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ABSTRACT: Low salinity waterflooding (LSWF) and its variants also known as smart water or ion tuned water injection have
emerged as promising enhanced oil recovery (EOR) methods. LSWF is a complex process controlled by several mechanisms and
parameters involving oil, brine, and rock composition. The major mechanisms and processes controlling LSWF are still being
debated in the literature. Thus, the establishment of an approach that relates these parameters to the final recovery factor (RFf) is
vital. The main objective of this research work was to use a number of artificial intelligence models to develop robust predictive
models based on experimental data and main parameters controlling the LSWF determined through sensitivity analysis and feature
selection. The parameters include properties of oil, rock, injected brine, and connate water. Different operational parameters were
considered to increase the model accuracy as well. After collecting the relevant data from 99 experimental studies reported in the
literature, the database underwent a comprehensive and rigorous data preprocessing stage, which included removal of duplicates and
low-variance features, missing value imputation, collinearity assessment, data characteristic assessment, outlier removal, feature
selection, data splitting (80−20 rule was applied), and data scaling. Then, a number of methods such as linear regression (LR),
multilayer perceptron (MLP), support vector machine (SVM), and committee machine intelligent system (CMIS) were used to link
1316 data samples assembled in this research work. Based on the obtained results, the CMIS model was proven to produce superior
results compared to its counterparts such that the root mean squared rrror (RMSE) values for both training and testing data are
4.622 and 7.757, respectively. Based on the feature importance results, the presence of Ca2+ in the connate water, Na+ in the injected
brine, core porosity, and total acid number of the crude oil are detected as the parameters with the highest impact on the RFf. The
CMIS model proposed here can be applied with a high degree of confidence to predict the performance of LSWF in sandstone
reservoirs. The database assembled for the purpose of this research work is so far the largest and most comprehensive of its kind, and
it can be used to further delineate mechanisms behind LSWF and optimization of this EOR process in sandstone reservoirs.

1. INTRODUCTION

Extraction of hydrocarbon from mature reservoirs is a
challenging topic since only 30%−50% of the OOIP can be
recovered through primary to secondary stages.1 Thus,
producing part of the oil left in the reservoirs is of paramount
importance. Several EOR strategies from sandstone reservoirs
have been proposed and implemented in both experimental
and field trials.2−7 Among these approaches, waterflooding and
subsequently low salinity waterflooding (LSWF) remain an
attractive option.8,9 This method first gained recognition in the
1990s by research works conducted by Morrow and co-
workers.8,10−13 Several researchers have attempted to delineate

mechanisms behind the low salinity effect (LSE) by exploring

the impact of each parameter on the results.14−19 The

mechanisms of the LSE, which are categorized as brine/rock,

oil/brine, and oil/brine/rock groups,20 can be listed as follows:
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wettability alteration,21 multicomponent ion exchange,18 fines
migration,13 local pH increase,17 double layer expansions
(DLE),22,23 osmotic effect,24 microdispersion formation,25 and
viscoelastic effect.26 By reviewing the literature, one can
conclude that each of these mechanisms is directly or indirectly
dictated by several effective parameters relevant to the oil,
brine, and rock composition.27 Hence, exploring the relation-
ship between these parameters and the mechanisms of the LSE
and, in turn, the final recovery factor (RFf) is a superior task
for researchers in this area.
To this aim, several experimental studies28−31 as well as

modeling studies23,32−34 have been carried out. Austad et al.17

proposed that multiple ion exchange between Ca2+ on clay
sites with H+ from the injected brine induces a local pH
increase, which is a cause of wettability alteration and higher
oil recovery. In addition, acid/base reactions between crude oil
and OH− of the invaded brine also assist in desorption of polar
oil components from the rock surface. The increase in the pH
gradient due to the adsorption/desorption processes is
supported by the next research studies conducted by the
same group.35,36 Such observations have led to the establish-
ment of some conditions as the backbones of the LSE. These
conditions include the presence of clay particles, polar oil
components, and potential-determining ions (i.e., Ca2+, Mg2+,
and SO4

2−) in the connate water.17,37 However, some of these
conditions, such as the necessity of the presence of clay, have
been questioned since many works have observed the LSE in
the absence of clay.38−42 In support of the DLE mechanism,
Nasralla and Nasr-El-Din43 conducted several ζ-potential
experiments with various brine salinities and ion types (Na+,
Mg2+, and Ca2+). The results indicated the significant role of
Na+ in altering the surface charge at the oil/brine and brine/
rock interfaces, which was similar to higher oil recovery results
with sodium-rich brine compared to Mg2+ and Ca2+. In line
with that, Yang et al.44 also observed higher oil recovery with
NaCl (1509 ppm) compared to CaCl2 (961 ppm) brine with
similar ionic strength. They pinpointed that the presence of
Ca2+ generates strong bonds with polar oil components on the
rock surface, which induces retention of polar oil components
by lowering oil detachment. As per oil composition, the
literature provides strong bodies of evidence regarding the
impact of total acid number (TAN) and total base number
(TBN) of crude oils on oil production results.45,46 In this
regard, McMillan et al.47 proved the critical role of oil
composition in the wettability of the rock surface. They
observed that crude oils with heavy fractions (i.e., asphaltene
and resin) are in favor of observing the LSE rather than crude
oils with lower heavy ends. Results regarding lower oil recovery
with crude oils of higher TBN are reported by RezaeiDoust et
al.48 and Fjelde et al.49 They concluded that the presence of
basic components causes direct crude oil drop pining on the
clay surface, increasing the retention, and hence impairing
wettability alteration.
Similarly, many other experimental works aimed at shedding

light on mechanisms and conditions controlling the perform-
ance of the LSWF.50−54 Nonetheless, conventional exper-
imental investigations imply that studies under laboratory
conditions suffer from some issues including time and budget
constraints, uncertainty in the quality of the data obtained and
their reliability, the requirement of highly skilled personnel to
design and conduct laboratory experiments, and some other
common limitations of experimental research such as slight
differences in standards and procedures. In recent years, owing

to accumulation of a considerable amount of experimental data
including coreflooding experiments in sandstone reservoirs,
application of machine learning (ML) and artificial intelligence
(AI) has attracted interest in petroleum engineering research
ranging from EOR to flow assurance.55−63 As an example, AI-
based models are used to estimate distribution of unwanted
shale barriers in the SAGD procedure62 or provoke the
acquisition of real-time water saturation from readily available
well log data.63 Hassan et al.64 provided simple yet effective
models utilizing artificial neural network (ANN), support
vector machine (SVM), and fuzzy logic system (FLS)
approaches to determine the acid fracturing impact exerted
on the productivity of naturally fractured carbonates. It showed
that the FLS is a powerful predictive tool for well stimulation,
reservoir geomechanics, and permeability evaluation aspects.
Furthermore, AI models, especially the ANN, assisted in
foreseeing the capacity of propped hydraulic fractures to
conduit fluids in gas shale zones.65,66 In line with that, Artun67

