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Abstract 

Effective inventory management has a direct influence on monetary savings, high customer service level and product quality and thus plays an 
essential role in a company's economic and strategic performance. Forecasting and inventory models for aviation logistics are essential in 
commercial aviation. The objective of this paper is to study the problem of identifying the optimal order quantity of aircraft spare parts and the 
demand periods using the Order-Up-To (OUT) inventory model in conjunction with the Negative Binomial Distribution (NBD) and the (s, S) 
inventory model with Revised Power Approximation Method. These models are compared and contrasted via a real-world paradigm. The analysis 
reveals that the OUT inventory model in conjunction with the Poisson distribution allows ordering the lowest order quantity. However, the (s, S) 
inventory model with the Revised Power Approximation outperforms it in terms of average total inventory costs.  
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1. Introduction 

In the airline industry, most spare parts cost a significant 
amount of money and have a direct expenditure impact on 
company performance. Moreover, the unavailability of the right 
spare part may cause the company high expenditures such as 
flight cancellations, shipping arrangements or the aircraft 
downtown time. Thus, one of the most significant issues in the 
airline industry is to provide a reliable approach for the spare 
parts ordering process, particularly in terms of the order 
quantity and period.  

In the airline industry, the customer satisfaction level and the 
total inventory costs are considered as the most significant 
elements that company managers should take into 
consideration. The fundamental goal of an airline is to provide 
safety and quality services by maintaining the high customer 
service level at the lowest inventory cost. However, many 

factors affect the customer satisfaction level in the airline, such 
as the spare parts’ availability and uniqueness, geographic 
location of the suppliers, different lead times, and bureaucracy.  

Aircraft-On-Ground (AOG) cases refer to any failure in 
providing spare parts for the aircraft which has a result the 
aircraft to remain on ground and to flight cancellations. From 
aviation statistics, a medium-size international airline with a 
fleet of about 50 aircraft of various types faces around 1,000 
AOG incidents annually. With the average time needed to order 
a required item estimated at about 40 hours and the resultant 
costs for an airline can easily exceed $40-50 million annually 
[1]. Thus, the development of an appropriate inventory model 
that could help an airline to forecast and manage its inventory 
effectively is critical.  

The main goal of this paper is to assess inventory models 
that could help a commercial airline to control effectively its 
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amount of money and have a direct expenditure impact on 
company performance. Moreover, the unavailability of the right 
spare part may cause the company high expenditures such as 
flight cancellations, shipping arrangements or the aircraft 
downtown time. Thus, one of the most significant issues in the 
airline industry is to provide a reliable approach for the spare 
parts ordering process, particularly in terms of the order 
quantity and period.  

In the airline industry, the customer satisfaction level and the 
total inventory costs are considered as the most significant 
elements that company managers should take into 
consideration. The fundamental goal of an airline is to provide 
safety and quality services by maintaining the high customer 
service level at the lowest inventory cost. However, many 

factors affect the customer satisfaction level in the airline, such 
as the spare parts’ availability and uniqueness, geographic 
location of the suppliers, different lead times, and bureaucracy.  

Aircraft-On-Ground (AOG) cases refer to any failure in 
providing spare parts for the aircraft which has a result the 
aircraft to remain on ground and to flight cancellations. From 
aviation statistics, a medium-size international airline with a 
fleet of about 50 aircraft of various types faces around 1,000 
AOG incidents annually. With the average time needed to order 
a required item estimated at about 40 hours and the resultant 
costs for an airline can easily exceed $40-50 million annually 
[1]. Thus, the development of an appropriate inventory model 
that could help an airline to forecast and manage its inventory 
effectively is critical.  

The main goal of this paper is to assess inventory models 
that could help a commercial airline to control effectively its 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.promfg.2021.10.069&domain=pdf


508 Z. Kenzhevayeva  et al. / Procedia Manufacturing 55 (2021) 507–512
2 Author name / Procedia Manufacturing 00 (2019) 000–000 

inventory level by minimizing total inventory cost and by 
maintaining a high customer service level (99%). 

According to the International Air Transport Association 
(IATA) [2], the spare parts inventory of an airline can be 
classified into three inventory types: rotable, repairable and 
expendable. The three main differences between the 
inventories are the scrap rate, the financial terms, and the life 
cycle. Rotable inventory has relatively low scrap rate, whereas 
the scrap rate of the repairable parts should be taken into 
account when it comes to planning. As for the expendable spare 
parts, the inventory is considered to be used once it is 
consumed.  

