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1. Introduction

Electronic design automation in the era of AI is experiencing
rapid transformations prompted by the increased demands of
edge AI computing applications. The AI applications demand
accelerated computing of deep neural networks and require
device miniaturization to increase chip density. Low-power
analogue computation using memristive systems provide
increased chip density and ease of implementation in analogue
and mixed-signal domains.[1] However, the manual optimization

of neuromemristive systems deals with
several issues of device variability and
nonideal behavior that make the design
process difficult. Bringing automation in
the analogue circuit block selection for neu-
ral architectures can speed up the design
process, reducing the overall cost of chip
design and speeding up implementations.

The classical software-based approaches
for hyperparameter optimization of the
deep neural network are a resource-
consuming and complicated task. Often
there is no one right solution to such an
optimization problem, and there are sev-
eral optimization methods such as random
search,[2] Bayesian optimization,[3–5] and
evolutionary algorithms.[6,7] While these
methods have proven to be effective to a
variety of classification problems, they do
not take into account hardware-specific
issues required for AI chip implementa-

tion.[8,9] Among the evolutionary algorithms, we consider genetic
algorithms[10–14] to be the most hardware friendly to implement.
The random number of assignments, mutations, and crossovers
can be implemented for an online learning chip if required for
edge AI applications.

The successful automation of neuromemristive analogue AI
chip design would require to consider hardware-specific issues
and not just limit to the classification accuracy of the neural
network configuration. Several nonideal behaviors of neuro-
memristive devices and networks[15,16] need to be considered
in the design process. This includes the limited number of stable
conductive states,[17] stochasticity and variation of the conductive
states,[18,19] and device aging[20,21] and failures. We propose to
bring the automation in circuit design by using the genetic
algorithm for the selection of hyperparameters against
hardware-specific objectives. Furthermore, we map the library
of neuromemristive blocks to the optimal neural architecture.
We show how the nonideality affects the selection of the network,
and how the selected configurations can optimize the hardware
design of a network for face (AR[22]), character (MNIST[23]), and
fashion (Fashion-MNIST[24]) image datasets.

2. Background

2.1. Memristor and Memristor Nonidealities

Memristor device and crossbars[25–30] are a promising solu-
tion for analogue computing architectures, notably for the imple-
mentation of dot product computation in neural networks on
hardware.[31–35] Nevertheless, nonideality in devices implies
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Optimization of analogue neural circuit designs is one of the most challenging,
complicated, time-consuming, and expensive tasks. Design automation of ana-
logue neuromemristive chips is made difficult by the need to design chips at low
cost, ease of scaling, high-energy efficiency, and small on-chip area. The rapid
progress in edge AI computing applications generates high demand for developing
smart sensors. The integration of high-density analogue computing AI chips
as coprocessing units to sensors is gaining popularity. This article proposes a
hardware–software codesign framework to speed up and automate the design of
analogue neuromemristive chips. This work uses genetic algorithms with objective
functions that take into account hardware nonidealities such as limited precision
of devices, the device-to-device variability, and device failures. The optimized
neural architectures and hyperparameters successfully map with the library of
relevant neuromemristive analogue hardware blocks. The results demonstrate the
advantage of proposed automation to speed up the analogue circuit design of
large-scale neuromemristive networks and reduce overall design costs for AI chips.
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computing errors that require to be compensated through modi-
fied learning strategies or architectures. Several nonidealities
cause the deterioration of the performance of memristive
crossbar-based neural net architectures. Figure 1 shows some
nonidealities such as a limited number of stable resistive
states,[36–38] conductance variation,[39–41] memristor aging
issues,[21] endurance,[34,42] reliability issues,[43] and device
failure.[35] Limiting the number of stable resistive state leads
to low precision of dot product multiplication, which, in turn,
reduces the memristive neural network accuracy. Figure 1a
shows conductance variation, which can be generalized as a
Gaussian distribution of resistive states. For devices made of
different materials, the conductance variation may be different.
In some architectures, conductance variation effect may be
mitigated,[41] whereas for the others the result cannot be
avoided.[17] Figure 1b shows memristor aging. With aging,
removal of some resistive states with time occurs due to contin-
ual reprogramming of the device. And the device cannot be set to
its initial RON and ROFF states after several programming

