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A B S T R A C T   

Breast cancer is one of the most common and deadly diseases in women, which can also affect men. Early 
detection and treatment of this disease can increase the chances of cure. Currently, there are many different 
approaches to breast cancer screening, each of which has its own advantages and disadvantages. Thermography 
is one of those breast cancer screening methods that is considered safe and non-invasive. The approach with new 
image processing and intelligent classification techniques has gained renewed interest. The non-contact tech
nology, which is relatively inexpensive, has great potential for integration with the Internet for early detection of 
breast cancer through mass screening and subsequent continuous monitoring of suspected patients. This paper 
presents a comprehensive review of previous studies conducted at the intersection of thermography, numerical 
simulation, and artificial intelligence that can improve early detection of breast cancer.   

1. Introduction 

Cancer is a term used to describe a number of diseases associated 
with uncontrolled cell mutations resulting from tumor enlargement [1]. 
Tumors commonly occur in organs such as the skin, lungs, prostate, 
breast, and pancreas. There are no exact factors that influence the spread 
of such a disease, but most experts agree that an unhealthy lifestyle, 
alcohol consumption, smoking, ultraviolet radiation, the influence of 
carcinogens, age and a genetic predisposition are some of the most 
common causes for the development of tumors [2,3]. 

Breast cancer is one of the most common types of cancer. According 
to the World Health Organization (WHO), 2.3 million new cases of 
breast cancer was detected in women worldwide in 2020. In the past five 
years (2016–2020), there were 7.8 million women diagnosed with 
breast cancer, making it the most common cancer worldwide. WHO 
reports that the number of deaths caused by breast cancer during this 
period is 685,000. This number is less than the number of deaths due to 
other cancers such as lung (1.8 million deaths), liver (830 thousand 

deaths) and stomach (769 thousand deaths) [4,5]. This shows that 
breast cancer is treatable. Currently, breast tumors are diagnosed based 
on the stages of tumor development, which can be classified based on 
tumor diameter or spread to nearby lymph nodes [4]. Accurate and early 
diagnosis plays an important role in the successful treatment of the 
disease, which has generated a great deal of interest [5,6]. 

Most studies of breast cancer diagnosis have focused on mammog
raphy, ultrasound, and Magnetic Resonance Imaging (MRI). These ap
proaches are recognized as the gold standard. However, their 
limitations, such as lack of access to cancer detection in rural and remote 
areas, have led to the development of alternative technologies: elec
tronic palpation, electrical impedance scanning (EIS), and thermal im
aging (thermography) [1]. This paper focuses on thermography as it is 
one of the most cost-effective, non-invasive, radiation-free and pro
spective techniques. 

Thermography (also called infrared imaging) uses infrared (IR) 
cameras to record the temperature profiles of the breast. The presence of 
a tumor can thus be determined by the temperature distribution on the 
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breast surface [7 –9]. The main principle of IR image diagnosis is that 
the unregulated growth of cells generates a higher metabolic rate and 
requires more blood flow than the surrounding tissue. The additional 
heat generated is delivered to the tissue surrounding the tumor, causing 
a temperature spike on the breast surface. This temperature spike is 
observed using IR imaging to detect the tumor [7 –9]. 

Diagnosis of breast cancer using thermography is based on identifi
cation of specific features of breast heat patterns over time. The most 
common features include: 1) highly asymmetric temperature distribu
tions between the left and right breasts (i.e., based on the assumption 
that one is healthy and the other is not); 2) localized hot spots indicative 
of abnormalities; 3) changes in hypothermic vascular patterns due to 
tumor growth; 4) variation in heat patterns in the areolar and periar
eolar regions [10 –12]. 

It is important that the breast size and geometry, as well as physio
logical conditions such as menstruation, stress and anxiety, hormone use 
(contraceptives), pregnancy, and lactation be considered in decision 
making, as sometimes a temperature difference of 2 ◦C between the 
cooler and warmer regions and between asymmetric areas of two breasts 
may be considered normal, while a difference of 1 ◦C to 2.5 ◦C may be 
considered suspicious [8,13,14]. 

The following sections discuss breast cancer using IR imaging and 
computer technology. 

2. Breast thermography 

The fundamentals of thermography come from previous studies by 
Hardy [15,16,17], Hardy and Muschenheim [18,19], Clark, Vinegar and 
Hardy [20], Hardy, Hammel and Murgatroyd [21], Derksen, Monahan 
and Lawes [22], Mitchell [23], Quinn [24], Watmough [25], Steketee 
[26], Quinn and Compton [27], Pratt [28], and Andersen and Parrish 
[29], who concluded that IR cameras can provide reliable measurements 
of actual temperatures. They found that the emissivity of the skin is 
about 0.989 ± 0.01 and does not depend on the wavelength, while the 
relationship between spectral radiance and wavelength can be described 
by Planck’s radiation law, where the intensity of electromagnetic radi
ation (B) is a function of the wavelength (λ) and the temperature of the 
object (T), as described by the following equation: 

Bλ(λ, T) =
2hc2

λ5 (e hc
λkT − 1)− 1 (1)  

where B (λ, T) – radiation power; h – the Planck constant, cs – the speed 
of light in vacuum, and k – the Boltzmann constant. 

Thermography was first used to diagnose breast cancer in 1956 [30]. 
Further studies by Lawson and Chugtai showed that the temperature 
difference between healthy and diseased breast in the same area is about 
20 ◦C [31]. The same results were obtained by Gautherie [32] in 1980, 
who used a fine needle thermocouple to measure the temperature inside 
the breast with malignant tumor. Other studies [2,12,14,31,33–42] gave 
similar results, showing that the presence of the tumor in the breast 
leads to a higher temperature, which shows up as a hotspot on the 
thermogram. In 1982, thermography was approved as an additional tool 
to mammography for breast cancer diagnosis in the United States of 
America. 

Further development of infrared thermography for breast tumor 
detection has had some successes and drawbacks. A clinical study by 
Gamagami [43] reported that 15% of nonpalpable carcinomas went 
undetected by mammography but were detected by IR thermography. 
Gautherie and Gross [12,44] studied 1245 patients with abnormal IR 
image profiles and found that 35% of patients with abnormal thermo
grams developed cancer within the next 5 years. They noted that IR 
imaging may be useful for early detection of breast cancer and fast- 
growing neoplasms. However, the approach was unable to distinguish 
the cancerous region of the breast from areas of inflammation. In 
addition, the false-positive results for breast cancer were high [32]. The 

rate of correct positive diagnoses was only 41%. This was attributed to 
both the measurement procedure and the equipment. Most clinicians 
were neither familiar with nor adequately trained in the use of IR 
cameras, and measurement standards were lacking [32]. In addition, 
poor camera resolution and scan time compromised the usefulness of the 
approach at the time. Chen et al [35] stated that the specification of the 
cameras was limited as the typical resolution was low and the scan time 
was 4 s. Such a specification was not suitable for detecting deep tumors, 
only shallow tumors could be diagnosed. This is because the tempera
ture pattern of the healthy breast and the deep tumours can be very 
subtle. These problems hinder the popularity of IR thermography as a 
method for early detection of breast cancer [12,44 –46]. 

In the 2000s, IR cameras significantly improved their performance, 
especially when used in conjunction with a blackbody, and nominal 
accuracy could be varied from 0.1 to 1 ◦C and a scan time of 0.8 s 
(Table 1). This improvement in the performance of the cameras allowed 
deeper tumors to be detected and less pronounced temperature varia
tions to be observed on the breast surface. This also led to the devel
opment of breast tumor detection methods such as dynamic infrared 
thermography (DIT). The method aims to detect the thermal contrast 
between cancerous and non-cancerous regions during rewarming of the 
breast after the application of cold stress. The principle is based on the 
fact that the temperature patterns of the cancerous region in the breast 
remain the same, while the healthy regions are affected by cold stress. 
Similarly, the cancerous breast under cold stress exhibits different 
temperature patterns than a healthy breast. In the studies conducted by 
Usuki et al [47], Cockburn [48] and Mooibroek et al [49], it was 
observed that tumors produce a chemical mediator under thermal stress. 
This chemical dilates subcutaneous vessels and enhances the contrast of 
temperature differences between the tumor and the environment [50]. 
The magnitude of the response to thermal stress can vary depending on 
tumor size. The effects of cold stress on different tumor sizes remain to 
be thoroughly investigated. According to Gullino [51], the response of 
tumor vessels to cold stress may be insignificant in deeper tumors. 