Airlines further distinguish two more types of inventory: life 
limited parts and consumable inventory. Life limited spare 
parts have a predefined cycle time that is carefully monitored 
by the operator, while the consumable inventory has 100% 
scrap rate and is removed once consumed. In addition, there are 
three different types of defective spare parts depending on the 
part’s importance to the firm such as Go items (when they fail 
the airplane still can fly), No-Go items (when they fail the 
airplane cannot fly), and Go-if items (when they fail the 
airplane still can fly, if minor repair is being conducted).  

This paper is organized as follows. Section 2 presents a brief 
literature review on the inventory policies applied to airlines 
spare parts. Section 3 gives the proposed solution methodology 
implemented in this study which is based on two models: (i) 
the Order-Up-To (OUT) inventory model in conjunction with 
the Negative Binomial Distribution (NBD) and (ii) the (s, S) 
inventory model in conjunction with the Revised Power 
Approximation method. Numerical results are presented in 
Section 4 with a comparison of the performance of the two 
inventory models implemented in this study, over a real-world 
paradigm. Finally, Section 5 presents the conclusion of this 
study and recommends a few areas for further research. 

2. Literature review 

Given the detailed literature review in [3, 4] and in the 
interest of brevity, only a few key references on the methods 
tested are provided in the sequence.  

The demand of the airlines spare parts is irregular, usually 
intermittent (there are many periods with zero demand and a 
few periods with 1 unit or low demand) and lumpy demand 
(when the non-zero demand is large). Syntetos et al. [5] provide 
a categorization of the demand patterns. According to their 
scheme there are four types of demand based on the coefficient 
of variation of demand sizes and the average demand interval: 
smooth, intermittent, erratic and lumpy. 

Hopp et al. [6] examined inventory control practices for 
enterprise producing mail tools. A comprehensive literature 
review on repair processes in the airline industry is given in 
Garg [7]. Two nonlinear programming formulations, iterative 
approach, and GAMS methodology are presented in Gu et al. 
[8]. In Badkook [9], the agreement between the AOG process 
and routine aircraft maintenance is provided. Segerstedt [10] 
examines a refined inventory model based on Croston’s model 
that applies gamma distribution and takes into account the lead-
time.  

Gamberini et al. [11] highlight the geometric distribution 
function and present a case study with real data in the inventory 
operation for small and medium-sized businesses with lumpy 
demand. Many studies demonstrate the effectiveness of the 
inventory model that is based on the empirical data. Babai et al. 
[12] concentrate on the study of the OUT inventory model 
specifically for the components with the cost constraint. They 
showed that compound Poisson distribution satisfies well the 
calculation of the OUT.   

Nenes et al. [13] also give a model with Poisson distribution 
for the inventory control of the intermittent and lumpy demand. 
According to John Boylan, the Negative Binomial Distribution 
is the most convenient for modelling intermittent demand data. 
This study presents a comparison between inventory models 
for different target Customer Service Levels when the 
Croston’s approach is used to forecast the demand and different 
demand distributions are considered.  

Ehrhardt and Mosier [15] present a modification of the 
power approximation method given by Ehrhardt [16], for 
computing (s, S) inventory policies. The numerical 
computations of the s and S parameters are determined with 
under the Poisson and Negative Binomial distributions. The 
comparison showed that the modified approach is more 
accurate than the initial power approximation method in most 
of the cases. 

3. Solution methodology 

Two inventory models were selected to be implemented to 
the data of the Airline company:  

(1) the Order-Up-To inventory (OUT) model in conjunction 
with the Negative Binomial Distribution (NBD) that is 
based on the research by Syntetos and Boylan [14] (and is 
briefly described in Sub-section 3.1); and  

(2) the (s, S) inventory model in conjunction with the Revised 
Power Approximation that is based on the research by 
Ehrhardt and Moiser [15] (and is briefly described in Sub-
section 3.2).  

The real-world data accessed in this study describe the 10-
year demand history of over 5,000 Stock Keeping Units 
(SKUs) of a commercial airline with aircrafts from all three 
major manufacturers. For the purposes of this paper, eighteen 
rotable and repairable aircraft SKUs from Embraer, Airbus, 
and Boeing were chosen. The selected spare parts codified in 
Table 1 include both repairable and rotable spare part types. 

Figure 1 represents the actual 10-year demand history of 
SKU 3 which illustrates the fact that the demand is intermittent 
with many periods without demand occurrences.   This type of 
demand is representative of the demand of the other SKUs in 
Table 1 as well as of the demand of most aircraft spare parts. 