utilized the ANN to recognize the connectivity between
injector and producer wells using neural network weights into
the features. In addition, the capability of ML methods in
reservoir simulation was assessed by Ghassemzadeh et al.68

through incorporating an extensive range of reservoir data and
creating a deep net simulator (DNS). The developed model
was able to address some issues in this area such as improving
slow computational time, which is common in conventional
physics-based simulators. Al-Gawfi et al.69 used genetic
programming to develop three generalized correlations for
the prediction of thermophysical properties of solvent/
bitumen mixtures such as viscosity, density, and solubility
with implications in the design of thermal- and solvent-based
bitumen recovery processes. The scientists used a compre-
hensive set of experimental phase behavior data to develop and
validate the correlations.
Despite the extensive application of AI in petroleum and

chemical enginering, very few research works have investigated
the performance of the LSWF in petroleum reservoirs via
developing intelligent predictive models.20,70−72 Different
predictive tools, such as the ANN, adaptive neural fuzzy
inference system (ANFIS), SVM, decision tree (DT), and
random forests (RF), assist in the estimation of LSWF
potential. Apart from these methods, other approaches, like the
least squares support vector machine (LSSVM), which is a
modified version of the SVM and extra tree (ET), are also
proposed and utilized.71 The developed ML solutions are
required to be accurate, reliable, and vigorous to allow
objective assessment of the LSWF performance. Several
statistical parameters including mean squared error, coefficient
of determination, and relative deviation aid in verification of
the developed models.72 Based on the data-driven analysis of
LSWF20 reported by Wang et al.,70 several models were built
such as the multiple linear regression (MLR), ANN, SVM, and
RF to conduct a comparative analysis and present an optimum
model with the best performance. The tertiary recovery factor,
which ranges from 0 to 16.2%, was chosen as the output
variable that has to be predicted. In total, 178 points were
collected for model development, from which 80% trained and
20% tested the models. The models were then optimized to
obtain reliable results. Thus, hyperplanes were optimized in the
SVM to get the maximum distance between data points. The
number of trees in the RF has ranged from 1 to 100 trees. Also,
in the ANN model, the number of hidden layers changed from
one to two with the number of neurons changing from 1 to 12.
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Input variables were divided into five subsets, each of which
covered certain interactions and were selected based on the
MLR results performed previously.20 The RF approach
demonstrated the highest R2 with an average value of 0.728
and was selected by the researchers as the optimum model.
The SVM approach showed the highest correlation between
brine and rock conditions and the recovery factor. Kondori et
al.71 applied a data-driven approach to assess the LSWF
performance. Three models, the LSSVM, ANFIS, and ET,
were built. Six input variables were selected to forecast the
recovery factor during low salinity waterflooding under
secondary oil recovery mode. They chose the rate of low
salinity brine injection, temperature, oil viscosity, rock
permeability, porosity, and brine salinity as parameters that
affect oil recovery. Overall, 257 data points were utilized, 90%
of which assisted in training models and the remaining were
left for testing. The reliability of models was evaluated by
relative error, mean squared error, mean average percentage
error, and R2. The trial-and-error approach was then applied to
identify the optimum depth and number of the trees. In the
described study, a maximum depth of 24 and 11 trees were
used. The R2 values reached 0.995 at the training stage and
0.934 at the testing stage. Among the applied data-driven
approaches, the highest mean squared error was observed in
the ANFIS model. This trend was explained by the complexity
of the model in choosing the correct membership function
types. The LSSVM assisted by the coupled simulated annealing
(LSSVM−CSA) approach resulted in good performance with a
total R2 of 0.988. The salinity of the injection brine was found
to have the highest impact on the recovery factor with the
importance of 29.12%. Recently, Hidayat and Astsauri72 used
RF regression to determine the significant parameters of LSWF
and to establish a correlation between the parameters and the
RFf. Using 1000 design of experiment parameters by CMOST
from CMG software, the temperature of reservoir and injected
brine, volume of injected brine, formation water, and injection
water composition from carbonate reservoirs were considered.
Based on the obtained results from the RF algorithm, the
concentration of SO4

2− in both formation water and injection
water followed by injection volume appeared to be the most
significant parameters in designing LSWF. However, these are
simulation results and not verified yet by any experimental
data. Mean squared error was used for sensitivity analysis. The
R2 score for five random state variations was reported to be
more than 0.9.
A close look into the literature implies that previously

developed smart models were developed based on a relatively
limited number of data despite the abundance of a notable
amount of experimental data in this subject area. In addition,
to reach a reliable predictive AI/ML-based intelligent model,
larger databases are required to overcome some deficiencies
presented in the current models. Owing to the great number of
experimental works published in credible journals on the
performance of LSWF in sandstone reservoirs on the core scale
now, it is possible to assemble a much larger database. Despite
the fact that the amount of uncertainty associated with the data
grows with growing the size of database due to some
shortcoming and inconsistencies in conducting some of the
experiments, a larger database allow the ML approaches to
learn more about the process. To this end, 1316 experimental
data points from 99 experimental studies reported in credible
journals and conference proceedings on the performance of
LSWF in sandstone reservoir rocks were collected. By

considering the RFf as the target parameter, four ML
algorithms, namely, the linear regression (LR), multilayer
perceptron (MLP), SVM, and committee machine intelligent
system (CMIS), were used for building new smart models. To
increase the model accuracy and reliability, removing low-
variance features, data imputation, assessment of data
collinearity, removal of outliers and duplicates, feature
importance, splitting, and scaling data were applied as
preprocessing stages. In addition, to assist with the process
of selecting the best model, several graphical and statistical
approaches were also used.
This paper is organized in four main parts. In the second

section (Methodology), Model Development, Data Gathering,
and Data Preprocessing, specifically Removing Duplicates and
Low-Variance Features, Missing Value Imputation, Collinearity
Assessment, Data Characteristics, Outlier Removal, Data
Scaling, and Hyperparameter Optimization, are described in
detail. In the third section, the performance of the model with
assessment of several statistical and graphical error functions
accompanied with the leverage method are discussed. Finally,
in the Results and Discussion section, feature selection,
selected model’s accuracy, outlier diagnosis, and EOR
implications are discussed.

