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Abstract: Classification of brain signal features is a crucial process for any brain–computer interface
(BCI) device, including speller systems. The positive P300 component of visual event-related po-
tentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further
changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the
necessity for the users to train the speller themselves, which is a very time-consuming procedure. To
achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical
machine learning models, such as the support vector machine (SVM), linear discriminant analysis
(LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed vot-
ers were trained on healthy subjects’ data using a generic training approach. Different combinations
of electroencephalography (EEG) channels were used for the experiments presented, resulting in
single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust
results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four
active EEG channels data in the occipital area of the brain. The results provided by the proposed
ensemble voting models were on average about 5% more accurate than the results provided by the
standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in
terms of computational complexity or accuracy. The proposed methodology shows the ability to be
subject-independent, which means that the system trained on healthy subjects can be efficiently used
for ALS patients. Applying this methodology for online speller systems removes the necessity to
retrain the P300 speller.

Keywords: brain–computer interface; EEG classification; ensemble learning; P300 speller

1. Introduction

A brain signal’s features extraction and classification are the most essential steps of the
brain–computer interface (BCI) system’s processing algorithm. The majority of BCI devices
use electoencephalography (EEG) for brain activity recording [1]. EEG is a relatively
inexpensive neuroimaging method, which provides a fast response while measuring the
electrophysiological activity of the neurons. EEG has a spatial resolution of only about
10 mm, which is imprecise compared to intracortical recording [2]. However, EEG has a
great advantage of being noninvasive, which is very important for BCI devices.

EEG BCI systems are used for diagnostic classification of dementia [3] and seizure
prediction [4]. Furthermore, they are used as rehabilitation systems [5]; however, when
functionality with rehabilitation is not restored, BCI is used as an assisting device, for
example, a brain-controlled wheelchair for walking disabilities or lower-limb paralysis [6].
Different types of robotic prostheses also use EEG signal processing to enable people to
control them [7].

Speller systems are another popular application of EEG-based BCI. The classical
EEG-based BCI speller is designed to enable people with serious motor neuron diseases
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to communicate with the outer world. One of the most common paralyzing diseases is
amyotrophic lateral sclerosis (ALS), which paralyzes the whole organism, destroying a
human’s ability to speak and communicate. According to statistics, more than six thousand
people are diagnosed with ALS each year all over the world [8].

BCI spellers commonly use the event-related potential (ERP) paradigm, which states
that a human’s reaction to a stimulus can be classified by analyzing voltage deflections
of EEG signals, called ERP components. ERP events can be classified into several groups
which are: slow cortical potential (SCP), neuronal potential, event-related synchronization
(ERS), event-related desynchronization (ERD), and visual evoked potentials. SCP is caused
by the shifts in the depolarization levels of dendrites, while the neuronal potential is caused
by the change of neuronal firing [9]. ERS can be indicated by an increase in power in some
frequency bands of the EEG signal, while ERD is characterized by the decrease in power
in that frequency. The most popular ERP type used for speller systems is visual evoked
ERP. Visual evoked ERP components are indicated by the latency and sign of the voltage
amplitude. ERP components are used in the oddball paradigm, in which repetitive stimuli
are presented to the subject. High-probability nontarget visual stimuli are mixed with
low-probability target stimuli when the oddball paradigm is applied. In speller systems,
the target stimulus is the intensification of the chosen character.

The oddball paradigm is used in the classical P300 speller [10], which identifies
the target symbol by extracting the positive voltage peak, starting at about 300 ms after
the oddball stimulus, called P300 component [11]. Figure 1 shows the graphical user
interface (GUI) of a P300 speller for an English-speaking user, which is usually presented
as a 6× 6 matrix of symbols, having 12 possible intensifications of 12 rows/columns. By
analyzing the EEG signal’s ERP response, 2 target intensifications can be detected out of
12: one row and one column intensification. The intersection of the target intensified row
and column would be the character chosen.

Figure 1. Classical 6× 6 GUI matrix of P300 speller: 12 rows and columns are flashing one by one
randomly. A single trial has two target intensifications out of twelve possible flashing rows and
columns. By finding the intersection of the target row and column, the chosen character is extracted.

The objective of this work was to design a robust subject-independent classifier for the
P300 speller. In other words, the aim was to design a P300 speller, which could be trained
on healthy subjects but provide good results when used by ALS patients, to remove the
necessity for ALS patients to train the speller themselves, wasting their time and effort.