cycles.[21] Figure 1c shows device endurance and failure of the
devices. In this case, memristive devices get stuck in RON and
ROFF states without possibility to reset them further.
Moreover, some failed devices may be disconnected entirely
from the crossbar line and do not conduct any current.
Memristor failures may happen after several programming
cycles or after fabrication due to imperfections of the fabrication
process and can be solved by retraining the network.[44]

The other type of memristor nonideality consists of nonlinear
weight distribution, asymmetry and nonlinear programming,
and device-to-device and cycle-to-cycle variation.[39,45,46] The
hardware noise and ROFF/RON ratio can also influence the design
of the memristive neural network architectures. In addition,
memristive crossbars are affected by sneak path currents, wire
resistances, and leakage currents.[47] Finally, signal integrity
issues and electromagnetic effects in memristive crossbars
can also cause the problems in the design,[48] which have not
been extensively studied yet. In this work, we focus on avoiding
this hardware-related issues before the design of the memristive

Figure 1. Memristor nonideality affecting the performance of memristive neural networks: a) resistance variation, b) device aging (when several resistive
states are removed), and c) endurance and device failure. d) Design automation process.
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neural network architecture, rather than mitigating the effects of
nonideality. We propose to include memristor nonidealities,
such as 1) a limited number of stable resistive states, 2) conduc-
tance variation, and 3) device failure, to the network hyperpara-
meter selection algorithm, and optimize the neural network
hardware prior to implementation. The proposed approach
can be modified and extended to include the other hardware-
related parameters and nonidealities. The parameters of several
commonly used memristor devices are shown in Section 1,
Supporting Information.

2.2. Hyperparameter Optimization Algorithms

The hyperparameter optimization approaches aim to identify an
optimal set of parameters used to configure the network or iden-
tify learning algorithms that can lower the cost functions.[49]

The automatic selection of hyperparameters eventually will
remove human from the loop for neural network design and
selection. In this optimization problem, the lowest error on
the validation set is used to determine the most optimal hyper-
parameters. Also, the problem can be treated as either single- or
multiobjective optimization problem.[50] In most cases, the
single-objective scalar optimization cost function is used for
practical implementation.[9]

There are three classes of hyperparameter optimization
algorithms: 1) exhaustive search, 2) surrogate models, and
3) mix-mode search.[9] In all these cases, there are search
assumptions and boundary conditions defined for hyperpara-
meters and also takes into account any prior knowledge of the
underlying problem.

The exhaustive searchmethods consist of a parallel grid search
or random search of the space.[51] The grid search suffers from
the curse of dimensionality due to parallel search problem.[52]

This problem occurs because each of the hyperparameters need
to be discretized. Here, the entire search space is also discretized
as the Cartesian products between them. The learning and cost
evaluation of each hyperparameter configuration are performed
in parallel to select the best.[53]

The random search methods perform sampling of a search
space as opposed to grid search where it is discretized with a
Cartesian grid.[2] There is no endpoint for algorithmic compu-
tation other than setting a time limit to the algorithm. The
random search also suffers from the curse of dimensionality
when aiming to reach a preset fixed sampling density. As
opposed to grid search, where the dependency between the
hyperparameters can make it hard to find optimal, a random
search does not get impacted with correlations between the
hyperparameters. The random search can tolerate greater
variations between the hyperparameters. Both grid and random
search are easy to implement and do not require tuning.
Although it can be noted that they do not guarantee a local
minimum, in many realistic neural network implementations,
this is not a significant concern.

