = W0Ψx (X ) − 𝛼yY + DSc

(10)

where, X = {x1, x2, … ., xn} and Y = {y1, y2, … ., yn} are
the activities of mitral and granule cells. In addition,
DS = {d s1, d s2, … , d sn} and DSc = {d sc1, d sc2, … , d scn} are
the outside input to the mitral and the dominant input to
the granule cells. The output of the mitral and granule cells
are obtained by Ψx (X ) = { fx (x1), fx (x2), … ., fx (xn )}, and
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FIGURE 5 The bear smelling system to find the pray as optimal answer in search environment

Ψy (Y ) = { fy (y1), fy (y2), … ., fy (yn )}, respectively. Therefore,

fx (x ) =

⎧⎪⎨⎪⎩
0.14 + 0.14 tanh

(x − 𝜑

0.14

)
, x <𝜑

0.14 + 1.4 tanh
(x − 𝜑

1.4

)
, x ≥ 𝜑

(11)

fy (y) =

⎧⎪⎪⎨⎪⎪⎩
0.29 + 0.29 tanh

(
x − 𝜙

0.29

)
, x <𝜙

0.29 + 2.9 tanh

(
x − 𝜙

2.9

)
, x ≥ 𝜙

(12)

where, the threshold value presented by 𝜑, the synaptic-strength
connection matrixes are presented by H0, W0 and L0 that shows
the formula of granular and mitral cells as well as mitral cells
and calculate which presented as:

H0
j

i
=

⎧⎪⎨⎪⎩
rand ()

Th
, 0 < d j

i <Th

0, Th < d j

i

(13)

W0
j

i =

⎧⎪⎨⎪⎩
rand ()

Tw
, 0 < d j

i <Tw

0, Tw < d j

i

(14)

L0
j

i
=

⎧⎪⎨⎪⎩
rand ()

Tl
, 0 < d j

i <Tl

0, Tl < d j

i

(15)

The connection constants are depicted by Th, Tw and Tl. The
random value in this equation is generated by Chaotic formula
[28] and shown by rand(). Also, the formulation of probability
odour fitness (POF), probability odour components (POC), and
odour fitness (OF) are given by:

POCi =
Oi

max(Oi )
(16)

POFi =
OFi

max(OFi )
(17)

Moreover, the expected odour fitness (EOF) and distance
odour components (DOC) are given by:

DOCi = 1 −

∑k

i=1 (POC 1
j − POC 2

j )√∑k

j=1 (POC 1
j − POC 2

j )
2

(18)

EOFi = |POFi − POF g| (19)
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FIGURE 6 Mechanism of position improvement based on mesh model

The global solution in equations are defined by g. Thus, the
relationships between odour particle as a source and bear is
modelled mathematically and shown in Figure 6. It can be high-
lighted that the outputs of the brain choose an appropriate
method for the next location as well. Each mesh zone, the space
of all odours are evaluated by two thresholds as; 𝜁1, 𝜁2, so, the
next odours are generated with:

Ok+1 =

⎧⎪⎪⎨⎪⎪⎩

C1,i × Ok − rand ×C2,i × (Ok − Obest ),

DOCi ≤ 𝜁1&EOFi ≤ 𝜁2

C3,i × Ok − rand ×C4,i × (Ok − Obest ), otherwise

(20)

C1,i = −EOFi

2 − DOCi

𝜁1
,

C2,i = −EOFi

2 − DOCi

𝜁2

C3,i = EOFi

2 − DOCi

𝜁1
,

C4,i = EOFi

2 − DOCi

𝜁2

(21)

■ Long short-term memory: This system is a kind of recurrent
NN, see Figure 7, including memory cell and three gates as;
forget, input and output. The main conceptual of LSTM is
based on cell state same as conveyor belt. In this model, the
output of sigmoid layer is set among 0 and 1 while, zero
defines “nothing can pass” and one defines “everything can
pass” [29].

In addition, a forget gate takes away the data from the cell
state as indicated in Figure 7. In this gate, the value of zero

FIGURE 7 The main model of LSTM network

means “totally forget it” and one means “totally hold it”. This
gat can be obtained by:

ft = 𝜎
(
Wf .

[
ht−1, xt ] + b f

)
(22)

The most significant part of LSTM is the input gate which
decides whether to kept data in the cell stat. Once this gate is
closed, nothing is able to pass to the memory.

This gate includes of two parts as “input gate layer” where
the updating of data is done in this part and “hyperbolic tangent
layer” which makes a new candidate vector. This gate is mod-
elled as [29]:

it = 𝜎
(
Wi .