2. METHODOLOGY
In this section, data preprocessing stages, hyperparameter
optimization techniques, different modeling techniques, and
optimization algorithms used in this research including linear
regression, multilayer perceptron neural network, support
vector machine, committee machine intelligent system, and
applicability domain concepts are described briefly.

2.1. Model Development. In this section, the develop-
ment of the AI models is presented systematically. At first, root
mean squared error (RMSE) (eq 11) was selected as the key
parameter for the cost function. The 10-fold cross-validated
RMSE is considered to check the performance of the
developed models. Different predictive models used in this
research work are shown in Figure 1. There are four families of
predictive models optimized by different methods. The details
are provided in the consequent sections.
For the hyperparameter optimization, a random seed

number is fixed for the training process. In other words, a
particular set of hyperparameters results in a unique error
value.

2.2. Data Gathering. Any reliable AI model can be
developed only by using precise, true, and comprehensive data.
Several parameters are introduced in the literature as
parameters affecting the LSWF efficiency. The majority of
these works are experimental studies. A thorough literature
survey was conducted with the aim of not only including the
available experimental data but also identifying the effective
parameters in a coherent, logical, and technically sound
m e t h o d o l o g y . I n t h i s r e g a r d , 9 9
studies3,5,8,11−14,16,26,30,31,35,38,43−45,47,48,73−152 were inspected
and analyzed carefully for the purpose of this research work.
Five general categories of rock (13 features), oil (eight
features), brine (22 features), and connate water properties
(22 features) as well as the operational parameters (five
features) were recognized. Rock properties include the core
physical properties and composition of the sandstone rocks,
including length (l, cm), diameter (d, cm), porosity (Φ, %),
brine permeability (Kb, mD), irreducible water saturation (Swi,
%), clay content (CClay, %wt), quartz content (CQ, %wt), mica
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content (CMic, %wt), calcite content (CCal, %wt), dolomite
content (CDol, %wt), carbonate content (sum of calcite and
dolomite contents) (CCar, %wt), anhydrite content (CA, %wt),
and feldspar content (CF, %wt). Density (ρ, g/cm3), viscosity
(μ, cP), total acid number (TAN, mg KOH/g), total base
number (TBN, mg KOH/g), saturates content (Saturate, %),

aromatic content (Aromatic, %), resin content (Resin, %), and
asphaltene content (Asphaltene, %) represent the oil proper-
ties. Recorded in different temperatures, ρ and μ were not used
directly; rather, the ratio of the mentioned parameters was
used to the absolute temperature. This method will not impose
any threat to our results since ρ and μ and the absolute
temperature have a ratio level of measurement. The ionic
concentrations were considered for both brine and connate
water, which include bicarbonate (HCO3

−, ppm), chloride
(Cl−, ppm), metaborate (BO2

−, ppm), fluoride (F−, ppm),
nitrate (NO3

−, ppm), bromine (Br−, ppm), azide (N3
−, ppm),

sodium (Na+, ppm), potassium (K+, ppm), lithium (Li+, ppm),
sulfate (SO4

2−, ppm), magnesium (Mg2+, ppm), calcium (Ca2+,
ppm), barium (Ba2+, ppm), strontium (Sr2+, ppm), carbonate
(CO3

2−, ppm), ferrous (Fe2+, ppm), dithionite (S2O4
2−, ppm),

ferric (Fe3+, ppm), total monovalent ions (MI, ppm), total
divalent ions (DI, ppm), and salinity (S, ppm). The
operational parameters are the controllable testing conditions
set by the operator. The temperature (T, °C), injection flow
rate (Q, mL/min), aging time (t, h), initial recovery factor,
(RFi, % OOIP), and the flooding stage (secondary or tertiary)
were considered for the operational parameters. All of the
considered parameters in this research work are numeral values
except for the flooding stage, which is separated into secondary
and tertiary stages. Either the final oil recovery (RFf, % OOIP)
or the incremental oil recovery (which is the difference
between the RFf and RFi) can be used as the target parameters.
We have selected the final oil recovery as the target parameter
here. Despite the importance of RFi, recent modeling papers
have disregarded this parameter in their analysis. For example,

Figure 1. Different methods developed and tested in this research
work. The MLP and SVM will be subjected to the hyperparameter
optimizations of AL and RS.

Table 1. Independent Variables Used in This Studya

aThe removed low-variance features are shown in this table.
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Kondori et al.71 modeled recovery factors spreading from 33 to
93%. As a rule of thumb, this range implies the RFf values as
the target value. Neglecting RFi could carry deceptive
information such that the two cases with the RFf equal to
50% but with various incremental oil recoveries can be
interpreted alike. The same goes for the studies that only used
incremental oil recoveries. For example, Wang and Fu20 and
Wang et al.70 have used the incremental oil recoveries and
provided no details about the RFi.
2.3. Data Preprocessing. In this section, a comprehensive

and rigorous approach is presented for data preprocessing.
Processes such as data gathering, removal of duplicates and
low-variance features, missing value imputation, collinearity
assessment, data characteristics, outlier removal, feature
selection for modeling, data splitting, and data scaling are
described in detail.
2.3.1. Removing Duplicates and Low-Variance Features.

Two main types of duplicates, namely, Type I and Type II,
should be properly treated. Type I duplicates represent data
samples for which both independent and dependent
parameters are identical. For such cases, the procedure is to
maintain the first instance and remove the rest. Type II
duplicates, which are less common compared to its counter-
part, identical independent variables, result in different target
values. For these cases, although a set of variables can be
selected as the proper one based on the domain experts’
discretion, they are all removed in this research work. Low-
variance features are parameters with a fixed value for most of
the data samples. For example, for a particular phenomenon,
all the tests (i.e., 1000 samples) are performed under room
conditions but one study has reported the results for the same
phenomenon at elevated temperatures (i.e., two samples). A
feature having just one value is called a zero-variance feature.
Such features do not make a positive contribution to the
modeling. Hence, it is suggested to remove them to decrease
the computation load. For this, a threshold value should be
defined. It is worthwhile mentioning that the data should be
normalized before calculating the variance as it is a distance-
based property. Herein, the data are normalized in the range of
[0 1] before calculating the variance. The low-variance features
were determined as those having variances below 0.005 (99.5%

of values are the same). Removing columns and rows might
result in emerging duplicates or low-variance columns,
respectively. Consequently, elimination should be done in a
loop until no such undesired data remains.
In this process, three Type I and 33 Type II duplicates were

identified and removed from our database. Table 1 shows the
removed low-variance features from the database including no
operational parameter, three rock properties, one oil property,
12 injected water properties, and 10 connate water properties.
The crossed line denotes that the parameter is removed.
Subsequently, the size of the database became 1280 rows × 45
columns, in addition to the target.