One of the most important studies in the field of DIT was conducted 
by Ohashi and Uchida [52], who studied 728 cases of breast cancer using 
thermograms from steady-state and dynamic infrared images. During 
the experiments, the ambient temperature was maintained at 21 ◦C, and 
a fan was used for 2 min for DIT. The diagnostic accuracy of steady-state 
thermography was 54%, while the diagnostic accuracy of DIT was 82%, 
see [52]. To increase the diagnostic accuracy of melanoma a similar DIT 
method was developed in [53]. In this work, it was emphasized that the 
proper performance of steady-state thermography requires strict re
quirements for the environmental conditions in the room, as well as 
adequate time for the patient to adjust to the room temperature. DIT 
does not require such stringent room conditions and is both faster and 
more effective in creating thermal contrast between the tumor and 
surrounding healthy tissue. To further improve the performance of DIT 
with modern IR detectors, Ng [45] suggested minimizing the sources of 
IR interference. Minimizing unwanted interference can be achieved by 
using a smooth, non-reflective background, covering IR reflective sur
faces, and blocking sunlight through windows and incandescent or 
halogen light sources. The major disadvantage of DIT is that there is no 
standardized and systematic approach. Accurate and meaningful results 
depend on the size and depth of the tumor. Another major problem of 
DIT is the discomfort of the patient during the application of cold stress, 
as the cooling time can range from 2 to 6 min at temperatures below 
15 ◦C [54,55]. The results of various studies show a very high variation 
in the accuracy of dynamic thermography, so that it is not preferred in 
practice despite its high accuracy. 

Many researchers have investigated the prognostic aspects of IR 
thermography in the detection of breast cancer. Isard et al [37,56] 
conducted a study of 10,000 breast thermograms over four years before 
recommending thermography as a complementary tool to mammog
raphy rather than a stand-alone tool for breast cancer detection. It was 
found that of the 1000 cases that underwent both thermography and 
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mammography, 45% of the thermograms were found to be abnormal 
and 21.4% were eventually confirmed as cancerous by mammography. 
In another study of 70 patients followed up between 6 and 13 years, 
Isard concluded that thermography could be a prognostic indicator of 
survival. Gautherie and Gros [12] found that patients with abnormal 

thermograms had a higher risk of later developing breast cancer. 
Another study [57] found that thermography results were strongly 
correlated with prognostic indicators of tumor growth, such as tumor 
ferritin concentration, the proportion of cells undergoing DNA synthesis 
and proliferating, and expression of the proliferation-associated tumor 

Table 1 
List of selected infrared cameras for medical applications.   

Measuring range Resolution 
(pixels) 

Thermal 
sensitivity 

Spectral range Temperature measurement 
accuracy 

Application Function 

Micro-Epsilon − 20 ◦C to 100 ◦C 382×288 40 mK 7.5–13 μm  fever screening; 
medical 

thermal imaging, 
measuring 

IRTIS 2000 − 60 ◦C – +300 ◦C 
(+1700 ◦C) 

320 (640) 
×240 (480) 

0.05◦ C (0.02◦ C) 3–5 (8–12) μm ±1% or ± 1 ◦C medical thermal imaging 

Fluke Ti480 PRO 
Infrared Camera 

≤− 20 ◦C to 
1000 ◦C 

640×480 50 mK 7.5 μm to 14 μm 
(long wave) 

±2 ◦C or 2% (at 25 ◦C 
nominal, whichever is 
greater) 

universal thermal imaging 

Hikvision CA-DS- 
2TE127-G4A 

5 ◦C − 50 ◦C 160×120 Less than 40 mK 8 – 14 μm ± 0.1 ◦C medical thermal imaging 

Flir T560-EST down to − 40 ◦C 640×480 less than40 mK @ 
30 ◦C (86◦F) 

7.5 – 14 µm ±1◦C/±1% universal thermal imaging  

Table 2 
Main studies and its mathematical models.  

Authors Equation Meaning 

Pennes, 1948  
[50] 

ρticti
∂T
∂t

= ∇∙(kti∇T) − ωbcb(T − Tart)+qmwhere  

ρti – tissue density; cti – tissue specific heat; kti – tissue thermal conductivity; cb – blood specific heat; T – temperature; qm – heat 
generations due to metabolism; ωb – blood perfusion rate; Tart – arterial blood temperature; ti, b, art – subscripts indicating 
tissue, blood, artery, respectively  

Frequently used equation based 
on Fourier’s law considering 
thermal energy equilibrium: 
equalisation of temperature in 
tissue depending on external and 
internal heat sources. 

Mitchell and 
Myers, 1968  
[36]  

(1) 
˙

mc
dTart

dx
+ (UA’), (Tart − Tv) + (UA’)art(Tart − T∞) = 0 

| 
˙

− mc
dTv

dx
+ (UA’), (Tv − Tart) + (UA’)v(Tv − T∞) = 0x = 0 : Tart = T0; x = L;Tart = TvU – thermal conductance; A’ – heat 

transfer area per length; ΔT – temperature difference causing the heat flow; Tv – vein blood temperature; v – subscripts to 
indicate vein  

One of the first equations of the 
discrete vessel approach, where 
the first equation describes the 
arterial flow, the second 
equation gives the venous flow, 
and the last equation represents 
the temperature boundary 
conditions 

Keller and 
Seiler, 1971  
[39] 

kti
d2T
dx2 + (ha+ ˙chg)(Tart − T) + ha(Tv − T) + qm = 0

[
( ˙mart)0 −

∫ x
0 ġdx

]
ch

dTart

dx
+ ha(Tart − T) = 0

[
( ˙mart)0 −

∫ x
0 ġdx

]
ch

dTv

dx
+ (ha+

chġ)(T − Tv) = 0with the following boundary conditions 
x = 0,T = Tart = Tb ; x = δ,T = Tv = Tswhere 
x – length in the direction of normal to surface, h – average coefficient of heat transfer from vessels to tissues, a – average area 
for heat transfer per unit volume, ch – heat capacity, g – capillary perfusion rate, m – blood flow rate, S – thickness of tissue 
layer; s – subscripts to indicate skin  

Extension of the Mitchell and 
Myers biothermal system of 
equations by adding the 
conservation of energy in the 
surrounding tissues of the veins 
and capillaries in the area of 
interest. The influence of the 
perfusion rate of the capillaries 
on heat transfer in the subdermal 
area is included 

Wulff, 1974  
[61] 

ρticti
∂T
∂t

= ∇∙(kti∇T) − pbcbUh∙∇T + qm, 

where 
ρb – blood density; Uh – metabolic reaction enthalpy  

Mathematical model of the 
equilibrium of blood and tissue 
temperatures and the value of 
the metabolic reaction 
(pbcbUh∙∇T), corresponding to 
qm  

Chen and 
Holmes, 
1980 [40] 

pti.eff cti.eff
∂T
∂t

= ∇∙(kti∇T) + pbcbwb
.
(
T.

art − T
)
− pbcbv∙∇T + ∇∙kp∇T + qm, 

where 
ρti.eff =

(
1 − εt.p

)
ρti +εt.pρbcti.eff =

(
1 − εt.p

)
cti +εt,pcbkti.eff =

(
1 − εt.p

)
kti +εt.pkbwhere 

v – direction of the flow, which is volumetric flow of the unit area, kp – perfusion conductivity; t.p – subscripts to indicate tissue 
porosity  

Discrete vessel model describes 
the heat exchange between a 
single blood vessel and the 
surrounding tissue 

Weinbaum, 
Jiji, Lemons, 
1984–1992  
[62 –69] 

ρbcbπr2v
dTart

ds
= − qartρbcbπr2v

dTv

ds
= − qvρticti

∂Tti

∂t
= ∇ktiΔTti +

[

nqρbcb(Tart − Tv) − ρbcbnπr2v
d(Tart − Tv)

ds

]

+qmwhere qart – 

heat loss from an artery due to heat conduction through its wall; qv – heat influx into a vein due to heat conduction through its 
wall; Tart and Tv – volumetric mean temperatures inside the blood vessel; r – radius of the vessel; v – the speed of the flow 
through the artery or vein; n – number of the arteries and veins; q – blood flow velocity per unit surface area of the vessel. 
Or the simplified version of the Weinbaum, Jiji and Lemons model can also be used: 

ρticti
∂Tti

∂t
= ∇keff∇Tti + qmwhere keff − effective conductivity, which can be defined as: 

keff = kti[1+PeiV(ξ) ], 
where ξ – dimensionless distance, defined as x/L; L – tissue layer thickness; V(ξ) – dimensionless function of vascular geometry 
that can be calculated if vascular information is known; Pei – Peclet number, which is defined as: 

Pei =
2ρbcbrivi

kb
where r – radius of vessel; vi – blood velocity at the entrance to the tissue.  

The first two equations describe 
heat transfer in the major 
(thermally significant) arteries 
and veins. 
The third equation describes 
heat transfer in the tissue 
surrounding the artery-vein pair. 
The fourth equation is a 
simplified representation of the 
first three equations to estimate 
the temperature distribution in 
the tissue  
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antigen Ki-67. Thus, the patients with abnormal thermograms had 
faster-growing tumors, which could be indicated by the thermograms. 
The conclusion was based on the results of 100 normal patients, 100 
living cancer patients, and 126 deceased cancer patients. In a study by 
Guidi and Schnitt [58], a strong correlation was found between the 
number of vessels and further spread of metastatic disease. 