The classification of brain signals can be performed using different algorithms and
methods. Over the last decade, different methods have been applied for ERP-based spellers.
P300 identification can be performed using unsupervised, semi-supervised and supervised
methods. Unsupervised learning can be applied for calibrating a subject-independent
classification model [12]. Subject independent ERP classification can also be performed
using unsupervised Baum-Welch algorithm [13] or using error-related potential (ErrP) [14].
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Semi-supervised learning can be efficiently applied for the P300 speller using a self-training
least squares support vector machine (LS-SVM) [15]. Nevertheless, generally, supervised
learning algorithms provide better accuracy than semi-supervised or unsupervised meth-
ods for P300 classification. The only problem is that supervised models are usually applied
for each subject separately to achieve better results. However, supervised learning algo-
rithms can provide high performance for subject-independent training as well. For instance,
a supervised learning genetic algorithm can be successfully applied for adaptive selection
of the ERP wave latency for each subject [16]. Recently Riemannian geometry-based al-
gorithms have also been used for the P300 speller owing to their robustness and transfer
learning capabilities [17].

This work focuses on supervised learning models for P300 component extraction and
classification. Different models, such as linear-discriminant analysis (LDA), support-vector
machine (SVM), k-nearest neighbors (kNN) and convolutional neural network (CNN), are
combined using an ensemble learning approach to achieve more stable results. Ensemble
learning puts together the advantages of different classifiers and provides more trusted
classification, which is crucial for the subject-independence of the BCI system. Apart from
using ensemble learning, a different number of EEG electrodes is used in the experiments,
in order to find the most subject-independent data channels for features extraction.

The remainder of this paper is organized as follows. Section 2 overviews the chosen
classifiers. Section 3 describes the key concepts of the proposed methodology, followed
by the simulation results, presented and discussed in Section 4. Finally, the concluding
remarks of the paper are presented in Section 5.

2. Overview of Classifiers
2.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is one of the most popular classifiers in BCI
research, as it is computationally efficient and provides robust results. Despite the fact
that this trivial algorithm was proposed in the 1980s [18], it is still one of the most useful
methods applied for classification of various data, including multichannel EEG time-series.
LDA can be applied for both a supervised and unsupervised P300 speller [19].

LDA assumes that the covariance matrices of each class are identical and full rank
matrices, which results a linear structure when using Bayes’ rule. Different solving methods
can be applied for LDA implementation, such as singular value decomposition (SVD),
eigenvalue decomposition (ED), or the least squares solution (LSS). SVD is applied for LDA
in our case as the EEG data vectors have a large number of features.

LDA is a classical method for EEG time-series classification, as it is good for dimen-
sionality reduction and classification. LDA usually provides stable results for BCI systems,
for instance, when using EEG and electrooculography (EOG) combined for detecting a
user’s response, LDA can achieve an accuracy of more than 97% [20]. Despite the fact that
LDA may not be as efficient when applied to small high-dimensional datasets, it provides
good results when the amount of the user data is sufficient. Nevertheless, LDA-based
methods, such as group sparse discriminant analysis [21] can be applied to overcome
the undersampling problem. In order to improve the results obtained by LDA, some
complex dimension reduction methods, such as bond graph analysis, may be applied as a
preprocessing step [22].

2.2. Support-Vector Machine

The SVM classifier is frequently used in BCI research to achieve accurate classification
of brain signals’ features. This classifier uses kernel functions to transform the data from
one dimension to another and then constructs an optimal hyperplane to separate the data
classes. The transformation is called kernel trick, and it usually requires such functions as
linear kernel, polynomial kernel, Gaussian radial basis function (RBF), sigmoid, hyperbolic
tangent, etc. Kernel function is the most important hyperparameter of the SVM classifier,
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as it significantly affects the computational complexity, further data representation, and
classification accuracy of the model.

When the kernel trick is done, the optimal hyperplane can be found by solving the
quadratic optimization problem. Derivative tests, such as Karush-Kuhn-Tucker (KKT)
conditions, are usually applied to solve this problem [23]. SVM is frequently used for time-
series EEG classification for the oddball paradigm [24]. Ensembled with convolutional
neural network (CNN) and F-ratio features selection, SVM achieved 99% accuracy for
15 epochs for two different subjects [25]. Ensembled SVM with Platt scaling [26] reached
98.5% accuracy for 15 trial blocks [27].