2.3.2. Missing Value Imputation. Usually, the experimental
works lack some of the information reported in Table 1, such
as the oil properties or the rock composition. The simplest
method to remedy the missing values is to easily drop either
the corresponding row or column, though this method will
result in losing valuable information. This will negatively
influence the ability of AI methods in learning as much as
possible about the EOR process. Hence, missing data
imputation can serve as the best option to prevent missing
valuable information from the experimental data published in
the literature. Imputation can be done using a middle point
(mean, mode, or median) or by a modeling algorithm that
predicts the missing values based on the other parameters. If
the number of missing values is too high, imputation is not
effective. Thus, the number of each feature should be checked
before applying any imputation method. Missingno and
Bilogur153 used a suitable tool to depict the existing missing
values. Figure 2 depicts the missing values in the database
gathered for the current research work. As one can see, lots of
missing values exist for some parameters, especially for oil
properties. Imputation will be associated with high levels of
uncertainty if the percentage of missing values exceeds a
threshold value. Thus, dropping is the best treatment for such
features. In this research work, a threshold of 50% was
considered, based on which three features, Saturate, Aromatic,
and Resin, with respective missing value percentages of 86.25,
86.25, and 85.47%, were removed from the database.
Asphaltene with a missing percentage of 47.89% was deemed
to survive. It should be mentioned here that the mean value

Figure 2. Depiction of missing values in the database. The empty sections of the database are shown as blank areas.
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Figure 3. Collinear features in the database. The mentioned values depict the Pearson R. The color bar provides a graphical comparison among the
R values.

Table 2. Independent Variables Used in This Studya

aThe removed collinear features are shown in this table.
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was used for imputation in this research work. The database
was checked for the low-variance features after imputation
again. As a result, CA was removed. After this stage, the
database size became 1280 rows × 41 columns.
2.3.3. Collinearity Assessment. The presence of collinear

independent parameters in a database is common, especially
for those having a large number of independent parameters.
Such features just increase the complexity of the model and do
not make a positive contribution. The Spearman correlation
factor (R) is the preferred option to assess the collinearity
among the independent parameters for the non-normal
distribution of the features’ data. This parameter is assessed
mutually between just two features. The correlation matrix
heatmap is the best tool to depict the R values. A threshold
value is defined in a way that values above the threshold
indicate collinearity. In this research work, the threshold value
is set at 0.9. In this sense, more than two parameters may be
collinear and when they are recognized, just one should be
retained, and the others should be dropped. The variance
inflation factor (VIF) shows the multicollinearity among the
independent values and can be used as the criterion for this
purpose. Lower VIF values denote a better condition regarding
multicollinearity. For the collinear features, the one with the
least VIF value is retained, while the rest are dismissed. Figure
3 depicts the correlation matrix heatmap for the collinear
features. As is shown, only the injected water features are
involved with collinearity. For the connate water, two features
are collinear, thus one should be selected. The VIF values for
MI and S are 534.70 and 310.14, respectively. Based on the
mentioned procedure, we kept the S and removed the MI. By
removing the collinear features, the VIF values tremendously
decrease. For example, this parameter for S underwent an
about 60-fold decrease and reached 5.28. After this
modification, the average for the VIF values decreased from
74.98 to 21.76. Table 2 shows the remaining and removed
features during this process. Such reductions decreased the
number of rows and columns in the database to 1280 rows ×
37 columns.
2.3.4. Data Characteristics. Table 3 lists the statistical

parameters of the used features. To have an easy and fast
understanding of the data distribution, the box plot for each
parameter is provided too. It is worthwhile mentioning that the
standardized values are applied for this plot to secure our

judgment upon scale diversity. After standardizing, the data
vector represented standard deviation and average values of 1
and 0, respectively:

=
− ̅

X
X X

SD
i

i

Standard
Original Original

Original (1)

Figure 4 depicts the box plot. In this plot, the green
rectangle, green horizontal line, and red asterisks denote
average, median, and fliers, respectively. The height of the blue
box represents the interquartile range (IQR).

2.3.5. Outlier Removal. The outliers in the preprocessing
stage are those data samples that are far from the majority of
data, though they are not wrong. These data are called
interesting outliers and should be studied in a separate devoted
study. For example, Figure 4 suggests that there is at least one
extreme value for CQ, which is far different from the other data
points. This point corresponds with two 0 values data samples
reported by Al-Saedi et al.145 Excluding these values, the lowest
value for quartz content is 34.9%, which is a great gap in data.
The inclusion of this point worsens the data distribution,
diverting it from normality. Additionally, due to the lack of
data for CQ in a range of 0−34.9, the developed model will
have unstable and poor results if tested for a data sample in this
range. Hence, such points should be removed before modeling.
In this research work, a threshold limit equal to 9 times the

standard deviation (SD) from the mean value was used in this
regard. Through applying this method, 70 interesting outliers
were removed from the database that correspond to 5.47% of
the database, which is a reasonable amount. The database was
checked for the low-variance features after outlier removal. At
this step, Cl− for the connate water was removed. Afterward,
1210 rows and 35 columns plus the target remained in the
database.

2.3.6. Data Scaling. Data scaling accelerates optimization
speed. Additionally, it prevents the undue effects of large-scale
features. The standard scaling, eq 1, is used for the scaling of
points. As a result, data will have a mean value equal to 0 and a
standard deviation equal to 1. The scaler is first fitted on the
training dataset and then is applied on the testing dataset.
Using the scaled data, all the features, regardless of their
different scale, would have the same effect on the modeling.