In most studies, thermography was recommended as an additional 
tool to complement mammography. This result was also confirmed in a 
recent study by Omranipour et al [59] who compared the true-positive 
rate (TPR), true-negative rate (TNR), positive predictive value (PPV) and 
negative predictive value (NPV) of thermography and mammography. 
The results for mammography were: TPR 80.5%, TNR 73.3%, PPV 
85.4%, NPV 66.0%; in contrast, the results for thermography were: TPR 
81.6%, TNR 57.8%, PPV 78.9%, and NPV 69.7%. These results confirm 
that thermography can complement, but not replace, mammography in 
the early detection of breast cancer. The US Food and Drug Adminis
tration (FDA) also does not recommend thermography as the sole tool 
for breast cancer detection, but recommends it as an adjunct tool along 
with another diagnostic technique [60]. This could be due to the dis
advantages of the technique. Thermography is very sensitive to the 
temperature and comfort of the patient. In addition, the technique is 
prone to procedural errors, such as incorrect positioning of the breast, 
inability to eliminate nearby heat sources, and difficulty in maintaining 
an appropriate distance between the IR camera and the patient. These 
errors resulted in poor thermal images with occluded areas, especially in 
large breasts with fatty tissue. 

3. Numerical thermal simulation of breast cancer 

3.1. Mathematical equations 

Heat transfer in living tissues is a complex thermal process consisting 
of metabolic heat generation, heat conduction, and blood flow. With 
regard to breast cancer diagnosis, a number of studies have developed 
mathematical models to describe heat transfer behavior and predict the 
temperature distribution of breast tissue and the presence of a tumor in 
the breast. Table 2 shows the main studies and mathematical models of 
each approach in the studies. 

The mathematical equations for biothermy presented in Table 2 can 
be described using two main approaches: Continuum Models and 
Discrete Vessel Models. The continuum model is the simplified form of 
the biothermal equations that describe the effects of blood flow on 
temperature distribution by considering the average blood supply over 
the average volume in the area of interest. The continuum approach was 
used in the work of Pennes [50] and the energy conservation equation of 
Wulff [61]. 

The discrete vessel model is a more advanced and sophisticated 
approach based on biothermal equations that describe the blood flow in 
each individual vessel in the region of interest. This approach was 
described in the work of Mitchell and Myers [36], Keller and Seiler [39], 
Chen and Holmes [40], and Weinbaum-Jiji-Lemons, which included a 
simplified version of their model [62–69]. 

The idealized mathematical models of Pennes and Wulf that are often 
used by scientists neglect effects such as heat transfer between blood and 
tissue, blood flow, and the size of blood vessels and their position rela
tive to each other. Pennes’ equation agrees well with experimental data 
and is often used to describe the temperature distribution in the area of 
interest. The more sophisticated discrete vessel model takes into account 
detailed information about the vascular network and blood flow. The 
approach takes into account the existence of temperature differences 
between arteries and veins that are close to each other, and the heat 
transfer that occurs when they flow in opposite directions. The approach 
requires a set of biothermal equations that describe the movement of 
blood in each blood vessel. This also takes into account the opposing 
flow, which has a significant effect on the equilibrium of heat transfer. 
As a result, the temperature distributions in the adjacent tissues of 

interest can be predicted with higher resolution. In particular, the 
mathematical model of Weinbaum-Jiji-Lemons can describe the heat 
transfer in acentric tissues, provided that its assumptions are valid. 
Anatomical and vascular geometric data are needed to apply the model. 
The data include the density of the vessels, the size and distance between 
artery and vein, and the blood flow rate. 

Many researchers have used these mathematical models to study the 
effects of blood flow and blood vessel diameter on temperature distri
butions. According to Chato et al [41], higher blood flow decreases as 
the blood vessel becomes smaller, so the heat transfer coefficient can be 
determined in counterflow. Charny and Levin [70] studied the heat 
transfer between artery and vein and showed that the thermal equilib
rium of the system can be reached at a distance of 43 mm from the main 
vessels. Furthermore, it was found that the counterflow can lower the 
temperature of the tissue by 0.5 ◦C. This work illustrated the applica
bility of mathematical models. The choice of an appropriate biothermal 
model should be based on the objectives of the study and the specific 
biophysical characteristics of the cases. 

3.2. Breast geometry involved in simulations 

The geometry of the breast is another important factor in the nu
merical simulations. Many different computational geometries have 
been used in the thermal simulations, including rectangular, idealized 
spherical, and realistic geometries of the breast [35,71 –73]. Table 3 
provides a list of domains found in the literature. 

Table 3 lists the studies that used different breast geometries and 
predictive models to relate temperature distributions to tumor sizes, 
location, metabolic heat generation, and blood perfusion rates. Four 
main types of breast geometries were developed in these studies 
[74–85]: rectangular, hemispherical, deformed hemisphere, and pa
tient-specific. 

Osman and Afify [74,75] developed a multilayer 2D breast geometry 
in 1984. This work was extended in 1988 with a 3D breast geometry to 
estimate the effect of tumor size and location on breast surface tem
perature distribution. This model has not been used by other researchers 
because it leads to high temperature differences in the layers near the 
surface [86]. 

Further studies by Ng and Sudharsan [76,77] led to an improvement 
in both 2D and 3D multilayer breast models. They created flexible 3D 
models with tissue layers of different thicknesses and divided the ge
ometry into four quadrants to study the temperature differences in the 
upper outer, lower outer, upper inner, and lower inner segments. This 
model has been used in many studies to determine the effects of various 
tumor parameters on thermal distributions. 

Gonzalez [78] used a hemispherical breast model and added a thick 
layer of 1.3 cm to simulate the chest wall. The results of the study 
showed that Finite Element Simulations is able to detect 3 cm tumors 
located at a depth of 7 cm from the surface. Bezerra et al [79] modeled 
the breast geometry based on the silicone prostheses. The cylindrical 
geometry was improved with nodule type, size, depth, and location 
extracted from a patient’s ultrasound examination. The study estab
lished the methodology for determining the thermophysical properties 
of the breast tissue and nodes using the maximum temperature from the 
temperature profile. In 2013, Das and Mishra [80] used a rectangular 
single-layer breast model with Pennes’ bioheat equation to diagnose a 
tumor based on the temperature distribution on the surface of the breast. 
The rectangular model does not reflect the actual shape of the breast, 
and it was difficult to validate the results with thermograms. As a result, 
no firm conclusions could be drawn. Later, the authors created a single- 
layer hemispherical 3D model with a tumor [81] and found that the 
developed tool can be used to detect not only small tumors near the 
breast surface, but also large tumors located deep in the breast when 
there is a significant temperature difference at the breast surface. Amri 
et al [82] used a rectangular 3D breast model to perform steady-state 
and transient numerical simulations. Their results showed that the 
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Table 3 
Computational domains.  

Study Breast Geometry Description 

Osman, Afify, 1984; 
Osman, Afify, 1988  
[74,75] 

2D model of the breast [74,75] 

2D and 3D models were developed to estimate the 
influence of tumor size and location on temperature 
distributions on the breast surface 

Ng, Sudharsan, 2000  
[76] 

2D breast model [76] 

A 2D breast model was developed to perform an 
analysis of variance, and a parametric design using 
the Taguchi method was used 

Ng, Sudharsan, 2001  
[77] 

3D breast model [77] 

The flexible multilayer finite element model was 
divided into four quadrants. The model was used to 
study steady-state and time-dependent numerical 
simulations 

Gonzalez, 2007 [78] 

Ideal hemispherical model of the breast consisted of: hemisphere, chest wall, tumors [78] 

Perfect hemispherical breast model for studying the 
required sensitivity of the thermal imaging camera 
to detect a tumor in the breast at the specified depth 

Bezerra et al., 2012  
[79] 

The breast model was created manually and 
approximately based on simplified thermogram side 
views and used to estimate the thermal conductivity 
and blood flow of the breast tissue 

(continued on next page) 
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Table 3 (continued ) 

Study Breast Geometry Description 

Thermogram based 3D breast models [79] 
Das and Mishra, 2013  

[80] 

2D rectangular domain of the breast [80] 

The study focused on the evaluation of predictive 
algorithms, using the temperature distribution on 
the breast surface to investigate tumor behavior. 
The study used a proprietary numerical code and 
Pennes mathematical model 

Das, Mishra, 2015 [81] 

Idealizied 3D breast model [81] 

The breast model used four parameters to define the 
tumor: size, radial location, and two coordinates of 
two angular positions 

Amri et al., 2016 [82] 

3D rectangular breast model with a spherical tumor inside [82] 

In the study, steady-state and transient numerical 
simulations with cold stress were performed to 
determine the effect of depth on temperature using 
Pennes’ bioheat equation; a simple rectangular 3D 
breast model was used 

Hossain, Mohammadi, 
2016; Saniei, et al., 
2016 [83,84] 

The multilayer breast model was used for the 
idealized hemisphere model and the deformed 
hemisphere breast model. The model was used to 
estimate physio-thermo-biological parameters such 
as depth, size and metabolic rate of tumor 

(continued on next page) 
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Table 3 (continued ) 

Study Breast Geometry Description 

a) 

b) 

Breast model: a) hemisphere breast model, four concentric tissue layers; b) deformed hemisphere 
breast model, four concentric tissue layers [83] 

Mukhmetov et al., 
2018 [73] 

Patient’s specific breast model [73] 

Patient-specific breast model created by 3D 
scanning and used to estimate temperature 
distribution based on tumor size and depth in the 
breast. Reverse thermal modelling was also 
performed to determine specific patient tissue 
characteristics and tumor size and location 

Aitbek et al., 2019 [85] 

Multilayer breast model [85]   

A multilayer breast model was used to estimate the 
effect of breast density on tumor detection  
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rewarming process after the application of cold stress provides more 
information about the tumor. However, the main problem with rectan
gular breast models is that they do not correlate with real breast ge
ometry and its tissue layers. Moreover, such breast geometry used 
uniform properties for the tissue and tumor, which could not be vali
dated by experiments. 