For the purposes of this paper, an arbitrary 22-month 
window was chosen to reflect relatively stable operational 
conditions while still accounting for seasonal variations. Three 
smoothing constant values of 0.05, 0.10 and 0.15 were 
considered for the calculation of the forecasts and of the 
smoothed mean squared error (MSE). Four values of Customer 
Service Level were investigated: 90%, 92%, 95%, and 99%. 
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The main goal of the analysis was twofold: to maintain (i) a 
high level of customer service and (ii) a low total inventory 
cost. 

Table 1. Selected spare parts. 

Aircraft Spare Part Type SKU Spare Part quantity 

Embraer 
Repairable SKU1 3 

Rotable SKU6 3 

Airbus 
Rotable SKU4 3 

Repairable SKU5 3 

Boeing 
Rotable SKU2 3 

Repairable SKU3 3 

Fig. 1. 10-year demand history for SKU 3 

3.1. The Order-Up-To (OUT) inventory model in conjunction 
with the Negative Binomial Distribution (NBD) 

In the OUT inventory model, at the beginning of each 
review period T, the inventory Position (on hand inventory + 
on order inventory - backorder) is reviewed. If the (Net stock + 
Receipts – Demand) is below the Order-Up-To level (S), then 
the difference between S and the inventory position is ordered. 

We adopted the analysis of Syntetos and Boylan [14], 
according to which the OUT inventory model is the most 
suitable inventory policy to deal with intermittent demand 
patterns. The Syntetos and Boylan approach was taken as the 
basis for the further calculations, with a periodic review system 
where period T = 1 month. T and S are the output parameters 
of the model. The inputs are: the demand, the lead time (L=1 
period), the customer service level, the spare part unit cost, its 
holding cost (unit cost X 0.05), its shortage cost (unit cost X 
0.50), mean period forecast and variance (taken as smoothed 
MSE over (T+L)). Moreover, the Negative Binomial 
Distribution (NBD) is used in further computations for the 
OUT inventory model.  

For obtaining final results of mean and variance of the 
demand distribution per period, Croston’s forecasting method 
is used. Syntetos and Boylan [14] proposed a modification to 
Croston’s estimator and illustrated the achieved efficiency on 
the real data. The equations are omitted. According to the 
literature review, Poisson distribution is one of the frequently 
used methods for the estimation of the OUT level for 
intermittent demand. However, Syntetos and Boylan [14] 
outline that NBD performs well with intermittent and lumpy 
demand patterns. Maintaining a high level of customer service 
is one of the main objectives of this work and is used as the 
constraint in the calculations in order to identify the efficiency 
of the inventory models. We adopted the following formula for 
calculating the Customer Service Level (CSL): 

CSL=!"#$%	'()*%(+#,-./	0123(+(#("4
!"#$%	'()*%(+#

= 

=!"#$%	516$47,8$)*"9719+
!"#$%	516$47

  (1) 

Cutting the costs down is a highly essential task for each 
enterprise. The average total inventory cost was calculated as 
the sum of the average positive stock times the holding cost 
plus the average negative stock times the shortage cost. 

3.2. The (s, S) inventory model in conjunction with the revised 
power approximation method 

This method is described in Ehrhardt and Moiser [15]. 
Details are again omitted. The two parameters, the reorder level 
or minimum inventory (s) and the OUT level or maximum 
inventory (S) as well as the average total inventory costs with 
the different customer service levels and smoothing constant 
values need to be calculated. Table 2 presents different methods 
of (s, S) inventory model described and tested by Porteus [17]. 

Table 2. List of methods in (s,S) model used in Porteus [17]. 

1 ONE-SHOT 7 NEWSBOY 13 NODISC 

2 EXTAIL 8 DISCR 14 EMPIR 

3 EOQROP 9 MCR 15 ANALOGY 

4 EOQREV 10 ITER 16 POWER 

5 EOQMULT 11 NONEWS 17 DETER 

6 SKEW 12 NOEMULT   

According to the results of the testing, the Power 
Approximation method is the nearly optimal (s, S) inventory 
model with more accurate calculations of parameters among 
other methods in the list. According to the method, an order of 
size (S – y) is placed when the inventory position y = on hand 
inventory + orders - backorders <= reorder point (s). The 
method requires only the mean and the variance of the actual 
demand for calculations. Equations are omitted. 