Figure 4. Box plot for the used data in this research work for the total database. The rectangular box and the red asterisks show the IQR and fliers,
respectively.
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2.3.7. Hyperparameter Optimization. Each model contains
some hyperparameters and parameters. The former is set
before the training process and substantially affects model
performance. Application of optimum values of hyper-
parameters guarantees maximum performance of the devel-
oped models. The basic way to find the best hyperparameters
is through a trial and error process. This is done by changing
the values and monitoring corresponding changes in the
results. Nonetheless, this method is time-consuming and it fails
to define the optimum values in most cases. Grid search is
another method that discretely explores the searching space by
examining all the possible combinations of predefined values.
Another approach is the random search (RS), which does not
have the limitation of discrete exploring. Hyperopt154 is a
Python library developed for hyperparameter optimization,
which is suitable for both categorical and numerical searching
spaces. Two optimization methods provided by this library, RS
and annealing (AL), are used in this research work.
2.4. Data Visualization Using William’s Plot. The

graphical illustration of the applicability domain (AD) can be
presented by William’s plot, where the horizontal axis is for
leverages and the vertical axis is for standardized deviation
(SDi):

155

=
∑ × −=

D

D h
SD

(1 )
i

i

N i
N

i i
1

1
2

(2)

where Di represents the deviation.
The cutoff value for leverages is h* and for SDi are ±3. Thus,

if the data sample has hi < h* and is bounded in the range of
−3 < SDi < 3, then it lies in the AD of the developed model
and is referred to as good high-leverage. The data beyond that
area are identified as outliers or bad high-leverage data.

3. COMPUTATIONAL PROCEDURE
An overall 1316 data samples including 70 independent
variables are gathered from 99 research studies published in
the literature. Several processing techniques were used for this
database through which both the size and dimension of the
database were decreased in an attempt for optimization. The
standard training−testing technique is used in this research
work. The training dataset is used to determine the model
parameters. A 10-fold cross-validation will control the model
for preventing overfitting. In other words, it shows the
simulation’s stability. The testing dataset is not introduced to
the model during the training phase. It has no role in
optimizing either model’s hyperparameters or parameters. In
this research work, the database is split into two subsets of
training and testing in the ratio of 80:20. During the training
process, the results obtained from the validation dataset
determine which model passes to the next iteration. On the
other hand, to compare the developed models, the accuracy for
the testing dataset determines which model is the best in terms
of accuracy. In addition, the applied models in this work
include the linear regression (LR), multilayer perceptron
neural network, support vector machine, and committee
machine intelligent system. A brief description of these models
is provided in the next section.
3.1. LR and Machine Learning Algorithms. The models

used in this research work are provided by the Scikit-learn156

library for python. A brief discussion of which is as follows.
3.1.1. Linear Regression. The LR is a simple model aiming

at providing a predictive model by a simple linear equation. In

this method, a constant is assigned for each parameter and a
bias term is introduced. Hence, if there are m independent
parameters, which are also called regressors, m + 1 coefficients
should be determined. These coefficients will be determined
using the ordinary least squared method. Clearly, this method
is a white-box approach and is easy to interpret. An ordinary
least squared method was used to determine the coefficients of
the following equation:

∑ × +
=

a P a
i

N

i i
1

0
(3)

The scaled parameters are not used for this method. The 10-
fold cross-validated RMSE was calculated and checked for 100
trials. The optimized coefficients and biases are listed in Table
4 by 10 significant figures. The best 10-fold cross-validated
error was determined as 13.1773.

3.1.2. Multilayer Perceptron. The objective of an ANN
model is to investigate complex nonlinear relationships. Several
ANNs differ from each other in various aspects. The most
popular one is MLP, which is a layered-structure model with
input, hidden, and output sublayers. Each of these sublayers
has a certain number of neurons or nodes, where the nodes of
one layer are interconnected with nodes from the other one.
The connection to each node carries a weight, the value of
which can be uniform, random, or predetermined.157 The
number of neurons in the input/output layers is in agreement
with the number of input/output variables. The MLP networks
are trained by optimizing the weights and biases for each
connection via several iterations until the output values are
close enough to the experimental ones. This process continues
until the minimum errors and best predictive performance are
obtained.
The Scikit-learn156 library provides several hyperparameters

for MLP. If the user does not set values, the default ones will
be used for the model development. Regarding the size of the
database for this research work, the most important hyper-
parameter is the number of hidden layers as well as the number
of neurons in them. The Hyperopt154 receives a range as the
searching space. Both numbers of hidden layers and the
contained neurons are set by one parameter. For example, (12)
and (8, 6, 2) denote networks with one hidden layer
containing 12 neurons and 3 hidden layers with 8, 6, and 2
neurons, respectively. A maximum of two hidden layers with
overall neuron numbers of 30 was considered for this research

Table 4. Optimized Coefficients for the Developed LR
Model

Pi ai

RFi, % OOIP 0.174403184
l, cm −0.103002000
TAN, mg KOH/g −3.037204816
Kb, mD −0.000759568
Swi, % −0.18244322
Φ, % 0.159497675
Q, mL/min 0.867920573
Na+, ppm 0.000139149
Ca2+, ppm 0.000249526
ρ, g/cm3 363.239017
d, cm 2.997792449
a0 41.75870739
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work. The solver was introduced manually as “lbfgs”. A
comparison between two different optimization algorithms for
the hyperparameters is presented in Figure 5 and Table 5. In

Figure 5, the vertical axis denotes the 10-fold cross-validated
RMSE for the scaled data. As it is evident, the RS method has
yielded superior results to the AL method.

After determination of the optimum structure for the model,
the fixed random seed number for the training was removed to
find the best predictive model. This change enables different
paths for the training. For this purpose, training was repeated
for 100 iterations. The best error value was determined to be
0.5915.
3.1.3. Support Vector Machine. The support vector

machine (SVM), which is developed based on the Vapnik−
Chervonenkis theory, is a classifier that separates the data into
two or several classes. The SVM deals with the generalization
problem, which refers to the performance of the model with
unseen data. In addition, this method works well with a dataset
in which the number of features is more than the number of
samples.158,159

The most two important hyperparameters for SVM are the
regularization parameter (C) and kernel coefficient (gamma).
The search space was introduced to the Hyperopt154 to find
the optimum values. For this problem, both the search spaces
are of continuous type. The results of optimization are shown
in Figure 6 and Table 6. As is shown, the AL has yielded a
better error equal to 0.5769.
3.1.4. Committee Machine Intelligent System. Several

techniques can be used in the AI modeling process to identify
the most suitable model. In the end, only the model with the
best performance is selected, while the rest are discarded. In
this regard, the CMIS method has been developed to address
this deficiency.160 This model is grounded on the “divide and
conquer” principle, which implies the splitting of complex tasks
into several parts, which are solved separately. The results of
each part are then combined and represent the solution for

that given computational task. The learning procedures are
performed by experts presented by neural networks, and the
combination of which leads to the building of a Committee
Machine (CM). Thus, solutions obtained from each expert are
grouped and evidently will dominate solutions from individual
models.161 Classification of committee machines occurs by
their structures, namely, static and dynamic structures.162

The combination of networks is the main component in CM
construction. Thereby, the method of combining should be
carefully selected. One of these methods is linear averaging,
where simple or weighted averaging can be used.163 The
weighted averaging is commonly used because the solutions
are grouped per their accuracy.
The CMIS model intends to explore a superior solution

using the already constructed models. An approach like
weighted arithmetic averaging with a bias term was used in
this regard. No restriction was applied to make the sum of
coefficients (without bias term) equal to unity. In fact, it is
similar to the LR method. The expert integration of CMIS can
be expressed using the following equation:

= × + × + × +Y a Y a Y a Y ai i i i
CMIS 1 LR 2 MLP 3 SVM 0 (4)

The best developed model for each model family is utilized
for the CMIS. Here, the original values were used not the
scaled ones. The optimum coefficients were determined after
100 trials. The determined optimized values are shown in
Table 7. The best 10-fold cross-validated RMSE value was
determined to be 4.5091.