There are many studies based on rectangular and spherical compu
tational domains, but very little literature on the use of personalized 
breast geometries of patients in numerical studies. Mukhmetov et al [73] 
created 3D numerical models by scanning a mannequin and real patient 
breasts. The obtained numerical results were validated by experiments 
with artificial and human breasts. Aitbek et al [85] improved the pa
tient- specific model by creating different layers inside the breast and 
estimating the influence of fat on the temperature distribution on the 
breast surface, thus identifying the tumor inside the breast. 

3.3. Forward/direct and inverse simulations for breast cancer detection 

Numerical modeling of the tumor in the breast is a complicated 
procedure, but it is a reliable technique to complement thermography 
with quantitative assessments. The studies using physical models to 
predict the temperature distribution on the breast surface and in the 
breast volume are called forward or direct numerical simulations. 

Numerical simulation first requires the creation of a relevant breast 
geometry (see Section 3.2) with appropriate boundary conditions. Then, 
the governing mathematical equations (see Section 3.1) are solved 
numerically in the breast region. Researchers have used various ap
proaches to solve Pennes’ equation. Huang et al [87] solved Pennes’ 
bioheat equation analytically for two cases that differed in terms of 
arterial temperature. In the first case, the arterial temperature was equal 
to the mean temperature of the vessel, while in the second case, the 
arterial temperature was constant. Zhang [88] solved the bioheat 
equation using Lattice Boltzmann Method, which produced a precise 
temperature distribution. Okajima et al [89] solved the one-dimensional 
Pennes’ bioheat equation and derived two general dimensionless char
acteristics of bioheat transfer for steady state. 

Many studies solved the bioheat equation in different coordinate 
systems. Gupta et al [90] solved the bioheat equation in spherically 
symmetric, axisymmetric and Cartesian coordinate systems using 
Galerkin method. By solving the heat equations in different coordinate 
systems and considering different breast models, the researchers showed 
that the location and size of the tumor in the breast have primary effects 
on the temperature distribution on the breast surface. 

Studies such as those in [7,9,54,74–77,82,86,88,91] concluded that 
the temperature patterns depend on the diameter and depth of the tumor 
and agreed that small and deep-seated tumors are difficult to detect 
because the temperature patterns have low contrast in the surface 
temperature distributions. Das and Mishra [80] investigated the effect of 
depth on the patterns of temperature distributions by calculating the 
temperature differences between tumors 12.5 mm and 37.5 mm in 
diameter at a depth of 12.5 mm. Their results showed surface temper
ature differences of 0.007 ◦C and 0.56 ◦C, respectively. Amri et al 
[82,91] determined the temperature differences for different tumor sizes 
from 10 to 30 mm at the same depth of 20 mm. The results showed 
temperature differences of about 0.2 ◦C for tumors of 10 mm and 30 mm 
(Fig. 1), indicating that the size of the tumor does not have much in
fluence at a depth of 20 mm and deeper. Ng and Sudharsan [76,77] 
reported that tumors deeper than 38 mm have a very low chance of 
being detected by the IR camera. These results confirm that the depth of 
the tumor has a much greater impact compared to the tumor diameter. 
The depths at which tumors were most unlikely to be detected ranged 
from 20 mm to 30 mm. 

Temperature contrast at the surface of the breast can be increased by 
the application of cold stress. This phenomenon was described in detail 
by Usuki et al. in [47]. Cold stress may enhance the temperature dif
ference between the healthy and cancerous tissues, thus improving the 

detection of breast cancer. To estimate the extent to which thermal 
contrast can be enhanced, the penetration depth of cold stress is calcu
lated. The penetration depth (δ) is determined as the length in the di
rection perpendicular to the surface at which the temperature is equal to 
0.99Ti and can be defined as a function of thermal diffusivity (α) and 
time (t) [92]: 

δ = 3.65
̅̅̅̅̅
αt

√
(1) 

Thermal diffusivity is determined by the equation of transient con
duction equation in one dimension [92]: 

∂2T(x, t)
∂x2 =

1
α

∂T(x, t)
∂t

(2)  

where T is the temperature, x is length in the direction normal to surface, 
t is the time; α is the thermal diffusivity. At the condition when: T (x = 0; 
t >0) = To; T (x → ∞; t >0) = Ti; T (x >0, t = 0) = Ti, where To is the 
temperature of the cold stress; Ti is the temperature of the tissue. 

According to Gonzalez-Hernandez et al [92], the thermal diffusivity 
of the glandular tissue is equal to 1.52×10− 7 m2/s (Fig. 2b). Therefore, 
for the tumors at a depth less than 20 mm, the time of applying cold 
stress equals to about 4 min, whereas for the tumors at the depth of more 
than 30 mm this time is more than 9 min. 

According to the study by Chanmugam et al [93], the depth of 
penetration varied with the duration of cold stress. For a duration of 2 
min, the penetration depth was 6 mm measured at points along the axis, 
considering a temperature decrease of 0.3 ◦C, which is consistent with 
the temperature under the same steady state conditions. The authors 
noted that the most frequently observed temperature difference between 
healthy and cancerous tissue occurred between 10 and 20 min after cold 
exposure. Moreover, the study by Amri et al [82] showed that for the 

Fig. 1. Steady state thermal contrast as a function of tumor diameter and 
depth [82]. 

Fig. 2. Penetration depth: (a) schematic representation; (b) function of 
time [92]. 
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same depth of 20 mm, the estimated time for cold stress was 2 min at a 
cooling temperature of 15 ◦C. This cooling time is sufficient to achieve 
the maximum thermal contrast. However, for tumors deeper than 20 
mm, this cooling time is not sufficient because a longer observation and 
cooling time is required. 

In contrast, Ng and Sudharsan [77] analyzed the effect of cold stress 
on temperature distribution and rewarming process. In the study, nu
merical calculations were performed for the cases of 1, 3 and 5 min 
application of cold stress. The results of the study showed a temperature 
increase between 0.05 and 0.045 in non-dimensional terms; such ther
mal contrast does not provide valuable information about the temper
ature pattern. Observing the warm-up process of 60 min, the authors 
determined a thermal contrast of 0.16 ◦C and concluded, following the 
study of Usuki et al [47], that such a thermal contrast is sufficient to 
clearly identify the abnormality. In addition, another study by Jiang et al 
[54] concluded that to achieve the required thermal contrast, the min
imum cooling time should be 25 min at a cooling temperature below 
15 ◦C, which was not possible due to the extremely uncomfortable 
conditions for the patients. Therefore, transient numerical simulations 
were performed to find ways to increase the thermal contrast between 
healthy and cancerous tissues. However, the results of most of these 
studies were not practical. The reason is either that the simulated breast 
areas do not correspond to the real ones, or that the structures of the 
numerical breasts do not reflect the real ones. In addition, the boundary 
conditions of the studies also did not match the real conditions. In this 
regard, it is better to simulate convection around the breast because of 
the cooling of the breast, and thus achieve higher accuracy in tumor 
detection. 

Detection of abnormalities in thermograms is not only for diagnosis, 
but also for obtaining detailed patient-specific information about the 
tumor, such as the size, depth, heat generation or blood perfusion, which 
can be performed as an inverse problem. This is a different type of 
problem, especially considering that there may be different combina
tions of tumor sizes and positions for a thermogram [74,75]. 

Inverse modeling is the evaluation of the uncertain model parame
ters when the solution is identified (Fig. 3). In breast cancer detection 
using thermography, the surface thermogram obtained is one of the 
solutions to the bioheat equation. To perform inverse thermal modeling, 
several steps are required: 1) create a computational breast domain 
(Section 3.2); 2) set the boundary conditions for the selected bioheat 
equation; 3) apply one of the optimization tools to find the correct pa
rameters; 4) solve the bioheat equation and evaluate the newly obtained 
solution; 5) repeat steps 3) and 4) until the appropriate parameters are 
found. The goal of inverse modeling is to find the correct parameters so 
that the solution matches the temperature distribution of the input 
surface provided by the thermogram. The most commonly used tools for 
optimization are: Levenberg-Marguardt algorithm, Genetic Algorithm 

and Gradient Descent Method. 
The Levenberg-Marguardt (LM) algorithm was used in two studies by 

Jiang et al [94] and Hatwar and Herman [95]. Jiang et al [94] used the 
LM algorithm with the primary thermal parameters and developed an 
inverse method to evaluate the tissue thermal parameters based on the 
temperature distribution on the breast surface. To evaluate the 
normalized thermal parameters, the authors investigated iterative 
nonlinear optimization (Fig. 4a). The results of the inverse modeling for 
tumor sizes of 8 and 16 mm showed an improvement in tumor detect
ability regardless of tumor depth. The correlation coefficient for tumor 
detection had values almost equal to 1. Hatwar and Herman [95] 
implemented the scheme shown in Fig. 4b. The authors argued that the 
steady state data were insufficient to estimate three parameters (loca
tion, size, and blood perfusion) simultaneously. Therefore, the authors 
included transient modeling to accurately estimate tumor location and 
size, and then attempted to include blood perfusion assessment. For the 
inverse reconstruction, the authors used a LM algorithm (Fig. 4b) that 
uses the temperature distribution on the skin surface to characterize the 
tumor. Tumor parameters with the following ranges were used in the 
study: 12 mm to 30 mm depth, 7 mm to 11 mm radius, and blood 
perfusion rate from 0.003 l/s to 0.01 l/s. The results showed that the 
detection accuracy decreased as the depth of the tumors increased. The 
tumors with blood flow rate of 0.01 l/s and radius of 11 mm showed 
high accuracy when they were at a depth of 20 mm from the body 
surface. Thus, the method has proven to be effective, but it can be 
further improved by using computed tomography images (CT) and 
improving the accuracy of perfusion in large tumors. 