Sequential Model-Based Optimization (SMBO)[54,55] is classi-
fied as a surrogate model. Here, the knowledge of the validation
loss as a function of the hyperparameters is used for guessing
the future tries in identifying where the local minima could be.
Bayesian optimization[56] and Tree-structured Parzen Estimators

(TPEs)[9,57] are two classical examples of this approach. In these
methods, the learning has to be run till the end.

Hyperband[58] and Population-Based Training (PBT)[59] are
specific algorithms used for hyperparameter tuning. Hyperband
is a variation of random search using explore–exploit theory to
find the time limit required to stop the algorithm.[58] PBT uses
the ideas of genetic optimization during the stochastic gradient
descent optimization step.[59] The learning is seen as dynamic
with hyperparameters updated every n steps. The PBT combines
the hyperparameter search with the learning, to arrive at an over-
all model, not just the optimal hyperparameter. As such with
PBT, it is not possible to tune hyperparameters pertaining to
model shape or structure. Fabolas is another algorithm to speed
up Bayesian optimization for large datasets.[60] BOHB combines
the Bayesian optimization and Hyperband,[61] with Hyperband
used for guessing the number of configurations to try for the
Bayesian optimization.[49]

The evolutionary processes in nature inspire genetic search.
The search space for the hyperparameters of neural networks
follows global optimization. The search can be stopped based on
fitness value or limiting it to a certain number of predetermined
iterations. The objective functions used in these algorithms aim
for improving the accuracy or reducing the global loss of the given
architecture.[62,63] When these optimized hyperparameters are
used for a hardware implementation, they do not show the same
accuracy or loss as expected with software simulations. This is
primarily due to hardware scalability limitations and design
constraints that come with nonideality. These optimization
algorithms, in general, require substantial computational time,
and often do not consider the hardware limitations.

3. Methodology

Figure 1d shows the overall design automation process proposed
in this work. To achieve design automation, we use genetic
algorithm[64] for the selection of hyperparameters required for
implementing memristive crossbar-based neural network.
Based on the selected parameters, we identify activation func-
tions, an optimum size for implementing memristive crossbar
and number of crossbars necessary for the overall architecture.
The crossbar size and practical hardware implementations
depend on the number of neurons and the number of layers
in the network. Genetic search provides with the selection of
several optimum designs that can tolerate nonideality of the
hardware. The most efficient architecture can be selected based
onminimum on-chip area, power, and processing time. After the
selection of the most efficient architecture, an IC designer can
proceed to designing the layout of the selected network, placing
the selected components (circuits blocks), and routing and final
optimization. The genetic search approach helps to automate ini-
tial design stages and can be used for any memristive devices
considering corresponding parameters and nonidealities. The
parameters of several commonly used memristors are shown
in Section 1, Supporting Information.

In theory, the heart of the genetic algorithm can be repre-
sented as schema theorem[65] that bounds the expected growth/
decay of the number n of schemata h within a population at
generation Gi, as
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nðh,Gi þ 1Þ ≥ nðh,GiÞ
f ðhÞ
f̄

�
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δðhÞ
l� 1

�moðhÞ
�

(1)

where f(h) is the average fitness of strings in h within the popu-
lation, f̄ is the average fitness of population, l is the string length,
c is the crossover probability, δðhÞ is the length of schema h, o(h)
is the order of schema, and m is the probability of mutation.
The schema grows when the fitness value (i.e., average accuracy)
is above average, is relatively short, and is of low order. This can
be quantified as schema grows relative to the growth factor ϕ,
ϕ ¼ f ðhÞ=f̄ ½1� cδðhÞ=ðl� 1Þ �moðhÞ�. Roughly, when ϕ ≥ 1,
the future generations will contain an increased number of
strings, and new stings created through recombination. At the
end of each iteration, the number of networks with hyperpara-
meters (strings) that qualify this criteria is selected and new
population formed.

The nonideality of the hardware can be incorporated either
by including the nonideal effects into the population or by
modifying the fitness function. In neural networks, as perfor-
mance accuracy is the most important objective, the fitness
function evaluates average accuracy as its primary criteria.
In addition to this, the performance metrics such as power
and area is evaluated, such that the performance accuracy is
not compromised.