[
ht−1, xt ] + bi

)
(23)

C̃t = tanh(WC .
[
ht−1, xt ] + bC ) (24)

Ct = ft ∗ Ct−1 + it ∗ C̃t (25)
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FIGURE 8 The main structure of NARXNN

In the last part, decision of output data will be made by out-
put gate. This gate is modelled as [29]:

Ot = 𝜎(WO.[ht−1, xt ] + bO ) (26)

ht = Ot ∗ tanh(Ct ) (27)

■ Non-linear auto-regressive exogenous NN: This network
consists of single delayed feedback loop (which improves
the sensitivity in forecaster approach of historical data)
based on output regressor with two tapped-delay lines
across input–output signals. In this model, the exogenous
signal aggregated as:

y(n) = f [x(n); u(n); y(n − 1)] (28)

y(n) = f [x(n), … , x(n − dE + 1); x̂(n), … , x̂(n − dy + 1)]
(29)

In these equations, u(n) ∈ ℝ and y(n) ∈ ℝ define the output
and input method at n as discrete timestep. Additionally, dE ≥ 1
and dy ≥ 1define the memory in output and input by {dE , dy} ∈
ℕ ∗ [30]. The main construction of NARXNN is obtainable in
Figure 8, which includes a two layer feed-forward network based
on linear transfer function. The sigmoid function is evaluated as
following for hidden layer:

𝜎(x ) =
1

1 + exp(−𝜎)
(30)

This model is able to store the old values of u(n) and y(n)
sequences which consists of tap delay lines. Also, in main struc-
ture a feedback from output, that is, y(n) is fed the input with a
delay.

3 PROPOSED BAYESIAN MODEL
AVERAGING

In this strategy, the ys
t is considered as a combination of

restricted PDFs for each predictor f s
k,t in an ensemble of K

members. In PDF process the summation of weights is 1 as
a non-negative variable. The forecaster PDF is evaluated by
BMA as:

p(y || f1, … , fK ) =
K∑

k=1

𝜔khk(y || fK ) (31)

In (31), the appropriate selection of kernel, that is, hk(y| fK )
depends on the problem. In this study, the mentioned PDF
divided into two parts for discrete-continuous mixture to solve
the clipping issue. To evaluate the clipping probability, the fol-
lowing logistic regression is considered as:

logit(P (y ≥ 𝜆𝜌 || fK )) ≡ log
P (y ≥ 𝜆𝜌 || fK )

P (y < 𝜆𝜌 || fK )
= a0k + a1k fk

(32)

where, the conditional probability is presented by P (y < 𝜆𝜌| fK )
where, the solar energy is not clipped while the fk is the best
ensemble member [31]. The continuous kernel is considered as
the second part of mixture model to prevent the clipping. This
part considered the beta and truncated normal kernel while, the
PDF for standard distribution evaluated as:

p𝜙(z, 𝜇, 𝜎) =
𝜙
(

z−𝜇

𝜎

)
𝜎
(
Φ
(
𝜌−𝜇

𝜎

)
− Φ

(
0−𝜇

𝜎

)) (33)

Similarly, the PDF can be rewritten for beta kernel
through considering the beta and alpha upper than zero and
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obtained as:

Γ(𝛼 + 𝛽)

Γ(𝛼) + Γ(𝛽)
z (𝛼−1)(1 − z )(𝛽−1) (34)

Using 𝜇 ≡ 𝛼∕(𝛼 + 𝛽), 0 < 𝜇 < 1 and 𝛾 ≡ 𝛼 + 𝛽, 𝛾 > 0,
PDF can be given as:

p𝛽 (z, 𝜇, 𝛾) =
Γ(𝛾)

Γ(𝛾𝜇)Γ(𝛾(1 − 𝜇))
z𝜇𝛾−1(1 − z )(1−𝜇)𝛾−1 (35)

Three parameters of σ, μ, and γ are evaluated similarly for the
mentioned kernels. Evaluation of kernel mean by scaling factor
of bk, and k member is given by:

𝜇k =

⎧⎪⎨⎪⎩
bk

fk

𝜌
, if betakernel

bk fk, if truncatednormalkernel

(36)

To evaluate the γk and σk, as the shape variables, the dis-
tribution standard deviation is considered. In this method, to
have positive values of beta and alpha, the variance should be
σ2 < μ(1 − μ) based on maximum quadratic domain value as
0.25. To evaluate the variance of observation based quadratic
trend by the height ck, (37) needs to be taken into consideration.