There are several studies using Genetic Algorithm (GA) and Artificial 
Neural Network (ANN) or curve fitting method to assess tumor size, 
location, and metabolic heat. Mital and Pidaparti [96] first used ANN to 
map the thermograms obtained and then used GA to determine the 
tumor parameters such as size, location and metabolic heat evolution 
rate (Fig. 5a). The study showed good accuracy of the results for the 2D 
cases studied. However, the 2D geometry is not an accurate represen
tation of the real breast. In reality, the breast has a complex 3D geometry 
and structure, so the study should be further improved in terms of 
geometric representation of the breast. Das and Mishra [80,81] used GA, 
to simultaneously evaluate the characteristics of the breast and the 
tumor inside based on the temperature distribution patterns (Fig. 5b). 
The authors used the curve fitting method (CFM) to estimate the size and 
location of the tumor and concluded that CFM is a less time consuming 
tool compared to GA. In the authors’ first study, 1D and 2D geometries of 
the breast were used. However, it was found that these results did not 
reflect the actual geometry, so the study was extended to 3D geometries 
of the breast. The results of the CFM method were in agreement with the 
Gaussian distribution. Considering the predefined accuracy of ± 0.75%, 
the method was able to accurately detect tumors with a diameter of at 
least 3 mm. However, as the depth of the tumor increased or the size of 
the tumor decreased, the detection of the tumor in the breast based on 
the temperature distribution became increasingly inaccurate. A study by 
Mitra and Balaji [97] also used the ANN as in one of the studies by Mital 
and Pidaparti [96] to estimate the size, depth and metabolic heat gen
eration of the tumor. However, compared to the previous study, this 
work used steady-state data and a single-layer 3D breast model. Paruch 
et al [98] also used GA with the gradient method (GM) to estimate tumor 
size and location. The accuracy of the method (highest error) was 
calculated to be 0.79% for the thermal parameter assessment of GA and 
7.5% for the geometric parameters estimated by GM. 

Another technique used in inverse modeling to find the parameters of 
the tumor based on the so-called inverse heat conduction problem 
(IHCP) was sequential quadratic programming (SQP), an iterative 
gradient-based method (IGBM). This method was explored by Bezerra et 
al [79] to determine the thermal conductivity and blood flow of breast 
tissue based on an IHCP scheme. The results showed that the thermal 
properties could be determined based on the extreme temperature 
points of the thermogram, with a maximum error of 1.28%. However, Fig. 3. Diagram of thermal direct/forward and inverse modeling [94].  
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Fig. 4. Flowchart showing inverse reconstruction algorithm for the studies: a) [94]; b) [95].  
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according to the authors, further improvements are needed, especially in 
senior women, and additional layers should be considered in 3D breast 
models. In addition, other methods such as the second-order Finite 
Difference -scheme with a pattern search algorithm [99,100], the 
boundary element method with the simulated annealing technique 
[101], and MATLAB algorithms [102] could be applied to determine the 
thermal properties of the breast tissue as well as the parameters of the 
tumor and the geometric properties of the breast. 

It can be concluded that inverse modeling proves to be feasible and 
consistent to simultaneously determine patient-specific tumor and tissue 
parameters based on breast geometry and thermograms. The main 
limitation of the studies performed is the lack of thermograms and breast 
geometries to validate the obtained results and develop sustainable 
methods. Therefore, thermography can be further improved by devel
oping intelligent thermogram-based systems using more patient-specific 
data/information, artificial intelligence and machine learning 
techniques. 

4. From computer-aided diagnosis (CAD) system towards 
intelligent thermogram-based CAD systems 

4.1. Computer-aided thermogram-based diagnostic system 

There have been many studies on improving IR imaging as a prog
nostic adjunctive tool for early detection of breast cancer, and the trend 
for future research seems to be in computer-aided diagnosis (CAD). A 
CAD system includes components such as: digital image processing, 
artificial intelligence, personalized data and physical modeling, and 
machine detection of temperature distribution patterns. The main ad
vantages of CAD systems are: 1) it is less dependent on human subjective 
opinion; 2) it is a quantitative based system that can reduce false posi
tives or false negatives; 3) it reduces the cost of additional medical 
procedures; 4) the system could be automated. 

The development of thermography into a complete system CAD in
volves many steps [45,103–105]: 1) image acquisition and elimination 
of noise without losing important details; 2) segmentation of the region 
of interest (ROI); 3) selection and extraction of thermogram features; 4) 
organization of selected features in databases; 5) characterization and 
classification of tumors according to the probability of malignancy and 
any abnormalities; 6) Data mining using machine learning technologies 
(MLT) [106,107], including K-nearest neighbors (K-NN) [108], ANN 
[109,110], Decision Tree (DT) [111,112], Support Vector Machine 
(SVM) [113,114] and Bayesian Networks (BN) [139–146]. 

The most important development in an intelligent CAD system is the 

segmentation of ROI and the subsequent selection and extraction of the 
data. Therefore, a number of studies have been conducted to improve 
the approach to understanding and distinguishing features of healthy 
and tumorous breasts. One of the first studies that focused on facilitating 
the comparison process was the study by Lipari and Head [115], who 
segmented the thermograms into different quadrants so that tempera
ture differences between contralateral breasts were more visible. To 
eliminate diagnostic errors due to human interpretation, the work was 
extended to automatically compare the temperature profiles of the 
contralateral breasts [116]. Their results showed that the accuracy of the 
system can be improved by comparing the statistical analysis of the 
whole breast with the data obtained from different quadrants. Another 
work by Qi and Head [117] and Kuruganti and Qi [118] also investi
gated the automatic selection and extraction of specific features of the 
healthy and diseased breast from thermograms. The authors proposed to 
implement this by pixel distributions in accordance with different 
quadrants into which two breasts were divided 

While some studies aimed to improve image processing and seg
mentation, others sought to eliminate the influence of human error in 
diagnosis. One such study, conducted by Irvine [119], investigated 
automatic target recognition as a tool that could be used to eliminate 
human error in the diagnosis of breast tumors. In further work by 
Jakubowska et al [120] and Wang et al [121], an automated thermal 
image comparison system was developed with the main goal of under
standing the differences in thermal properties between breasts with and 
without malignant tumors. In the field of segmentation, there is another 
work by Schaefer [122], who used statistical tools together with a fuzzy 
rule-based classification system to diagnose patients and achieved 80% 
accuracy in the study. In [123], the authors studied the horizontal and 
vertical projection profiles to segment two breasts. Morais et al [124] 
investigated the possibility of using a structured approach to detect 
abnormal changes in the breast based on thermography. The method 
used conjugate gradients to compare the measured dimensionless tem
perature differences between two symmetrical regions of a person’s 
breasts, taking into account the bilateral symmetry of the human body 
and the environmental conditions. The method was able to detect 96% 
of breast lesions. The results show that the thermography-based system 
can be used as a simple, inexpensive, and noninvasive mass screening 
tool for the early detection of breast cancer. Further studies in the field 
of breast cancer detection using thermography also aimed to facilitate 
the process of feature extraction and classification. In this context, the 
work of Pramanik et al [10] should be highlighted, as a pioneer of a 
feature extraction method to capture the edges and valleys of thermal 
breast images for texture analysis and then classify them using a feed- 

Fig. 5. Flowchart showing the steps of the inverse thermal modeling using GA: a) and ANN in [96] b) and curve fitting method in [80].  
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forward artificial neural network. The detection rate of true-positive 
images was 100% and false-positive images was 0. Another study that 
developed a methodology for automatic segmentation of breast images 
was proposed by Garduno-Roman et al in [11]. The authors used Otsu’s 
method for automatic segmentation of thermograms and also investi
gated watershed approaches to distinguish abnormal regions of the 
breasts. The methodology was validated using the Mastology Research 
database, and 454 cases were tested using the developed methodology. 
The established method showed a sensitivity and specificity of 0.8684 
and 0.8943, respectively, and a segmentation accuracy of 90.3%. The 
authors of the above studies agreed that thermography in combination 
with the automated systems of CAD can be used as a supportive and 
complementary tool for early detection of breast cancer. 