By comparing different kernel functions using grid search (GS) when using EEG
data of healthy subjects, the most efficient kernel function turned out to be hyperbolic
tangent (tanh), which outperformed the Gaussian radial-basis function (RBF), sigmoid, and
polynomial functions by different degrees varying from 2 to 5. The tanh is calculated as

tanh(Xi) =
eXi − e−Xi

eXi + e−Xi
, (1)

where Xi is the EEG feature vector.

2.3. k-Nearest Neighbors

One of the most simple and efficient classifiers is kNN, which identifies the distance
between the classified data point and its k nearest neighbors. The main advantage of this
classifier is that it is a very fast algorithm that does not require much time for computation
and classification. The distance metric used for kNN classifier can be cosine distance,
Euclidean distance, Manhattan distance, etc. Apart from the distance metric, an important
hyperparameter is the number of neighbors, which is compared to the classified data point.
For the binary classification problem, it is necessary to ensure that k is an odd number, to
avoid the state when the classifier is equally voting for both classes.

By trying different hyperparameters when training on data collected from healthy
subjects, the best result was provided by Manhattan distance, computed as

d(Xj, Xi) =
m=M−1

∑
m=0

|xjm − xim|, (2)

where the classified EEG vector Xj of length M was compared to its k neighbors. Here Xi
denotes the ith neighbor’s vector and xim denotes the mth data point of this vector. The
best number of k was evaluated using GS. The classifier reached a promising result of
F-score = 98.6% for k = 3. Moreover, the best computational complexity was provided by
using k = 3.

2.4. Convolutional Neural Network

CNN has become quite popular in BCI research over the last decade. CNN can process
multichannel EEG data without additional dimensionality reduction and preprocessing.

CNN has shown good results when applied in BCI research. For instance, residual
blocks as part of the ResNet architecture achieved 96.77% accuracy for one subject and
93.3% for another [28]. Still, the model is not subject-independent, as the difference between
the results was more than 3% [28]. That is why standalone CNN is not a very popular
choice for the P300 speller. CNN can be combined with a long-short term memory (LSTM)
neural network in an autoencoder for more efficient dimensionality reduction [29]. It also
can be used in ensemble models. The ensemble voting classifier comprised of two CNNs
achieved 96.5% accuracy, and the same accuracy was obtained by ensemble learning with
SVM [30].

1D CNN architecture was applied for multichannel EEG data. The depth of the output
of a convolutional layer becomes equal to the number of filters applied. For example, by
applying 16 kernels, we obtained the output of the same width and length, but with a
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depth of 16. The CNN architecture used for multichannel EEG classification is presented in
Figure 2.

Figure 2. Architecture of the CNN used: features are extracted using convolutional and pooling
layers, followed by linear layers.

The CNN uses several convolutional layers, followed by the pooling layers. To achieve
faster dimensionality reduction, we used an 8× 8 kernel (or filter). The pooling layers used
a 2× 2 kernel, which found the maximum among the input values, as max pooling turned
out to be more efficient than average pooling. By comparing different activation functions,
such as sigmoid, tanh, and rectified linear unit (ReLU), the CNN model achieved 76.53%
accuracy on validation during 20 training epochs using the ReLU activation function,
73.21% using the tanh, and only 61.08% accuracy using the sigmoid. Moreover, while using
the sigmoid and the tanh activation functions, the error gradient vanished due to multiple
hidden layers. Therefore the ReLU, which is computationally less expensive, was used
here. The ReLU function is defined as
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ReLU(X̃i) = max(0, X̃i), (3)

where X̃i is the feature vector resulting from the previous layer.
The last linear layer of the CNN uses softmax as an activation function. The softmax

function is a generalization of the sigmoid function, and when the number of classes is two,
the softmax function reduces to the sigmoid function. It is calculated as

softmax(X̃i)j =
exj

∑K
k=1 exk

, (4)

where the exponential of each data point xj is normalized by the sum of the exponentials of
all K data points of the feature vector Xi. The output of the linear layer was a vector of length
of 2. It represented the probability of the input EEG data being a target P300 component
P(Xi, y = 1) or a nontarget component P(Xi, y = −1).

3. Proposed Methodology

The proposed models were trained using the data of eight healthy subjects in the
Akimpech P300 dataset [31]. Test data consisted of four healthy subjects from the Akimpech
P300 dataset and five subjects with bulbar and spinal onset ALS from the BCI Horizon
2020 ALS patients P300 dataset [32]. Further data preprocessing steps are described in
Section 4.1.