The Algorithm 1 shows the genetic algorithm that aims to take
into account hardware nonideality for hyperparameter optimiza-
tion. The number of generations G shows how many times the
set of networks evolves to select the optimum network, where
the population is the number of networks in a generation. When
the number of generations G¼ 1, the hyperparameters are
defined. And p networks in a population with randomly selected
hyperparameters created and trained. The testing/validation of the

networks was performed by including hardware nonideality, such
as the limited number of stable resistive states, memristance vari-
ation, and device failure. The memristive crossbars implement
both positive and negative weights. We restrict the possible range
of all memristive crossbars w to the range [x1, x2] to limit the
number of stable resistive states (levels), and quantize positive
and negative weights to L states (Algorithm 1, line 9). The equation
in Algorithm 1 (line 12) is used to introduce memristor variation.
Here, gm is a Gaussian distribution with mean μ and standard
deviation of σ� 0.01. We also randomly disconnect F percentage
of memristors in crossbars to simulate memristor failure. The
experiment repeats for i iterations and average accuracy calculated.

The best xb percentage and the worst xw percentage networks
are selected based on the average accuracy obtained. These net-
works are used as parents for the next generation to produce
100� xb � xw percentage of children networks based on the
parameters of the parents, where xm percentage of the networks
are mutated by randomly changing one of the hyperparameters.
The parent and generated children networks in combination are
used as a population of the next generation. The process repeats
until it reaches an optimal set of network configurations. The
library of analogue neuromemristive circuit blocks maps to
the selected network configuration. The system chooses the most
suitable circuit blocks for crossbars and activation functions to
complete the hardware design.

4. Results and Discussion

This section provides performance analysis of the proposed
method, possibilities to generalize and extend the scope of hard-
ware implementations of the selected networks. The additional
explanation of analogue memristor-based neural network design

Algorithm 1: Genetic algorithm with crossbar nonideality.

for G generations do

if G¼ 1 then

Define a set of network hyperparameters

Create a population of p random networks

Train all networks

for all networks do

if nonideality¼ true then

Limit the range of all w to [x1, x2] and quantize for L levels within this range

for i iterations do

for all w do

Introduce memristance variation as w ¼ wþ gmðμ ¼ 0, σ � 0.01Þ
for i iterations do

Randomly fail F percentage of memristive weights

Calculate network accuracy and add to the list of accuracies

Calculate average network accuracy from the list

Retain best xb of the best networks and xw of the worst networks (parents networks) to produce the next generation

From the selected networks produce 100� xb � xw of new networks (children networks)

Mutate xm of children networks

Create new population combining parents and children networks
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and implementation on hardware is provided in Section 2,
Supporting Information, which includes the main design consid-
erations and the way to move from a single device to systems
architecture.

4.1. Performance Analysis of Genetic Search

The deep neural networks require dataset for training and
optimizing the network hyperparameters. MNIST,[23] Fashion-
MNIST,[24] and first ten classes of AR Face recognition
database[22] are used for our experiments. MNIST and Fashion-
MNIST databases are known for benchmarking image classifica-
tion problems. The simulations indicated that we select an
optimum network with the hyperparameters, as shown in
Table 1. We assume the least complex case of a fully connected
network, where the size and activation of all hidden layers are
the same. The explanation of the network architecture and
correlation to the hardware are further discussed in Section 2.2,
Supporting Information.

The dense layer parameter selection for the convolutional
neural network (CNN) is demonstrated based on Table 1.
Here, CNNs have a fixed four convolutional layers having
[32-32-64-128] filters for face recognition application. The
training stage used category-based cross-entropy loss function
and Adamax optimizer.[66] The number of training epochs for
MNIST, Fashion-MNIST, and AR database was set to 25, 70,
and 100, respectively. Furthermore, xb¼ 40% of best and
xw¼ 10% networks are retained after each generation, and
xm¼ 20% of children networks are mutated. The weights restric-
tion applies for the range of [�1,1] for MNIST and Fashion-
MNIST dataset and [�0.2, 0.2] for AR dataset, which, in turn,
are mapped to memristive crossbars. The limited number of
stable resistive states maps with the weight to the hardware
implementation of the memristive networks.