Although some developments have been made in CAD systems based 
on IR thermography, there are still many areas that need improvement. 
These areas include: 1) automation of CAD systems [115,122,123]; 2) 
display and processing of thermal images. This is crucial to further 
improve the efficiency of CAD systems. Currently, thermal images and 
breast geometries are displayed separately in different formats. There
fore, the correlation between 2D thermal characteristics and 3D breast 
characteristics may be limited. This area needs further research and 
improvement; 3) feature extraction and classification methods. These 
are the core of automatic prediction support. Effective features can be 
used to identify and automatically remove unwanted regions. Features 
would also support classification and pave the way for repositories and 
intelligent diagnosis. This is a critical area for the development of sys
tems from CAD. 

In addition, it is envisaged that thermography-based CAD systems 
will complement, but not replace, mammography. According to the 
above mentioned studies, thermography-based CAD systems can iden
tify suspicious cases so that these cases can be referred for more detailed 
mammography and biopsy examinations. In addition, because ther
mography is non-invasive, more frequent readings can be taken, 
allowing for more accurate diagnosis through continuous breast tem
perature measurement. With modern internet facilities and the 
advancement of 5G internet facilities, data can be updated instantly to 
ensure timely intervention. Therefore, thermography-based tele- CAD 
systems have great potential to facilitate mass surveillance of breast 
cancer in remote areas where medical equipment may not be available. 

4.2. Application of artificial neural networks (ANNs) in breast cancer 
detection 

Early detection of breast cancer by IR imaging can be improved by 
integrating the tool with other approaches. Artificial Intelligence (AI) is 
considered as a group of algorithms that can explore features of data, 
and most AI algorithms used for breast cancer detection are mainly 
related to classification. The goal of such algorithms is to distinguish 
healthy breasts from those with malignant tumors. They need to be 
trained with thermographic images of both healthy and malignant 
breasts [1]. The most useful application of AI is Machine Learning (ML), 
which focuses on pattern recognition and computational learning theory 
of AI. Using ML, algorithms can be developed that can learn from data 
and establish relationships with statistical and mathematical calcula
tions. There are many ML algorithms such as Naïve Bayes, Support 
Vector Machine (SVM), Decision Tree (DT), Relevance Vector Machine 
(RVM) and ANN. 

ANN is a widely used analysis tool that helps physicians diagnose 
patients with breast tumors. ANN represents a biophysiological model of 
the human brain that attempts to mimic its processes. The main building 
block of ANN is processing elements that are combined in different ar
chitectures by ANN to achieve a range of computational capabilities [1]. 
For ANN, numerous images with and without breast cancer are provided 
to feed the input layer and processed in the hidden layers. The output of 
the hidden layers serves as input to the neurons in the output layer, that 
subsequently leads to decision making. Due to the capability of the ANN 

in providing fast evaluation and precise results this tool is preferable 
compared to other classifiers [125]. The comparative table of perfor
mance evaluation in terms of standard descriptors for breast cancer 
detection using infrared imaging is presented in Table 4. 

Ng and Kee [71] used both ANN and biostatistical approaches to 
diagnose cancer tumors from IR thermograms. They analyzed thermo
grams from 82 patients (including 30 asymptomatic, 48 benign, and 4 
malignant) and identified the inputs of the ANN using regression anal
ysis. According to the authors’ report, the maximum accuracy in 
detecting the tumor was 80.95%, while the accuracy of the radial basis 
neural network in correctly diagnosing the tumor was 75% in the un
healthy population and 90% in the healthy population. 

Mital and Pidarati [96] combined the ANN, GA and thermal simu
lations to relate skin surface temperature to tumor depth and diameter. 
To predict the distribution of surface temperature, they trained the ANN 
with tumor features. Then, the obtained surface temperatures were 
applied to GA to find the appropriate parameters of the tumor based on a 
layered hemispherical breast. The errors in determining the depth and 
diameter of the tumor by GA and ANN were within 5 mm and 2 mm, 
respectively. 

In the study [1], a framework for incorporating ANN into thermog
raphy was established, four ANNs were developed and examined using 
hospital data. The results of the study suggest that better trained neural 
networks and more accurate detection processes, as well as a reduction 
in conflicting inputs, are impossible without a large population. Using 
thermal breast samples generated by thermography and numerical 
simulations as inputs is another possible approach for training the ANN. 
This may result in a better trained network since the ANN is a good 
pattern recognizer. A poorly trained network will give inaccurate re
sults, so using numerical inputs can greatly improve training, as 
changing tumor parameters in a numerical breast model will generate 
new training data and the number of available cases becomes unlimited 
by the amount of clinical data. This is considered an advantage of using 
computer simulations in ANN training. At the same time, the numerical 
model needs to be validated by clinical data to generate accurate surface 
temperatures. Finally, a well-trained ANN can be used as an initial 
screening tool to process thermograms before numerical thermal inverse 
modeling is used to actually diagnose tumors. 

Saniei [84] proposed a method that can be used to estimate tumor 
depth, size, and metabolic heat evolution rate. A dynamic neural 
network and surface temperature distribution obtained from thermal 
images of the breast were used to support the inverse thermal modeling. 
To validate the approach, a series of cases with different tumor depths 
and sizes were studied. As a first step, a finite element thermal model 
was created and simulations were performed. Similar thermal models 
were used as the basis for the inverse modeling step, where surface 
temperatures were used as input to the models to determine the tumor 
parameters (depth and size). The research results showed that the esti
mated error in depth was higher than the estimated error in size. The 
errors were also larger in the deep-seated tumors than in other cases. The 
results were in agreement with the actual parameters and provided an 
opportunity to determine the required parameters from a set of surface 
temperature data. 

Wahab et al [126] proposed to improve ANN for tumor localization 
by using thermal data obtained from previous work. They used several 
features from a series of numerical simulations performed using 
different tissue compositions of breast models. These were fed into the 
optimized ANN system of 6–8–1 network architecture with a pulse 
constant of 0.3, an iteration rate of 20,000 and a learning rate of 0.2. The 
overall accuracy of the test and validation results were 96.33% and 
92.89%, respectively. The larger error was probably obtained by a large 
number of neurons previously selected to increase the training 
complexity. 

In the study by Pramanik et al [10], an automatic method for the 
analysis of chest thermograms was presented. Their approach consists of 
three main steps including segmentation of breast regions from the 
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original images, feature extraction, and classification and performance 
analysis by using ANN. The background region was removed in the 
segmentation stage by applying the Otsu thresholding method, followed 
by a reconstruction method. Finally, the feed-forward ANN with 
gradient descent training rule was used as a classifier. The main problem 
of the study was the limited collection of freely available breast ther
mometer databases. The authors studied 306 breast thermograms of 102 
patients obtained from the website Visual Lab [127]. The accuracy, 
sensitivity and specificity obtained with the proposed system were 
90.48%, 87.6% and 89.73%, respectively. 

Thus, the studied articles show a high accuracy of ANN in combi
nation with other approaches to diagnose breast tumors. The results of 
the studies are in agreement with the actual parameters and thus pro
vide an opportunity to determine the required parameters from a group 
of surface temperature data. Merging ANN, GA, and computer simula
tions relating breast surface temperature to tumor depth and diameter 
and heat generation, considering the breast as a computational domain, 
may offer further improvements in diagnosis. Therefore, ANN, GA and 
computer simulations can be further investigated to develop an intelli
gent system for breast cancer detection. 

In recent years, Physics Informed Neural Network (PINN) [128,129] 
has emerged as a hot research topic for solving heat transfer and flow 
problems as an arbitrary hybrid data and physics-driven simulation 
method because it uses both the residuals of the underlying differential 
equations based on physical laws and input data in the loss function for 
NN (Neural Network) training. This means that PINN can use arbitrary 
data sets and incorporate more physics into the machine learning pro
cess (ML), which helps overcome the limitations of traditional ML 
methods in finding solutions. For example, thermograms and 3D scans of 

the breast can be submitted to PINN as input data, while the heat 
transfer equations inside the breast and the Navier Stokes equations for 
airflow outside the breast can be used to train ANNs to simultaneously 
predict heat transfer and fluid flow, as well as patient-specific tissue 
properties and tumor size and location. PINN is expected to be the next 
generation analysis and diagnostic tool that combines the best of 
physics-based and data-driven simulation. 

4.3. Application of different machine learning techniques for breast 
cancer diagnosis 

SVM is one of the discriminatory classifiers commonly used in breast 
cancer diagnosis. SVM is formally characterized by a separating hyper
plane. The comparative table of performance evaluation in terms of 
standard descriptors for breast cancer detection using IR imaging is 
presented in Table 4. 

One of the first studies on SVMs was done by Acharya et al [130], 
which they used to classify 50 IR thermograms of breasts, including 25 
breasts with a cancerous tumor and 25 normal breasts. Various statis
tical indicators such as mean, homogeneity, energy and entropy of the 
thermograms were extracted by the authors. The use of SVM resulted in 
a specificity of 90.48% and sensitivity of 85.71%. The sensitivity is 
higher than the typical sensitivity of 78% achieved by a radiologist. 
Although the results obtained by the authors are promising, the number 
of tests and the size of the database they used for training were too small. 
Therefore, it is impossible to generalize these results. 