4. MODEL PERFORMANCE EVALUATION
In this section, different statistical error functions and graphical
approaches along with the leverage method used to assess each
model’s accuracy are discussed.

4.1. Statistical Error Analysis. Different statistical
approaches were adopted for model assessment in this study,
including the coefficient of determination (R2), root mean
squared error (RMSE), standard deviation (SD), mean relative

Figure 5. Convergence of the hyperparameters to the optimum state
for the MLP model. RS has shown a better performance.

Table 5. Optimized Values Acquired by Different Methods
for the Developed MLP Model

range RS AL

hidden layer size (1, ) to (30, 30) (13, 18) (17, 5)
best error 0.6155 0.6159

Figure 6. Convergence of the hyperparameters to the optimum state
for the SVM model. AL has shown a better performance.

Table 6. Optimized Values Acquired by Different Methods
for the Developed SVM Model

range RS AL

C 0−10 9.049678 5.276798
gamma 0−1 0.195621 0.27791
best error 0.5775 0.5769
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Table 7. Optimum Coefficients for the Developed CMIS Models

coefficients

best error a1 a2 a3 a0

4.5091 −0.0594932181 0.2786232151 0.7762859660 0.2130974135

Table 8. Statistical Parameters for the Developed Modelsa

model subset RMSE MARD MRD R2 SD N

LR training 13.143 9.687 1.658 0.2039 13.143 968
testing 13.199 9.732 1.394 0.1975 13.198 242
total 13.154 9.696 1.605 0.2024 13.154 1210

MLP training 5.441 3.790 0.298 0.8636 5.441 968
testing 8.293 5.818 0.102 0.7032 8.293 242
total 6.119 4.195 0.259 0.8282 6.119 1210

SVM training 4.750 2.797 0.478 0.8969 4.749 968
testing 8.070 5.567 0.236 0.7044 8.067 242
total 5.575 3.351 0.430 0.8569 5.574 1210

CMIS training 4.622 2.810 0.247 0.9015 4.622 968
testing 7.757 5.267 0.072 0.7307 7.755 242
total 5.397 3.301 0.212 0.8661 5.397 1210

aThe best values for the total dataset are in bold. The CMIS has yielded the best performance considering all the parameters.

Figure 7. Relative deviation distribution plot for (a) LR, (b) MLP, (c) SVM, and (d) CMIS. The distribution for the CMIS model is closer to the
normality compare with the other models.
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deviation (MRD), and mean absolute relative deviation
(MARD) were calculated for each model. The corresponding
equations are shown below:
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Each dataset is statistically analyzed. The best accuracy
values for the testing dataset in Table 8 are in bold.
Considering all of the statistical parameters, the CMIS model

has yielded the best results. The accuracy of the developed
models is in the order of CMIS > SVM > MLP > LR. Although
the CMIS has shown superior statistical error values, its
computational cost is much higher than the individual models.
Considering this fact, the SVM can be selected as the best
model. The developed models in this study are all data-based.
A general drawback with such models is that they might not be
able to consider the physics of the process. This limitation can
be mitigated by using a larger database. For this study, all the
available reported data were gathered for model development.
The other limitation with the MLP and SVM models is the fact
that they are black boxes. The developed models are provided
in a user-friendly interface as the Supporting Information.
They receive the input parameters in an excel file and deliver
the prediction in another excel file. The instruction on how to
use the software is provided in the Supporting Information.

4.2. Graphical Error Analysis. Herein, the RDi distribu-
tions for all of the constructed models are compared (Figure
7). Herein, Figure 7a presents the distribution for the LR
model, (b) for the MLP, (c) for the SVM, and (d) for the
CMIS model. A roughly symmetrical distribution around zero
is observed as one can see in Figure 7. The LR shows one
extreme RDi value of more than 60%. The positive value
denotes an overprediction. The CMIS has the best symmetry
with an MRD value of 0.072%. As is clear, the CMIS has the
most compact plot around zero.

4.3. Leverage Method. To estimate the model reliability,
its applicability domain must be identified. Applicability
domain refers to the determination of outliers, which is a
datum, or group of data. Outliers differ from the bulk of data
and thereby should be eliminated. The leverage approach is a
commonly used method for outlier determination.164 The

Figure 8. Features’ importance of a DT-based model developed by (a) 35 and (b) 11 independent features. As shown here, the top 11 important
features shown in the subplots are not identical.
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leverages or hat values (hi) are estimated by using the Hat
matrix (H), which is given in eq 13:

= −H X X X X( )T T1
(13)

where H is the Hat matrix, X is an l × m matrix, in which l
refers to the data points and m denotes the input parameters,
and XT indicates the transpose matrix X. The diagonal
elements of a given Hat matrix are known as hi.
The threshold leverage, known as the warning leverage (h*)

above which data is reported as distant, is determined by

* = × +
h

N
b

3
( 1)

(14)

where N is the number of model parameters and b is the
number of data used for model training.

5. RESULTS AND DISCUSSION

In this section, first, the feature selection followed by models’
accuracy, flow assurance, and EOR implications is presented
and discussed.

5.1. Feature Selection for Modeling. Overfitting is a
common problem in AI modeling practices associated with a
large number of independent parameters.165 Furthermore,
irrelevant features impose unfavorable influences on the
performance of a wide range of models.166 These facts dictate
the importance of recognizing relevant features before

Figure 9. RMSE values for the models developed by different numbers of features. After passing the 11 features, the RMSE sharply increases.