3.2.1. The Revised Power Approximation 

In 1984, Ehrhardt and Mosier [15] fixed the Power 
approximation method of Ehrhardt [16] which had certain 
drawbacks, with the major drawback being that the order 
quantity (Q) vanishes when the variance approaches to zero, 
and introduced the Revised Power Approximation (RPA) 
method which considers the mean, variance and setup cost for 
the quantity calculation. Moreover, the RPA method considers 
unsatisfied demand as a backlogged and lead time as a constant. 
This method is appropriate for all demand distributions except 
for normal.  The equations are provided below: 

Q = 1.30𝜇𝜇!.#$#(𝐾𝐾/ℎ)!.%!&(1 + 𝜎𝜎'(/𝜇𝜇()!.))& (2) 

𝑧𝑧 = [
Q

𝜎𝜎'𝑏𝑏/ℎ
]
)
( (3) 

𝑠𝑠* = 0.973𝜇𝜇' + 𝜎𝜎'(0.183/𝑧𝑧 + 1.063 − 2.192𝑧𝑧) (4) 

If Q/ Forecast is more than 1.5, the reorder point and OUT 
level are calculated as follows: 
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s = 𝑠𝑠* (5) 

𝑆𝑆 = 𝑠𝑠* +𝐷𝐷* (6) 

Otherwise, when Q/ Forecast mean demand is less than 1.5, 
the s and S values are equal to: 

s = min{ 𝑠𝑠*,𝑆𝑆!} (7) 

𝑆𝑆 = min{ 𝑠𝑠* + 𝑄𝑄, 𝑆𝑆!} (8) 

Where, So is an empirical modification of Wagner (1965) 
and is calculated by: 

𝑆𝑆! = (𝐿𝐿 + 1)𝜇𝜇 + 𝜗𝜗𝜗𝜗√𝐿𝐿 + 1 (9) 

J
exp	(−𝑥𝑥(

2 )

√2𝜋𝜋
𝑑𝑑𝑥𝑥 =

𝑏𝑏
(𝑏𝑏 + ℎ)

,

-.
 

 

(10) 

In equation (10), b/(b+h) defines the customer service 
level.  

To determine the reorder point and the Order-Up-To level, 
the Setup cost should be calculated from equation (11): 

K =
( /012341	6781∗:!.#!$

).;∗/012341	<1=3><!.%&%∗?)@ '(
)*+,-.+	0+1-20A

!.33$)).$B  
 
(11) 

where, the average size of SKU is the average demand 
divided by the number of non-zero actual demand throughout 
the period, and the average demand is the average of the actual 
demand and σ^2 is the variance of the actual demand. 

4. Numerical results 

In this Section, due to space limitations, only the 
comparison results (in terms of the average total inventory 
costs, customer service level and order quantity) of the two 
inventory models considered in this study, are given for an 
SKU. It has been numerically proved that the same trend 
applies to all 18 SKUs experimented in this study.  

Table 3 demonstrates the results of the application of the 
Order-Up-To and RPA inventory models on the empirical data 
sample of Table 1.  

The Order-Up-To inventory model presents the forecasted 
order quantity and the order periods based on the Negative 
Binomial and Poisson distributions. The order quantity is 
calculated over the 22-month period for SKU 1 (repairable 
part) with the unit cost of 4725 USD.  

Moreover, two constraints are applied across all series: 
customer service level, ranging from 90% to 99%, and 
smoothing constant values of alpha, ranging from 0.05 to 0.15. 
As it may be observed from Table 3, the results vary 
significantly with the alteration of the CSL and smoothing 
constant parameters. 

The values obtained in Table 3 indicate that the CSL is 
achieved by all the developed methods. The results also 
indicate that the OUT inventory model with Poisson 
distribution gives the lowest order quantity compared to all 
other alternative estimators in all simulated experiments. For 

example, for smoothing constant alpha 0.05 and customer 
service level of 99%, total order quantities for SKU 1 equal 78, 
62 and 77 for NBD, Poisson and Revised Power 
Approximation (RPA) inventory models, respectively. 

Table 3. Total order quantity for SKU 1. 

  NBD Poisson RPA 

 0.05 74 52 69 

90% 0.1 75 52 70 

 0.15 75 52 70 

 0.05 75 57 74 

92% 0.1 76 52 74 

 0.15 76 52 72 

 0.05 77 53 75 

95% 0.1 77 55 76 

 0.15 77 53 76 

 0.05 78 62 77 

99% 0.1 80 33 73 

 0.15 80 60 73 

Overall, it may be said that almost any CSL could be 
achieved by ordering the higher number of spare parts to ensure 
the required inventory availability. However, this may result in 
excessive inventory and associated costs. Thus, despite the fact 
that some methods offer low order quantity and high customer 
service level does not guarantee the effectiveness of the 
method, since the total inventory costs should also be taken into 
account. 