Figure 2a,b shows performance comparison for ideal and non-
ideal neuromemristive networks. The results report the tests
with MNIST and Fashion-MNIST database. Here, we compare
average generation accuracy for ideal networks and nonideal
neural networks with L¼ 2, σ¼ 25, F¼ 5%, i¼ 50, and p¼ 20
for ten generations and show the best three network configura-
tions selected after ten generations. Figure 2c compares the
selection of ideal network and nonideal neural networks for face
recognition problem with AR database. Here, the neural network
configuration is with L¼ 64, σ¼ 3, F¼ 1%, i¼ 100, and p¼ 20.
The figure shows the average number of neurons, activation
functions, and the number of layers for the top three networks
selected in each generation. The number of layers and neurons
tends to increase with each generation for most of the cases.
The selection of activation functions for the best three networks

also varies. For example, it can be seen that for MNIST database
ReLU is selected as an activation function for a hidden layer in
the best networks. In contrast, for a nonideal crossbar-based
network, Tanh is selected. The increased dot product error
caused by hardware nonidealities and variations requires
different activation functions to achieve comparable inference
accuracy. The activation function selected in the ideal case cannot
tolerate and compensate for this error. However, the activation
function selected for the nonideal hardware components pro-
vides better compensation of dot product errors and, to a certain
extent, can tolerate hardware variation resulting in the best
possible performance accuracy. The selected activation functions
for the top three networks vary in the first —three to four
generations and remain the same after—four to five generations.
The best performing networks selected for ideal and nonideal
cases have different optimal network configurations. Therefore,
it is essential to include the hardware nonideality into the selec-
tion of the architecture and genetic search can be successfully
applied.

Figure 3 shows simulations for the selection of the hardware
architecture, including a particular nonideality into each simula-
tion. Such simulations are useful when a specific hardware non-
ideality cannot be avoided or mitigated, and the design is
required to be resistant to it. The simulations are performed
for MNIST and Fashion-MNIST database with p¼ 20 for the
networks with L¼ 2, σ¼ 25, F¼ 5%, and i¼ 50. The figure
shows the average generation accuracy and maximum accuracy
obtained in each generation. The comparison shows the top two
selected networks obtained after first and tenth generations. The
tenth generation results in configurations with higher accuracy
along with first and second best networks. The proposed method
allows selecting a set of network configurations that can tolerate
hardware nonideality. The genetic search in the simulated experi-
ments is at least 1.8 times faster than the grid search and training
of the architectures.

Figure 4a–c shows the performance of the genetic algorithm
with the variation of the number of networks in a population of p.
The experiment uses Fashion-MNIST database for simulating
nonideal case with the limited number of stable resistive state
L¼ 2. The inference stage for accuracy calculation includes
memristance variation with σ¼ 10 for i¼ 30 random iterations.
The time required to achieve relatively high-performance accu-
racy was analyzed based on the average generation accuracy
rather than maximum possible accuracy in each generation.
The first generation of networks are randomly selected. The
use of maximum accuracy as an objective metric may not be suf-
ficient indication of generalized performance of the algorithm.

Figure 4a shows the average accuracy of the networks in a sin-
gle generation for a given size of the population. Figure 4b shows
the maximum accuracy in each generation. The average genera-
tion accuracy and maximum accuracy increase with the number
of generations. The table in Figure 4c shows 1) the number of
generations required to achieve the accuracy of approximately
80% for a different number of networks in a population,
2) the total number of networks to train and achieve 80% of accu-
racy, 3) approximate training time in terms of t, where t is an
average training time of a single network, and 4) approximate
maximum memory required to store all the networks during
the training. Our experiments also consider the training time

Table 1. Hyperparameters used in the simulation.