𝜎2
k
= −

ck
0.25

(𝜇k − 0.5)2 + ck (37)

In (37), the large uncertainty provided by large ck value and
vice versa. Having this parameter restricted between 0 and 0.25
guarantees the boundary on σ2 for the beta kernel which is
suitable for truncated normal distribution. This value can be
also evaluated directly with some further steps of beta’s shape
parameter based on (37) and given by:

𝛾k =
0.25 − ck

0.25
(38)

For additional simplification, the parameter’s number can
be reduced which potentially decrease the computational time.
After tuning the a, b and c, fine setting of γ is critical for this
model while different values can provide different shapes. Spe-
cially, zero and maximum power highlight the likelihoods in
“∪-shape” distributions. This distribution is occurring once the
alpha and beta are lower than 1. To simplify, the predicted dis-
tribution mean is given by (39) in minimum value:

𝛾k =

⎧⎪⎨⎪⎩
1

1−𝜇k

if 𝜇k ≤ 0.5

1

𝜇k

if 𝜇k> 0.5
(39)

This is in fact decreasing the variance amounts as fell in
shaded grey zone onto the boundary line. Consequently, the
conditional PDF can be presented for each ensemble member

fk, that is, greatest prediction and given as:

hk(y || fk ) =
P (y ≥ 𝜆𝜌 || fk )

(1 − 𝜆)𝜌
1[y ≥ 𝜆𝜌]

+
P (y < 𝜆𝜌 || fk )

Gk(y || fk ) |𝜆 gk(y || fk )1[y < 𝜆𝜌]

(40)

where, the indicator function is presented by 1 and gk(y| fk )
presents the truncated normal kernel:

gk(y || fk ) =

⎧⎪⎨⎪⎩
p𝛽 (

y

𝜌
, 𝜇k, 𝛾k )

p𝜙(y, 𝜇k, 𝜎k )
(41)

The cumulative distribution function is given by Gk(y| fk )
which is added to balance approximating the discrete element
unceasingly over a non-zero width, that is, (1−λ)ρ. Accordingly,
the weighted model can be estimated in (17) by these PDFs con-
ditional members.

4 OBTAINED NUMERICAL RESULTS

The suggested prediction approach is applied over various case
studies, in this section. Initially, this strategy is applied on a
famous case study and compared with other recent works to
proof the strength of suggested approach based on different
error criteria. Then, the proposed Arta-Solar test case will be
considered to evaluate the proposed forecasting approach. In
the following, the results of each case study are separated as:

4.1 Verification of proposed approach

In this section, Site 1 of PV power plant located in China,
Tibet is considered with the diverse parallel of 4326.99 m. To
have similar and fair comparison, the condition should be con-
sidered for all the prediction models, the input data will be
composed of global horizontal irradiance (W/m2), solar peak
angle (degree), hotness (degree centigrade), comparative mois-
ture percent (%), pressure (mbar), rain (cm), wind acceleration
m/s) and wind direction (unit of measurement: degree) that are
quoted from National Solar Radiation Database (NSRDB) [25].
In this test case, five error criteria have been taken in to consid-
eration as the prediction intervals coverage probability (PICP),
middling coverage error named (ACE), PI normalized average
width (PINAW), cover width-based yardstick named (CWC),
and Winkler score (WS). The PICP is given by:

PICP =
1
L

L∑
l=1

Il , and Il =

{
1, if Rl

p ∈ [Ll
p,U

l
p ]

0, otherwise
(42)

In which, the lth PI lower and upper boundary are presented
by Lp

l and Up
l, respectively. High value of PICP built PIs by
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solar data. The ACE is calculated from difference of PICP with
PI nominal confidence level (PINC) as:

ACE = PICP − PINC (43)

To check the PI breadth, the PI normalized average width
(PINAW) is considered as [3]:

PINAW =
1

L(Maxp − Minp)

L∑
l=1

(U l
p − Ll

p) (44)

where, the extreme and least value of forecasting are given by
Maxp and Minp, respectively. To check the simultaneous evalua-
tion, cover probability and the breadth, the CWC is given by [3]:

CWC = PINAW [1 + I (PICP )e−𝜌(PICP−v)] (45)

where, length of the test set is defined by L, fixed volume is
defined by C, and the forecasted and real value of PV signal are
defined by Rp

l and Fp
l, respectively. Also, the I (PICP) is given

by:

I (PICP ) =

{
1, if PICP<𝜈

0, otherwise
(46)

Finally, the WS is formulated as:

WS =
1
L

L∑
l=1

Sl (47)

Si =

⎧⎪⎪⎨⎪⎪⎩
−2(1 − PINC )W l

p − 4(Ll
p − Rl

p), if Rl
p < Ll

p

−2(1 − PINC )W l
p , if Rl

p ∈ W l
p

−2(1 − PINC )W l
p − 4(Rl

p −U l
p ), if Rl

p > U l
p

(48)

In (48), the breadth of the ith built PI is presented by
Wp

l = Up
l - L p

l. And the PV value in t (time) defined by Rp
l.