Table 9. Selected Independent Features for Modelinga

aThe excluded variables during the preprocessing stage are crossed out.
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modeling, through a process called feature selection. Some
predictive models such as the DT give the features’ importance
after the modeling was developed. In this way, it is possible to
sort features based on their contribution to the modeling. At
this point, the least important parameter is excluded and the
modeling process is repeated again. This process can be
continued until the desired number of features remains. The
process of removing the least important feature in a stepwise
way is called recursive feature elimination (RFE). Features’
importance for the model developed by the whole 35 features
is shown in Figure 8. It also shows that the top 11 important
features shown in the subplots are not identical. This implies
that the RFE method has considered the effect of independent
parameters on each other.
The box plot for the 10-fold cross-validated models

developed by the different number of input features is shown
in Figure 9. The vertical axis shows the RMSE value. This plot
indicates the existence of several irrelevant features. Although
the best mean RMSE value is acquired for the 23 features,
dropping more features does not considerably affect the
RMSE. In this research work, 11 parameters were chosen for
modeling since removing more features results in a relatively
large jump in RMSE. Table 9 lists the selected and dropped
features. All five categories have at least one representative.
The important features selected by our model are in line with
many of the experimental works reported in the liter-
ature.17,44,167,168 Jadhunandan167 and Al-Nofli et al.169 proved
the important role of the initial water saturation as well as
brine composition in the wetting state of the rocks. They
observed that a higher concentration of Ca2+ cations along
with lower initial water saturations reduces the water wetness.
Yang et al.44 observed that waterflooding with NaCl brine
improved the oil recovery, while with CaCl2 brine with similar
ionic strength, the improvement in oil recovery was not
observed. This observation is explained based on the strong
linkage between calcium ions and the rock surface coupled
with the lack of capability for these cations to replace polar oil
components on the rock surface. Austad et al.17 observed more
oil recovery with crude oils with higher z and low TBN
compared to crude oils with low TAN and high TBN values.
This is so since the basic components of crude oil are also able
to attach to the silica surface and render its wettability
condition.
5.2. Model Accuracy. As previously mentioned in this text,

the CMIS has yielded the best performance. Hence, additional
graphical accuracy analyses are provided only for the CMIS.
The cross plot in which the vertical and horizontal axes are
predicted and experimental RFf, respectively, is shown in
Figure 10. As one can see in Figure 10, the majority of the data
points are concentrated in the close vicinity of the bisector line
for both training and testing datasets. In addition, most of the
points are accumulated between 30 and 90%. This was already
shown by the box plot (Figure 4).
The RDi based on the RFf is shown in Figure 11. The

maximum and minimum RDi values are about 60 and −40,
respectively. However, most of the RDi values are bounded in a
range of −20 to 20.
Simultaneous representation of experimental and predicted

RFf values versus the data point index is shown in Figure 12.
The purple diamonds and blue solid lines are the experimental
and predicted values, respectively. This figure shows that the
model forecasting with very few exceptions interconnects most
of the experimental data.

ARDi distribution for the CMIS model over the two-
dimensional region of the most influential parameter (RFi, %
OOIP) and the other input parameters are shown in Figure 13.
As one can see here, the majority of ARDi values are less than
2% for the upper half of the RFi and % OOIP values. For the
same input variable, the greatest values of ARDi have happened
for values less than 20%. As indicated on the subplot (h), the
model has shown poor performance for Ca2+ (ppm) in the
close vicinity of 20,000 ppm for which the ARDi is as high as
about 47%.
A visualized cumulative frequency of ARDi (%) for the

developed LR, MLP, SVM, and CMIS models is presented in
Figure 14. The cumulative frequency is plotted against the
ARDi (%). As one can see, the CMIS, SVM, and MLP have
performed much better than the LR. In other words, this plot
compares the models with portions of the database predicted
with absolute errors less than a typical ARDi. For example, the
CMIS, SVM, MLP, and LR models have predicted,
respectively, about 93, 91, 90, and 63% of the dataset with
the ARDi values of ≤10%.

5.3. Outlier Diagnosis. William’s plot is used to analyze
the measurement outliers for the CMIS model (Figure 15).
The h* and residual limits bound the safe zone, which is
bounded by the SDi = ± 3 (horizontal green lines) and h*
(purple vertical line). As evident, most of the data points are
located in this zone. One reason for the absence of the high-
leverage data is excluding the interesting outliers in the
preprocessing step. As shown in Figure 15, there are 15 and 19
outliers for the training and testing datasets, respectively. The
34 outliers are listed in Table 10 with their SDi and hi.

5.4. EOR Implications. Providing reliable and accurate
predictive AI models can help with better performance
production, process design, and optimization concerning
LSWF in sandstone reservoirs. In addition, the database
assembled during the process of this research work can be used

Figure 10. Cross plot of the predicted and experimental RFf values for
training and testing dataset for the CMIS. Accumulation of majority
of the data points around the bisector line shows performance of the
model.
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by researchers to further our understanding about mechanisms
behind LSWF in sandstone reservoirs.

6. CONCLUSIONS
In this research work, first, a comprehensive database of 1316
data points was assembled from 99 experimental studies on
LSWF in sandstone reported in the literature. This is so far the
largest database ever collected or reported. Then, the database
was analyzed for removing problematic samples and recogniz-
ing the most relevant input variables. For this, several statistical
operations including processes such as duplicate and low-
variance feature removal, missing value imputation, collinearity
assessment, outlier removal, and feature selection for modeling

were performed. In the next step, four different predictive
models of LR, MLP, SVM, and CMIS were developed and
their performance and applicability domain were analyzed
using different statistical and graphical methods. The main
finding of this research work can be summarized as follows:

1. Analysis of the experimental data collected from the
literature revealed that the influential parameters on the
LSWF performance could be categorized into five
general categories of rock, oil, brine, connate water
properties, and operational parameters.

2. Using a recursive feature elimination, the most relevant
parameters were recognized as Q (mL/min), RFi (%

Figure 11. Relative deviation plot for training and testing data. The more accumulation of data points close to the zero line, the more accurate the
model.

Figure 12. Simultaneous depiction of predicted and experimental values based on the index of data points for (a) training and (b) testing datasets.
As is illustrated, the CMIS model follows the experimental values.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c05493
ACS Omega 2021, 6, 32304−32326

32318

https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05493?fig=fig12&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c05493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


OOIP), l (cm), d (cm), Φ (%), Kb (mD), Swi (%), ρ (g/
cm3), Na+ (ppm), and Ca2+ (ppm). These statistically
determined important features represent all of the five

categories of independent variables and were in line with
numerous experimental works reported in the literature.