Parameter List of variables

Number of neurons in hidden layer [64, 128, 256, 512, 768, 1024]

Number of layers [1, 2, 3, 4, 5]

Activation function for hidden layers [ReLU, Tanh, Sigmoid]

Activation function for output layer [ReLU, Tanh, Sigmoid, Softmax]
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Figure 2. Comparison of average generation accuracy for ideal neural network and memristive crossbar-based neural network with nonidealities for
a) MNIST database and b) Fashion-MNIST database. c) Comparison of average generation accuracy for ideal neural network and memristive cross-
bar-based neural network with nonidealities for face recognition with AR database, where convolutional layer is fixed and dense layer configuration is
selected using genetic search.
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andmemory for running genetic algorithms. In the estimation of
the training time, we assumed that the networks in a single
generation are trained sequentially. The efficient selection of
the hardware architecture complies with the trade-off in the
possible number of generations. The number of generations
determines the hyperparameter selection speed and population
size. Furthermore, implying how many networks should be
trained in total to reach high-performance accuracy.

Any random selection of the initial population in the genetic
algorithm can affect the network selection. We test this assertion
by the selection of the network configuration under the same
conditions for seven networks with nonideality (L¼ 2, σ¼ 10,
and population p¼ 10) and different initialization in Figure 4d.
The average generation accuracy for all seven cases follows the
same trend with similar accuracy. The algorithm selects on
average 768 neurons, —four to five layers, and the same Tahn
activation function for the hidden layer for all the different

random initializations, whereas the output layer function varied
between Sigmoid and ReLU.

4.2. Generalized Scope of Proposed Genetic Search

The proposed approach can be used to design different
memristor-based neural network architectures considering
various hardware aspects and nonidealities. The number of
network hyperparameters can be further extended. The genetic
search does not depend on the training/optimization algorithm,
and this algorithm can be selected based on designer’s pre-
ferences. Moreover, selection of the training algorithm can also
be considered as a part of the hyperparameter selection process.

Figure 5 shows how the scope and generality of the proposed
approach can be expanded. The number of the hyperparameters
selected during the optimization can be increased, as shown in
Figure 5a. In comparison to the simulations shown in Section 4.1

Figure 3. a,b) Average and maximum accuracy in a generation and selected network configurations for crossbar-based networks with limited number of
stable resistive states L¼ 2. c,d) Average and maximum accuracy in a generation and selected network configurations for crossbar-based networks with
Gaussian memristance variation σ¼ 25. e,f ) Average and maximum accuracy in a generation and selected network configurations for crossbar-based
networks with F¼ 5% possibility of memristor failure.
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where only four hyperparameters are selected during optimiza-
tion (Table 1), Figure 5a shows the CNN simulations for the
selection of nine CNN hyperparameters for object recognition
application using CIFAR-10 dataset.[67] The hyperparameter
set shown in Table 1 (Figure 5a) includes convolution filter size,
convolution activation function, type of pooling in convolution

layer (mean-pooling or max-pooling), number of convolution
layers, and the number of convolution filters in the first convo-
lution layer (the number of filters doubled in the subsequent con-
volutional layers). In addition, we illustrate that the genetic
search does not depend on the training algorithm and perform
the simulations for three different training/optimizationmethods:

Figure 4. Effect of the number of networks in a population on the performance of genetic algorithm for Fashion-MNIST database: a) generation average,
b) generation maximum, and c) required number of generations and trained networks. d) Effect of random initialization on the performance of optimi-
zation algorithm.