The suggested approach is compared with [32], in this test
case which depicted in Table 1. According to Table 1, the
persistence model, autoregressive integrated moving average
(ARIMA), quantile regression (QR), persistence, and hybrid
model are based on Bayesian method in [32], and compared with
the proposed forecasting approach.

In Table 1, the recommended approach could outperform
all the prediction models in this test case. Accordingly, perfor-
mance confirmation of the proposed method is correct and it
can be employed in a new test cases. Thus, in the next sub-
section, a new real-world Engineering test case, that is, Arta-
Solar is considered to display the effectiveness of recommended
forecast strategy.

TABLE 1 Comparison of proposed method with [32], in Site 1 based on
different error criteria

Site 1

Prediction Models

PINC

(%)

PICP

(%)

PINAW

(%) WS

ACE

(%) CWC

ARIMA [32] 90 84.35 27.68 −80.15 −5.65 0.34

96 87.65 41.57 −45.36 −8.35 0.87

99 92.15 52.65 −15.24 −6.85 1.35

Persistence [32] 90 86.35 29.87 −75.65 −3.65 0.38

96 87.48 37.65 −44.25 −8.52 0.76

99 94.98 52.21 −13.24 −4.02 1.42

QR [32] 90 82.68 26.45 −80.22 −7.32 0.37

96 87.16 35.98 −41.26 −8.84 0.55

99 93.43 54.17 −12.35 −5.57 0.98

Hybrid Bayesian model
[32]

90 85.76 30.43 −72.67 −4.24 0.28

96 89.76 44.23 −40.68 −6.24 0.36

99 95.65 58.98 −11.21 −3.35 1.11

Proposed 90 86.89 31.98 −70.12 −3.11 0.14

96 90.56 46.63 −38.47 −5.44 0.29

99 86.25 60.14 −10.17 −3.75 0.92

4.2 Arta-Solar test case analysis

This part describes the applied method on the new Arta-Solar
power plant as described earlier in Section 2.1. To present the
accuracy of recommended model, various error criteria were
formulated with different behaviours. This comparison will
support the validity and well performance of the proposed
approach with different test cases and error criteria.

To show the concentration ability of the proposed model,
sharpness measure is considered in this stage which can be eval-
uated on T period-based averaging interval width, that is, δ, for
central interval interest (100% × (1 − ρ)) as:

𝛿 =
1
T

T∑
t=1

F−1
t

(
1 −

𝜌

2

)
− F−1

t

(𝜌
2

)
(49)

In (49), the prediction cumulative distribution function is
given by Ft at time t. The average continuous ranked probabil-
ity score (CRPS ) is presented as follows which can capture the
reliability and sharpness in a metric:

CRPS = ∫
1

0

1
T

T∑
t=1

QS𝜉 (F−1
t (𝜉 ), yt )d𝜉 (50)

The CRPS can be decomposed over all quantiles based on
integral of quantile score (QS). The QS of F−1

t (𝜉 ) can be eval-
uated through (51) at level 𝜉 ∈ (0, 1):

QS𝜉 = 2(1{yt ≤ F−1
t (𝜉 )} − 𝜉 )(F−1

t (𝜉 ) − yt ), (51)
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TABLE 2 Obtained results of rolling 4-hour forecasting horizons based CRPS and SS

CRPS(%p) SSPeEn(%) SSRaEn(%)

PeEn RaEn EMOS BMA Proposed BMA Proposed BMA Proposed

9.12 6.72 7.44 6.45 5.22 36.17 44.72 −6.75 8.14

* SSPeEn defines SS with forecast reference of PeEn, SSRaEn defines SS with forecast reference of RaEn.