As it can be seen from Table 4, the total inventory costs with 
the three different methods are calculated over the same period 
and stock out levels. In terms of CSL of 99%, despite the fact 
that the method using Poisson distribution has the lowest order 
quantity, the total inventory cost incurred with RPA are the 
lowest compared to OUT inventory model with NBD and 
Poisson distributions (approximately 2270.1, 2085.2, and 
2073.2 USD respectively for alpha=0.05). 

Table 4. Average total inventory costs. 

  NBD Poisson RPA  

 0.05 2927.5 2742.6 2734.7 7% 

90% 0.1 2793.9 2804.2 2644.0 5% 

 0.15 2722.0 2701.5 2658.3 2% 

 0.05 2876.1 2249.5 2819.2 2% 

92% 0.1 2485.8 3338.3 2493.5 0% 

 0.15 2455.0 2773.4 2654.8 -8% 

 0.05 2485.8 2054.4 2012.4 19% 

95% 0.1 2270.1 2382.0 2198.9 3% 

 0.15 2270.1 2187.9 2153.5 5% 

 0.05 2270.1 2085.2 2073.2 9% 

99% 0.1 2393.3 2547.4 2318.9 3% 

 0.15 2629.6 1838.6 2032.3 23% 

In order to test the effectiveness of the developed models the 
two models were tested for all 18 spare parts and a similar trend 
was observed. Also, when the unit cost of the spare part was 
higher, the cost difference between the methods was higher. 
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Furthermore, the above results were compared against the 
Simulation model developed by Yesdauletov et al. [4]. Table 5 
shows the total inventory costs of SKU 23, SKU 102, and SKU 
328 with the same Customer Service Level of 99%. A 
simulation model was developed in 2018 and the results 
satisfied the company objective. However, the (s, S) inventory 
model in conjunction with the RPA method outperforms the 
Simulation model. The resultant decrease in the total inventory 
cost is 5.66%, 2.91%, and 8.26% for SKU 23, SKU 102, and 
SKU 328, respectively. 

Table 5. Total inventory costs calculations using different inventory models 

Total 
Cost 

Simulation 
Model [4] 

 OUT Model 
with NBD 

(s, S) Model 
with RPA [3] 

% 
Difference 

PN1 203030.87 201020.66 191538.56 5.66 

PN2 436737.36 445385.62 424016.85 2.91 

PN3 3842.02 4020.00 3524.79 8.26 

(The full range of experiments that were performed can be 
found in [3].) 

5. Conclusion and further research 

The comparative evaluation in this paper demonstrates one 
potential approach to the airline inventory management 
problem aiming at keeping a high customer service level of 
99% while minimizing simultaneously total inventory costs. 

The proposed approach is based upon the development of 
two inventory models: (1) the OUT-inventory model with 
Negative Binomial and Poisson distributions and (2) The (s, S) 
inventory model with the RPA method. The two models were 
tested based on real historical data of aviation logistics 
describing spare parts’ demand and orders over an almost 2-
year window.  

The findings demonstrate that the models may be adopted 
for any customer service level from 90% to 99% and smoothing 
constant values of alpha ranging from 0.05 to 0.15.  

The costs associated with the ordered inventory rise with the 
increase of the CSL and thus are subject to decision-making. 
Overall, the OUT inventory model in conjunction with the 
Poisson distribution allows ordering the lowest order quantity.  

However, the (s, S) inventory model with the RPA 
outperforms in terms of average total inventory costs. The 
advantages of the latter model could be explained by the 
following factors:  

(i) The RPA method calculates the reorder point and order 
up-to level for any value of variance, while the other two 
methods assume the value of variance as the product of 
mean and 1.05, when it approaches to zero. This 
assumption decreases the accuracy of the calculations in 
the OUT inventory model.  

(ii) The RPA method outperforms other models particularly 
in calculating the costs of the expensive spare parts. The 
results prove that for the relatively inexpensive spare parts 
the cost difference is not as high as when it comes to the 
cost estimation of the expensive spare parts.  

The key innovation of the work presented is the 
development of a practical toolbox for controlling aviation 

inventory costs that is fairly robust with respect to customer 
service levels and smoothing constant values of alpha. 

Future research should focus upon the continuous refining 
of the models described in this paper by examining alternative 
time windows of the demand. The key objective will be to 
examine various combinations of suitable inventory models 
and distributions of the demand to reduce further the total 
inventory costs while maintaining a stricter customer service 
level (typically exceeding 99%).  
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