Figure 5. a) Selection of CNN architecture for object recognition for CIFAR-10 dataset with nine hyperparameters. b) Selection of CNN architecture
considering the training/optimization algorithm as a network hyperparameter. c) Example of genetic search application for memristive LSTM architecture
design.
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adaptive gradient algorithm (Adagrad),[68] adaptive moment esti-
mation (Adam),[66] and stochastic gradient descent (SGD).[69]

As the number of hyperparameters increased, we also increased
the population size to 40 networks per population (p¼ 40). The
nonidealities have been set to L¼ 64, σ¼ 2, and F¼ 1% to
emulate Ta/hfO2/Pd devices (the additional parameters are shown
in Figure S1, Supporting Information). Figure 5a shows the best
selected networks after 20 generations for ideal and nonideal
cases, minimum and maximum accuracy per generation, and
number of new networks trained for each generation. For all three
training algorithms, the network configuration producing maxi-
mum accuracy is found within the first five to six generations.
The number of new trained networks decreases each generation
(shown in Figure 5a for the nonideal case with Adam-based
optimization) as genetic search converges to a particular solution.
The total number of networks trained for 20 generations is 201
and the best accuracy is found after training of 121 networks.
However in the grid-search, 51 840 networks have to be trained
to arrive at the best solution. The results show that the proposed
genetic search is efficient when the number of hyperparameters
increases. This is an important feature for the selection of nonideal
hardware solutions for neural network implementation, as a
designer can increase the number of network parameters and even
include various hardware-related features to the selection set
without compromising on hyperparameter selection speed.

In the initial design stages of a memristive neural network
architecture for a new application, the training/optimization
method leading to the highest accuracy or any other performance
metrics is unknown. Therefore, at this stage, the selection of the
training algorithm can also be included as a parameter to the set
of hyperparameter. The simulation of such case is shown in
Figure 5b, where three best CNN architectures for ideal and non-
ideal cases are shown for the same problem as shown in
Figure 5a. The additional parameters in the optimization
algorithm are added to the set of network hyperparameters.
The set of optimization algorithms includes Adagrad, Adam,
SGD, RMSProp,[70] Adadelta,[71] Adamax,[66] and Nadam.[72]

For ideal and nonideal cases, different optimization algorithms
are selected; activation functions, the number of layers, and neu-
rons also vary. The selection of optimization method increases
the required number of generations to achieve maximum
accuracy to 15 and 10 in ideal and nonideal cases, respectively.
Smaller number of generations are required to achieve maxi-
mum accuracy in nonideal case, as the maximum performance
accuracy is restricted by memristor nonidealities, mainly limited
precision, and has a low chance to increase after certain number
of generations even after modifying the architecture. The
selection of the training algorithm as a parameter in the genetic
search can also be useful for the design of the architecture with
on-chip training.

The application scope of the proposed genetic search can be
expanded to any hardware implementation of memristor-based
neural network, where memristors are used to implement neural
network weights, e.g., Spiking Neural Network,[73] Long
Short Term Memory (LSTM),[74] and Hierarchical Temporal
Memory.[75] Figure 5c shows an example of genetic search
application for the selection of LSTM architecture with nonideal-
ities for the number of airline passengers prediction.[74] The
set of hyperparameters includes LSTM activation functions

(output and recurrent), number of LSTM units, dense layers
number and activations, and optimization algorithms. The over-
all LSTM theory and setup are explained in Section 2.3,
Supporting Information. The output dense layer has a single out-
put, which indicates the predicted number of passengers. The
optimization setup was modified to minimize root mean square
error (RMSE) between real and predicted outputs. The parame-
ters of nonidealities are set to L¼ 64, σ¼ 2, F¼ 1%, and the
population p¼ 3. Figure 5c shows the set of hyperparameters,
average and minimum RMSE for ideal and nonideal cases, three
best selected networks, and the difference between ideal and
nonideal predicted outputs for the best selected architectures.
RMSE in ideal and nonideal cases for the best selected architec-
tures is the same, indicating that it is possible to select LSTM
architecture where memristor nonidealities do not deteriorate
the performance. For nonideal case, the selected architectures
have larger dense layer part, different activation functions and
optimization algorithms, and smaller number of LSTM units.