Since the distribution of lower tail is very concerned,
which is occurred once solar energy is quite low and will
affect the system reliability. For this purpose, three differ-
ent quantile-weighting functions as considered as; 𝜔1(𝜉 ) =
(1 − 𝜉 )2, 𝜔c (𝜉 ) = 𝜉(1 − 𝜉 ), and 𝜔r (𝜉 ) = 𝜉2 as left, centre and
right tail functions, respectively. Using the weighted QS on (36),
the weighted average CRPS can be calculated (wCRPS ). For the
last criterion, the skill score of CRPS can be evaluated though:

SS =
CRPS −CRPS re f

CRPS ideal −CRPS re f

= 1 −
CRPS

CRPS re f

(52)

In (52), the average CRPS is defined by CRPS re f and ideal

prediction is defined by CRPS ideal .
The calculated forecasting values for the Arta-Solar test

case is provided in Table 2 for average performance com-
parison based rolling 4-h ahead horizon through CRPS. In
Table 2, the proposed model is compared by famous forecasting
approaches, that is, persistence ensemble (PeEn), Raw ensem-
ble (RaEn), ensemble model output statistics (EMOS), and sim-
ple BMA model. In addition, the recommended approach could
outperform all other strategies. To have more precise view over
this forecasting model, the sharpness and calibration tension is
presented in Figure 9. In Figure 9, the interval width and reliabil-
ity diagrams have been plotted for different comparison models.

Additionally, the graphical presentation of hourly probabilis-
tic prediction is shown in Figure 10, through the validation by a
solo signal of the plant average hourly power. In Figure 10, all
four models have been compared over 18th April 2021.

As shown in Figure 10, the sharpness of PeEn model is
poor in comparison with other methods steadily huge inter-
vals, where this factor for RaEn is unreliable through overrating
power. The proposed approach and simple BMA could be eval-
uated for a better trend, while the simple BMA provides better
outcome in comparison with RaEn, PeEn and EMOS. How-
ever, the sharpness is missed which leads to loss the accuracy.
The proposed prediction approach, evaluates better broader
prediction intervals which makes suitable reliability.

Additionally, to present the effectiveness of suggested model
Table 3., is presented based on unweighted SS on RaEn for vari-
ous prediction horizons, that is, 1, 4, 12 h and ultimately one-day.

In this study, the proposed strategy is compared with simple
BMA which is able to provide the closest results for the sug-
gested model. The proposed strategy could outperform simple
BMA in this table, over all forecasting horizons. Generated fore-

FIGURE 9 (a) The central interval’s average width from 10% to 90%, (b)
diagram of reliability for 1th to 99th prediction percentile

casting results shows the accuracy and validity of recommended
model in test cases with different error criteria and forecasting
horizons.

4.3 Deterministic forecasting analysis

To presents the efficacy of the suggested approach, determinis-
tic forecasting analysis is also discussed in this stage. For this
purpose, Table 4 is presented for comparison of suggested
approach with support vector machine (SVM), least squares
SVM (LSSVM), persistence model, autoregressive integrated
moving average (ARIMA), quantile regression (QR), wavelet
transform plus SVM (WT+SVM), and particle swarm optimiza-
tion plus ANFIS (PSO+ANFIS) models. In this table, three
different forecasting criteria have been taken into considera-
tion as normalized mean absolute error (NMAE), normalized
root mean square error (NRMSE) and mean absolute percent-
age error (MMAPE) [1]:

1
LC

L∑
l=1

|||Rl
p − F l

p
||| × 100% (53)
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FIGURE 10 Comparison of suggested approach with other probabilistic methods for intervals in 4-h ahead from 99.8% to 0.2% coverage

TABLE 3 Obtained results of CRPS SS (%) for BMA and proposed model on RaEn at varying lead time

1-h 4-h 12-h 24-h

BMA Proposed BMA Proposed BMA Proposed BMA Proposed

3.51 8.45 −3.5 12.52 −5.1 14.52 0.41 10.47

TABLE 4 Obtained results of forecasting model comparison with other
deterministic approaches

Prediction

Approaches

Arta-Solar test case

NMAE NRMSE MMAPE

SVM 8.35 11.43 14.66

ARIMA 7.78 11.42 14.62

Persistence 7.33 10.21 13.87

QR 7.03 10.32 12.64

PSO+ANFIS 6.98 10.12 11.87

WT+SVM 6.65 9.74 11.21

LSSVM 5.87 9.12 10.15

Proposed 2.14 3.72 4.79

√√√√√ 1
L

L∑
l=1

(
Rl

p − F l
p

C

)2

× 100% (54)

L∑
l=1

⎛⎜⎜⎝
Rl

p − F l
p∑L

l=1 Rl
p

⎞⎟⎟⎠ × 100% (55)

FIGURE 11 The improvement rate of proposed method in comparison
with other forecasting approaches

In these equations, the real signal is defined with R and
forecasted value is depicted by F. The recommended process
could outperform all forecasting approaches on all error criteria.
The enhancement of suggested approach in comparison with
LSSVM is around (5.87–2.14)/5.87 = 63% for NMAE error
criterion.