Figure 13. Contour map analysis of the prediction error for the CMIS model developed in this research work for (a) RFi (% OOIP) versus l (cm),
(b) RFi (% OOIP) versus TAN (mg KOH g), (c) RFi (% OOIP) versus Kb (mD), (d) RFi (% OOIP) versus Swi (%), (e) RFi (% OOIP) versus Φ
(%), (f) RFi (% OOIP) versus Q (mL/min), (g) RFi (% OOIP) versus Na+ (ppm), (h) RFi (% OOIP) versus Ca2+ (ppm), (i) RFi (% OOIP)
versus ρ (g/cm3), and (j) RFi (% OOIP) versus d (cm).
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3. Among the developed models, the CMIS showed the
best performance by RMSE values of 4.622 and 7.757
for the training and testing datasets, respectively. The
corresponding MARD values were 2.810 and 5.267%,
respectively. Additionally, a mean relative deviation of
0.072% was demonstrated symmetrical error distribution
for this model.

4. Analysis of the applicability domain determined 34 data
samples as calculation outliers. This amount was
equivalent to 2.8% of the database used. The outliers
included 15 and 19 samples belonging to the training
and testing datasets, respectively. In addition, five high-
leverage samples were detected. This low amount of
calculation outliers depicts the generality of the
developed model.

5. The findings of this study can be used to further
delineate mechanisms behind LSWF and optimization of
this EOR process in sandstone reservoirs.

Figure 14. Cumulative frequency of error for the four models
developed in this research work. The best models are in the order of
CMIS > SVM > MLP > LR.

Figure 15. William’s plot for the CMIS model developed in this research work. The great portion of the data points is rested in the safe zone
bounded by ±3 SDi and h*.

Table 10. Outlier Data Detected by the William’s Plot

index
RFf,

% OOIP

predicted
RFf,

% OOIP hi SDi dataset
leverage
status

1 32.3 53.169 0.004 3.875 training low
2 72.68 50.782 0.004 −4.066 training low
3 20.16 51.046 0.004 5.735 training low
4 12.79 40.268 0.006 5.106 training low
5 79.8 58.511 0.004 −3.954 training low
6 91.4 74.459 0.005 −3.146 training low
7 82.4 54.913 0.004 −5.104 training low
8 55.7 72.019 0.005 3.031 training low
9 40.4 58.500 0.004 3.361 training low
10 84.09 61.204 0.004 −4.248 training low
11 52 30.578 0.004 −3.978 training low
12 54.42 73.158 0.035 3.534 training low
13 50.34 73.281 0.035 4.327 training low
14 27.34 47.007 0.004 3.652 training low
15 78.1 61.155 0.004 −3.146 training low
16 44.2 62.732 0.006 3.444 testing low
17 75 56.019 0.009 −3.533 testing low
18 67.93 45.390 0.004 −4.185 testing low
19 50 68.748 0.009 3.489 testing low
20 46.7 45.560 0.041 −0.216 testing high
21 52.1 51.187 0.041 −0.173 testing high
22 63 58.958 0.073 −0.778 testing high
23 73 53.960 0.005 −3.537 testing low
24 73.9 55.044 0.004 −3.501 testing low
25 90 67.921 0.005 −4.102 testing low
26 65.42 49.059 0.007 −3.041 testing low
27 38 20.976 0.003 −3.160 testing low
28 56.8 30.516 0.004 −4.881 testing low
29 75.3 52.602 0.005 −4.217 testing low
30 20.43 44.796 0.018 4.556 testing low
31 57.5 58.180 0.052 0.129 testing high
32 81 56.865 0.008 −4.490 testing low
33 72 55.766 0.004 −3.014 testing low
34 48.4 60.384 0.044 2.271 testing high
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AL annealling
ANFIS adaptive neuro fuzzy inference system
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CM committee machine
CMIS committee machine intelligent system
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DLE double layer expansions
DNS deep net simulator

DT decision tree
EOR enhanced oil recovery
ET extra tree
FLS fuzzy logic system
LR linear regression
LSE low salinity effect
LSSVM least squares support vector machine
LSWF low salinity waterflooding
ML machine learning
MLP multilayer perceptron
MLR multiple linear regression
N.A. not available
OOIP original oil in place
RBF radial basis function
RF random forest
RFf final recovery factor
RFi initial recovery factor
RS random search
SAGD steam-assisted gravity drainage
SVM support vector machine
Parameters
ARDi absolute relative deviation, %
Aromatic aromatic content, %
Asphaltene asphaltene content, %
b number of data used for model training
Ba2+ barium ion content, %
BO2

− metaborate ion content, %
Br− bromine ion content, %
C regularization parameter for the SVM model
CA anhydrite content, %wt
Ca2+ calcium ion content, %
CCal calcite content, %wt
CCar carbonate content, %wt
CClay clay content, %wt
CDol dolomite content, %wt
CF feldspar content, %wt
Cl− chloride ion content, %
CMic mica content, %wt
CO3

2− carbonate ion content, %
CQ quartz content, %wt
d diameter of the core, cm
Di deviation, %
DI total divalent ions, %
F− fluoride ion content, %
Fe2+ ferrous ion content, %
Fe3+ ferric ion content, %
gamma kernel coefficient for the SVM model
H Hat matrix
h* warning leverage
HCO3

− bicarbonate ion content, ppm
hi Hat values
IQR interquartile range
k Kurtosis value
K+ potassium ion content, %
Kb brine permeability, mD
l length, cm
Li+ lithium ion content, %
m input parameters
MAPE mean absolute percentage error
MARD mean absolute relative deviation, %
max maximum value
mean mean value
median median value
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Mg2+ magnesium ion content, %
MI total monovalent ions, %
min minimum value
mode mode value
MRD mean relative deviation
MSE mean squared error
N number of data points
N3

− azide ion content, %
Na+ sodium ion content, %
NO3

− nitrate ion content, %
Q injection flow rate, mL/min
Q1 first quartile
Q3 third quartile
R Spearman correlation factor
R2 coefficient of determination
range range value
RDi relative deviation, %
Resin resin content, %
RFf final oil recovery, % OOIP
RFi initial recovery factor, % OOIP
RMSE root mean squared error, %
s skewness value
S salinity ion content, %
S2O4

2− dithionite ion content, %
Saturate saturate content, %
SD standard deviation, %
SDi standardized deviation, %
SO4

2− sulfate ion content, %
Sr2+ strontium ion content, %
Swi irreducible water saturation, %
T temperature, °C
t aging time, h
TAN total acid number, mg KOH/g
TBN total base number, mg KOH/g
Var variance value
VIF variance inflation factor
XT transpose matrix X
μ viscosity, cP
ρ density, g/cm3

Φ porosity, %
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