The results shown in this section illustrate that the application
scope of the proposed genetic search for memristive neural net-
work design can be expanded to any architecture with memris-
tive weights. The number of hyperparameter can be increased
and training-related details can be added to the list of hyperpara-
meters to be selected. The proposed genetic search method can
also be modified considering various hardware-related aspects.

4.3. Analysis of the Selected Hardware Implementations and
the Effects on the Final Design

We observe that with our proposed approach accuracy of the best
three selected networks is almost equal. In contrast, the network
configurations may vary (Figure 2b). The selected number of
layers, number of neurons, and activation functions affect the
on-chip area and power consumption of memristive-CMOS
hybrid analogue neural networks.[17,76,77] Figure 6 and Table 2
compare the hardware parameters of three best memristive net-
works for Fashion-MNIST considering memristor nonideality
from Figure 2b. Figure 6 shows the example of a hardware imple-
mentation of the selected networks, considering the parallel proc-
essing of all crossbar columns and sequential processing of each
crossbar. Each network weight is represented by two memristors
to ensure negative weights. And each column contains two
operational amplifiers (op-amps) to subtract the outputs of two
columns and convert to a single output. The op-amp output is
connected to the activation function followed by the next layer
crossbar. More hardware specific background details are
furnished in Supporting Information.

In Table 2, the memristive crossbar area is calculated as
Am½ð784þ 10Þnþ n2ðl� 2Þ�, where n is the number of neurons,
l is the number of layers, Am is a memristor area, and the net-
work has 784 inputs and 10 output. The CMOS area includes the
area of activation functions and op-amps. The area for this is
calculated as nðl� 1ÞAhidden þ 10Aoutput þ ðnðl� 1Þ þ 10ÞAopamps,
where Ahidden, Aoutput, and Aopams are the areas of activation
functions in hidden layer and output layer and the area of two
op-amp circuit (Figure 6), respectively. Because the processing
of the crossbars is performed sequentially (e.g., three-layer
network is processed in three steps), the largest layer in the
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network has the maximum power consumption. Table 2 and
Figure 6 show that the best selected networks have a different
area and power parameters. The implementation of the second

network shows as the most feasible on hardware due to the
smallest power consumption. In contrast, the third network
illustrates the highest processing speed.

Figure 6. Hardware implementation of the selected networks from Table 2. After the genetic search, the optimum and most efficient hardware
implementation can be selected based on the designer’s preferences.
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The proposed genetic search allows selecting several network
configurations considering hardware nonideality. This can be
used to identify the most optimum architecture in terms of
on-chip area and power consumption. This approach can speed
up the selection of analogue neuromemristive standard cells and
design process for implementing application-specific neural
chips for edge devices.

5. Conclusion

We presented a genetic search approach to accelerate the
application-specific neuromemristive AI chip design process.
The optimum hardware uses the existing library of neuromem-
ristive standard cells. The optimization process of the network
architecture considers the nonideal behavior of neuromemristive
networks. The proposed system selects different network hyper-
parameters for ideal networks and networks with crossbar
nonideality. Introducing nonideality showed that the proposed
genetic search ends up choosing architecture with more
number of neurons and network layers. The method is useful
for speeding up in arriving at the preliminary design of the
neural network architecture before performing the circuit-level
simulations of the memristive neural network architecture.
The circuit-level simulations with nonlinear memristive devices
can take an enormous amount of time. Traditionally, the
memristor models do not consider all the required parameters
to illustrate a limited number of stable resistive states and the
possibility of device failure. Therefore, the genetic search
is a promising solution to speed up neuromemristive hyper-
parameters selection. In addition, we show that the most
optimum neural network in terms of on-chip area and power
consumption may be selected based on the results of the algo-
rithm. The generalization of the approach to include different
types of neural networks was also presented. The proposed
approach can help to arrive at optimized systems speeding
up the development of analogue coprocessors. Some of the
possible edge applications include the multimodal signature,
iris, fingerprint, face recognition with more classes, and other
biometric applications.
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Supporting Information is available from the Wiley Online Library or from
the author.
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