Tan et al [131,132] employed 5 different classifiers including feed 
forward and probabilistic neural networks, fuzzy classifiers, Gaussian 
mixed models and SVM. 6000 temperature datasets were collected from 

Table 4 
The performance evaluation in terms of standard descriptors for breast cancer detection using infrared imaging.  

Authors of the 
study 

Method used in the study Population of the thermograms Accuracy rate Sensitivity Specificity 

Ng and Kee  
[71] 

multi-pronged approach comprising of linear 
regression, radial basis function network (RBFN) 
and ROC analysis  

80.95 % 100 % 70.6 % 

Wahab et al  
[126] 

Artificial neural network (ANN) 240 sets of data from the previous 
simulation works 

performance accuracy of 96.33% to 
testing data and 92.89% to the 
validation data 

No data No data 

Pramanik et al  
[10] 

block variance (BV), feedforward artificial 
neural network (FANN) with gradient decent 
training rule 

a dataset of 100 frontal view thermal 
breast images of DMR (Database for 
Mastology Research) 

90 % 95 % 85 % 

Acharya et al  
[130] 

Support vector machine (SVM) 50 IR thermograms 85 % 85.71 % 90.48 % 

Tan et al 131, 
132] 

Back propagation algorithm (BPA) 90 patients; 6,000 temperature datasets 83.1 % 82.9 % 83.6 % 
Probabilistic Neural Network (PNN) 86.1 % 88.8 % 78 % 
Fuzzy 77.4 % 78 % 75.6 % 
Gaussian Mixture model (GMM) 90.6 % 94.8 % 78 % 
Support vector machine (SVM) 85.6 % 84 % 90.4 % 

Gayathri 
Sumathi  
[133] 

Relevance Vector Machine (RVM) 300 dataset 97 % 98 % 98 % 

Gogoi et al  
[134] 

The support vector machine (SVM) with radial 
basis function (RBF) kernel has been used for 
classification of thermograms 

breast thermogram dataset of 60 female 
subjects 

83.22 % 85.56 % 73.23 % 

Tcheimegni  
[135] 

SVM Number of sample 699 (Wisconsin 
database) 

65.52 % No data 100 % 
RVM 65.52% No data 100 % 

Rana [137] SVM-linear UCI depository (WDBC and WPBC) 80.58 % No data No data 
SVM-RBF-static ‘C’ parameter 64.03 % 
SVM-RBF-dynamic parameter 93 % 
Logistic regression – generalized 90 % 
Logistic-regression regularized 92.08 % 
k-NN-Euclidean 95.68 % 
k-NN-Manhattan 94.96 % 
Naïve Bayes-normal 92.1 % 
Naïve Bayes-kernel 92.1 % 

Nguyen et al  
[138] 

Machine learning method based on random 
forest classifier and feature selection technique 

Wisconsin Database 99.82 % 99.83 % 99.72 % 

Silva et al [139] 10-fold cross validation 100 samples 95.38 % 95.37 % 95.37 % 
Leave-One-out cross validation 95.38 % 95.37 % 95.37 %  
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16 thermocouples placed on the patients’ breasts (16 thermocouples per 
patient or 8 on each breast). The author used 5000 and 1000 data for 
training and testing the classifiers respectively for research purposes. 
The specificities achieved by all classifiers were above 80%. The SVM 
showed the best performance with an average accuracy of 90.4% [131]. 

Gayathri and Sumathi [133] employed a RVM for breast cancer 
detection by creating a user-friendly environment for its diagnosis. In 
their study, the authors compared RVM with SVM, and the former 
method showed better results than the latter. The study showed the 
differences between the variables and their accuracy, which was not 
very high, as the accuracy was up to 96%. 

The study by Gogoi et al [134] aimed to evaluate the effectiveness of 
the highly sensitive Infrared Breast Thermography (IBT) in the early 
diagnosis of breast abnormalities. Their study investigated the effec
tiveness of IBT by performing temperature-based analysis (TBA), 
intensity-based analysis (IBA), and Tumor location matching (TLM). To 
discriminate healthy, malignant and benign breast thermograms in TBA 
and IBA, a set of temperature and intensity features were retrieved from 
each thermogram, from which thirteen different sets of features were 
then determined. Their classification performance was evaluated using 
SVM with radial basis function kernel. Among all the feature sets, the 
one that contained statistically significant (p 0.05) features provided the 
highest classification accuracy of 83.22% with 73.23% specificity and 
85.56% sensitivity. The results of the study indicate that IBT can be used 
as a proactive method for early detection of breast abnormalities in 
asymptomatic population. 

Tcheimegni [135] used a kernel-based RVM to classify cancers. In 
this study, the author developed a hierarchical Bayesian model with a 
sigmoid kernel and a radial basis function (RBF). The author also 
attempted to classify various diseases based on clinical data using the 
data-driven model. When comparing RVM and SVM, the author found 
that RVM has better accuracy than SVM of more than 90%. 

Bharathi and Natarajan [136] performed classification of cancer 
using SVM and RVM based on the model ANOVA. The core of their 
research was to select the smallest genes from microarray data to classify 
cancer effectively. The ANOVA was used for feature selection. The se
lection was based on a ranking scheme. The selected genes were intro
duced into SVM and RVM, where RVM showed higher accuracy of more 
than 93%. 

Rana et al [137] conducted a comparative study using different 
machine learning methods such as SVM, logistic regression (LR), KNN 
and Naïve Bayes for detecting breast cancer and predicting its recur
rence. The accuracy of the results for the diagnosis of breast cancer was 
95.6% and for the prediction of breast cancer recurrence and non- 
recurrence was 68%. 

Nguyen et al [138] developed a computer-aided detection system to 
classify benign and malignant tumors. They used the backward elimi
nation approach (BE) along with the random forest tree method for 
feature selection, which consisted of a total of 33 variables and then 
reduced to 17–18 variables. The accuracy of this hybridized algorithm 
has been shown to be 99%. 

Silva et al [139] conducted a study proposing a hybrid methodology 
of supervised and unsupervised machine learning to investigate dy
namic infrared thermography for diagnosing patients with breast can
cer. Dynamic infrared thermography was used to quantitatively measure 
or monitor the temperature changes on the breast surface after thermal 
stress. The test results confirmed the diagnostic ability of the proposed 
method for patients with breast cancer. It should be noted that the 
classification algorithms such as K-Star and Bayes Net had a classifica
tion accuracy of 100% for 39 cases tested. Moreover, the accuracy of 
classification algorithms such as Bayes Net, Multilayer Perceptron, De
cision Table and Random Forest was 95.38%. The proposed approach 
was able to detect patients with potential cancer regardless of the 
location of the disease in the breast, but did not allow determination of 
the location of the abnormality in the breast. 

Thus, the abovementioned studies agreed that SVM has high 

performance evaluation characteristics compare to other classifiers. 
However the indicators are not high enough to recommend the proposed 
approaches as standalone tool for breast cancer detection. At the same 
time some of the methods could be used as supplementary tool together 
with other gold standard methods as mammography, ultrasound and 
MRI. 

4.4. Detection of breast cancer using thermographic data and Bayesian 
networks 

Sometimes there is a misunderstanding and confusion about the 
value and wide applicability of Bayesian networks (BNs). One of the 
reasons for confusion is that BNs can be used for both unsupervised/ 
supervised learning (and so they sound similar although they are very 
different to ANNs) and for decision making encapsulating utilities (de
cision theory). The fundamental potential of BNs is that they comprise a 
mathematically consistent knowledge representation framework. 
Therefore the nodes of the network are representing pieces of knowledge 
that make sense. Mathematically the probabilistic nodes are random 
variables. Thus, a trained BN can be understandable and readable and 
also can be used to teach someone. The same is not true for ANNs which 
are like black boxes. ANNs are better for some tasks like image recog
nition. In the case of thermography BNs can be used both for predicting 
the tumor but they can also be used to construct a holistic decision 
making tool that can drive the correct diagnosis based on information 
from thermography via Bayes Net and/or via ANNs as well as utilizing 
other methods. Furthermore, a BN expert model can also encapsulate 
certain or uncertain knowledge, extra tests, other risk factors or physi
cians beliefs to make the final diagnosis after thermography. 

Bayesian Network Classifiers assign class labels to unlabeled cases, the 
classification finds a function that associates each unlabeled case to its 
corresponding label (class). The Naive Bayes classifier (NB) is one suc
cessful and popular classifier. A benchmark with respect to it, other 
classifiers have to be tested. An NB achieves learning from training data 
samples. Learning in the case of BNs means to construct the conditional 
probability of each state of variable given the class. NB for a new case, 
applies Bayes’ rule and after selects the value of the class with the 
highest posterior probability. 