Similarly, this value for NRMSE and MMAPE are obtained
as 59% and 53%, respectively. To have again more precise com-
parison over the recommended method with other models and
providing an improvement rate for all methods, Figure 11 is pro-
vided to show the improvements rates for all approaches.
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FIGURE 12 Comparison of proposed model in Taylor diagram

To validate the superiority of the suggested approach, the
Taylor diagram, see Figure 12, of the proposed model with
other methods is also provided over the Arta-Solar test case,
where the presented numerical analysis, the error criteria, stan-
dard deviations and outline connections with “observation” for
each approach are illustrated. Additionally, due to small value
in forecasting error, it is clear that the correlation coefficient
of proposed method is superior to the other compared models.
This concept is quoted from nearby results to the “observation”
as the most accurate strategy and worst model provides farthest
point in this figure.

Technically speaking, a forecasting ability in a short time can
potentially highlight a better capability of the method; however,
computational time is always dependent significantly on the
system memory and processor. In this study, a personal desktop
with specifications of 1 terabyte of internal memory, 4 GB

of RAM, 2.53 CPU of three cores was used. Accordingly, the
average duration is less than 2 min, which is quite reasonable
performance as compared to other studies and literature. It
is worth noting that since other literature have employed dif-
ferent systems, it may not be feasible to fairly compare their
performance accurately. However, an approximate comparison
is always possible.

4.4 Scalability analysis

In this section, a new analysis is provided to demonstrate
the scalability of the suggested approach. As the performance
review, the amount of different input data volume (from −40%
to 40%) were taken into consideration. Hence, the MAPE cri-
terion was used to evaluate the performance of the proposed
method. Table 5 shows the simulation results of proposed anal-
ysis. As shown in the second row of Table 5, the proposed
method was able to obtain an almost constant MAPE by chang-
ing the amount of input data. As another measure of scalability,
we have considered the duration of the forecast. In Table 5, in
the fourth row, by increasing the forecast period, it still shows
acceptable performance according to the MAPE criteria.

4.5 The sensitivity analysis

The proposed optimization algorithms is based on a random
initial population, such as determining the initial population
number and the number of iterations, while, the self-regulating
coefficients is one of the advantages in this algorithm.

Table 6 shows the results of the sensitivity analysis based on
presented description. It should be noted that the number of
input data is selected according to the 0% mode and 24-h time
horizon in Table 5. As shown in Table 6, it can be seen that

TABLE 5 The scalability analysis in forecasting approach

Increase the volume of

input data 40% 30% 20% 10% 0% 10-% 20-% 30-% 40-%

The MAPE for 24 forecasting
horizon

2.15 2.16 2.15 2.14 2.14 2.14 2.15 2.14 2.15

Predicted time horizon
changes (hours)

192 168 144 120 96 72 48 24 12

MAPE 3.45 3.25 3.13 3.01 2.93 2.87 2.64 2.43 2.14

TABLE 6 The result of sensitive analysis in prediction based on changes in control parameters of the algorithm

Number of initial

population 20 40 60 80 100 120 140 160

MAPE for 24-h horizon 2.14 2.14 2.15 2.14 2.139 2.14 2.14 2.135

Iteration 100 200 300 400 500 600 700 800

MAPE for 24-h horizon 2.14 2.15 2.14 2.145 2.138 2.14 2.14 2.14
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despite changes in population and iteration, the algorithm was
still able to show the best performance.

5 CONCLUSION

In this research study, a new probabilistic prediction process
was introduced and recommended to solve and address the
solar energy prediction issue. To have an accurate forecasting
approach, a synthetic forecasting process based on BMA and
Ensemble learning was discussed. Additionally, the proposed
model was combined and evaluated with the improved ISOM
clustering K-fold cross-validation for the training process and
three-stage learner based LSTM, GRNN, and NARXNN. The
recommended approach was employed on different real-world
engineering case studies through different error criteria. The
obtained numerical analysis with different test results validates
the model, and the superiority and accuracy of recommended
prediction approach in comparison with other models.
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