The authors in [140] proposed a diagnostic method based on a score 
formed from thermographic data. 16 variables had been used to calcu
late this score (they comprise the nodes of the BN). The diagnostic power 
of the proposed variables was also estimated. 98 cases (21 healthy) had 
been examined and were used to build a diagnostic model and calculate 
its accuracy, sensitivity, and specificity. 

The authors have applied the BN method with three different types of 
classifiers and compared this method with other techniques such as 
ANNs and decision trees. They confirmed that the advantage of BNs was 
that they permit someone expert/physician visually to determine which 
factors have an influence over the diagnosis outcome and how variables 
influence each other. ANNs exhibit similar performance but they lack 
explanation. They cannot explain how a decision is made and which are 
the critical variables that influence the diagnosis more. Decision trees 
have a limited explanation capability, but they cannot encapsulate in
teractions of explanatory variables. The analysis in [140] reveals poor 
specificity but very high sensitivity and accuracy. Larger and more 
balanced thermographic dataset is required. 

In [141] the authors studied again with BN networks and various 
classifiers with the same dataset in [140]. They reconfirmed the results 
of [140] regarding accuracy sensitivity and specificity. The main 
conclusion was that the thermographic variables were subjective and 
should be reconsidered. The analysis with the help of the Bayesian 
network showed that only 2 out of the 16 variables influenced the 
diagnosis. A more balanced and larger dataset is needed. 

The authors in [140] suggested to use 20 statistical quantities as 
characteristic variables to extract information from thermographic im
ages. These variables were texture features extracted from the Gray 
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Level Co-occurrence Matrix (GLCM). This Matrix otherwise called gray 
level spatial dependence matrix evaluates the spatial relationship of 
pixels. The GLCM values the texture of the thermography image, esti
mating how frequent pairs of pixels with certain values and in a given 
orientation “θ” and distance “d” from each other happen in an image. 
Thus, this paper answers to the subjectivity issues of the variables that 
have been chosen in papers [140,141]. 

In [142] the classification of the healthy and unhealthy cases had 
been done using three different classifiers: SVM, k-NN classifier and NB 
classifier. In this paper the sample is small 26 normal and 14 abnormal 
images were studied. ROC analysis showed that the best accuracy was 
achieved with k-NN classifier. In this work the accuracy achieved was 
high but the dataset needed to be enlarged for safer conclusions and 
diagnosis. 

In [143] the authors proposed a hybrid methodology using unsu
pervised and supervised learning techniques. In the previous works 
[140–147] supervised learning was only utilized. Another difference of 
this work was that DIT data was used. Therefore the datasets were time 
series. The IR camera monitored temperature gradients, after a thermal 
stress. The first step of their method was to perform a clustering by k- 
means algorithm. Next, classification using BN, NN, decision rules and 
decision tree was carried out. In this work 40 healthy cases and 40 with 
cancer cases were considered. The analysis in [143] was quite thorough. 
The authors executed 39 different classification algorithms. K-Star and 
Bayes Net outperformed and resulted in 100% accuracy. One drawback 
of this method is that it cannot determine the location in the breast 
tumor. Reverse thermal engineering is required for such a task. 

In the work in [144] a larger set of thermographic data had been 
used. 1052 images were analysed. Another improvement that this paper 
introduced was that the images were classified into malign, benign, cyst 
and normal groups from specialists and biopsy. Thus, the training and 
the final diagnosis concerned 4 different states and not just two like in all 
other reviewed works of this subsection. A third improvement in [144] 
was that the authors defined as variables attributes based on both ge
ometry and texture. They used the so-called Zernike geometry moment 
(projections of the image function in orthogonal basis functions) and 
Haralick texture moment (co-occurrence matrix of the image). The 
classifiers executed were Bayes Network, NB, SVM, Knowledge Tree J48, 
Multi-Layer Perceptron (MLP), Random Forest, Random Tree, and 
Extreme Learning Machines (ELM). The analysis resulted in a fair ac
curacy with ELM and MLP doing better. However, the BN also provided 
very good accuracy and much better if the variables in use exhibit in
dependence. It is obvious that in [145] the combination of all these 
features concerning geometry and texture include variables that are 
correlated. 

Finally, in [146] the authors proposed a method to diagnose normal 
or abnormal images (with cancer or without). The novelty of this work is 
the use of the combination curvature function and gradient vector flow 
method for breast segmentation. Furthermore, in this work the classi
fication analysis used the new powerful type of ANN called convolu
tional neural networks (CNN). The authors presented in [147] a 
comparison of CNN with tree random forest (TRF), MLP, and BN. CNN 
technique outperformed the rest and succeeded with perfect accuracy. 
The dataset was not that large and had only 73 breast images, but the 
overall efficiency was very high and CNN was found to have 100% TPR 
(true positive rate or sensitivity: TPR = TP/(TP + FN)), SPC (specificity 
or true negative rate: SPC = TN/(TN + FP)), and ACC (accuracy: ACC =

(TP + TN)/(TP + FP + TN + FN)). 
In summary BN and NN are very strong ML tools but at the same time 

they are conceptually different. Modern NN in the recent last ten years 
surprised all researchers with their incomparable ability to recognize 
patterns. Their applicability to real life AI problems attracted the in
terest of many investors and companies. However, the way that they find 
solutions is a black box. BN on the other hand are very useful for medical 
problems where you want to build an expert model for diagnosis. BN are 
conceptually different in the sense that they encapsulate the knowledge 

from data in variables that can be concepts of a domain expert. 
Furthermore, this is the only framework that can provide causal 
reasoning that explores causes and effects. 

It is noted that all the works reviewed here concerning breast cancer 
diagnosis use thermography and BNs for classification only. No 
researcher utilizes the second big advantage of BNs: their ability to build 
a holistic expert model that can encapsulate certain and uncertain 
knowledge from AI classifiers from physicians from other tests etc. A BN 
expert model can integrate different diagnosis results coming from 
different AI techniques or other methods and suggest the final decision 
based on the utility theory. 

5. Summary and conclusion 

A number of studies were conducted to identify whether thermog
raphy could be employed as a reliable tool to detect the breast tumor. 
Most of the studies agreed that thermography has potentials to be a 
noninvasive, safe and reliable tool for earlier breast cancer detection and 
prediction. However, at the present thermography could only be a 
supplementary tool for mammography, as it is very sensitive to the 
conditions of the procedure and wellness of the patient. Moreover, the 
main limitation of thermography is the weak surface signature of small 
and deep tumors. Notwithstanding, there is a renewed wave of interest 
in thermography because of the improvement of IR cameras sensors, 
though the development of such cameras still does not provide a more 
quantitative and robust procedure to detect the breast tumor. 

On the other hand, the improvement of computer systems shows that 
mathematical modeling can also provide promising opportunities to 
improve the accuracy and reliability of tumor diagnosis. Numerical 
modeling of the tumor inside the breast is a complex process, at the same 
time it is a reliable one to supplement thermography and helps us to shift 
from qualitative to the quantitative assessment of the thermograms. 
Nonetheless, numerical methods and models can only be improved by 
validation against benchmark experimental data. Future research 
should focus on the development of sophisticated patient-specific 
models for precision prediction of all the thermal phenomena in the 
breast, employing personalized or patient-specific characteristics of the 
breast and its tissues. This can be achieved by carrying out reverse 
thermal modeling using the healthy and diseased breast thermograms 
and breast 3D geometry as inputs. Furthermore, these models can be 
used to improve thermal contrast in the transient cooling with dynamic 
IR thermography for the breast. It is also suggested that future ther
mography should contain the 3D distributions of surface temperature 
using 3D breast geometries. It can further be modified with a multilayer 
tissue model for improved accuracy and in an effort towards personal
ized medicine for breast cancer. This level of accuracy is important for 
revealing the exact correlation between the characteristics of the tumor 
and its thermal signature. 

Artificial intelligence is recognized as an effective tumor classifica
tion tool with high sensitivity and specificity. The most useful applica
tion of Artificial Intelligence is Machine Learning. There are many 
Machine Learning algorithms such as: Naïve Bayes, Support Vector 
Machine, Decision Tree, Relevance Vector Machine, Convolutional 
Neural Network and Artificial Neural Network. AI techniques show good 
levels of accuracy, sensitivity and specificity obtained in the conducted 
studies. However the main limitation of the conducted studies is the 
limited number of thermograms available to be used in the studies, 
therefore the low levels of the robustness of the results of the study. It 
should be noted that these methods are not used in clinics and hospitals, 
as further developments are required to combine thermography, 
physics-based modeling and data-driven computation to diagnose breast 
cancer. Physics Informed Neural Network (PINN) seems to be an ideal 
method for such integration. Note also, that BNs can be the final layer 
that encapsulates and integrates in a mathematical consistent way, the 
knowledge coming from thermal modeling from various medical tests, 
from patient history profile, from experts and from one or more AI 
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diagnostic methods/tools towards the final diagnosis decision. 
For future studies, it is recommended to have publicly available 

standardized image databases, which include images from different 
modalities for similar cases in order to facilitate the tasks of classifica
tion based on the machine learning, data-driven simulation and physics- 
based modeling. 
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[109] Filippo Amato, Alberto López, Eladia María Peña-Méndez, Petr Vaňhara, 
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