3.1. Training Approach

There are two different training approaches used for the P300 speller, subject-specific
training (SST) and generic training (GT). SST assumes training for each user separately, and
it is used in the majority of the classical P300 spellers. The training dataset in this case was
collected from a single subject. SST usually provides better results, however, it is not an
option for the subject-independent P300 speller, as it usually requires training and testing
the classifier using the same user’s data. This approach is not user-friendly, as it usually
takes at least 30 min to train the speller for each user.

The GT approach merges the data from different subjects into a single training dataset.
The generically trained model can further be used for new subjects without retraining.
GT training has been applied for subject-independent adaptive EEG classification in the
P300 speller [12]. Sometimes both intersubject features resulting from GT training and
intrasubject features extracted during SST training are used for designing an adaptive
classifier [33]. The GT approach represented better results in our previous experiments as
reported in [34]. Therefore, the GT approach was employed for the proposed ensemble
voting classifiers training, as discussed in this paper.

3.2. Ensemble Voting

Ensemble learning is a technique of combining several models to achieve more stable
results. Recently, ensemble learning has become a popular choice for brain signals’ features
classification. For instance, a number of classifiers, such as SVM, can be applied on the
same data. The models have different hyperparameters for classifying the P300 speller
data [27]. Apart from the SVM, a popular choice for EEG classification is to ensemble
several CNN classifiers [30] with different architectures.

Ensemble learning exhibits stable results for P300 component classification; however,
it always uses more computational resources to be trained because it contains not one
but several models. That is why the proposed methodology is designed for GT. Here, the
model is trained on a merged dataset from different subjects and does not require retraining
for the new user. Using the above-described classifiers soft-voting ensemble models were
designed, as shown in Figure 3. Essentially, four different ensemble architectures were
designed: the LDA-kNN model (Figure 3a), LDA-SVM-kNN (Figure 3b), LDA-SVM-kNN-
CNN (Figure 3c), and the W-LDA-SVM-kNN model(Figure 3d). Three of these models used
simple averaging voting, while the last was a weighted-averaging voter. As mentioned
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in Section 3, CNN uses 2D EEG data directly, while LDA, SVM and kNN models require
channel-averaging before features extraction.

Figure 3. Ensemble averaging models: (a) LDA-kNN model; (b) LDA-SVM-kNN model; (c) LDA-
SVM-kNN-CNN model; (d) W-LDA-SVM-kNN model.

We decided to combine the LDA and kNN models in order to achieve the most
efficiency in terms of a time complexity ensemble voting model. The fusion of LDA, kNN,
and SVM and its weighted version were assumed to be more accurate than LDA-kNN,
as SVM is one of the best models for P300 classification. Combining CNN with the LDA
and/or kNN in one ensemble voter seemed to not be effective in terms of computational
complexity, as CNN requires much more time to process the data than LDA and kNN.
SVM however requires more computational resources, due to the kernel trick and optimal
hyperplane construction. Thus, CNN was added to the fusion of LDA, SVM, and kNN in
order to see whether 2D data classification could improve the existing ensemble model.
Despite the fact that the LDA-SVM-kNN-CNN ensemble model may require much more
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time to process the data, it is assumed that it can outperform other ensemble voting models
in terms of accuracy.

The classification results of the simple ensemble-averaged voting models were com-
puted as follows

Pavg(X|y = 1) =
∑N

i=1 Pi(X|y = 1)
N

, (5)

where Pi(X|y = 1) is the ith classifier’s prediction of EEG vector X containing the target
P300 component. N is the number of classifiers in the ensemble voting model.

It can be assumed that weighted voting would be more efficient for the P300 speller
rather than just ensemble averaging. For instance, the weighted voting based on CNN,
SVM, and stepwise LDA was introduced for the P300 speller with the aim of improving
EEG classification [35]. In this work, we assume that the weighted ensemble voting based
on LDA, SVM, and kNN classifiers can improve the performance of the system.

Figure 3d represents the weighted voting model’s structure (W-LDA-SVM-kNN),
where each result of the inner classifiers is multiplied by the weight wi as

Pw(X|y = 1) =
∑N

i=1 wiPi(X|y = 1)

∑N
i=1 wi

. (6)

In order to find the optimal weights, GS or random search (RS) can be applied. In
GS it is necessary to run through the grid of the possible triplets of weights, while in RS
hyperparameters are sampled randomly. As there are only three weights needing to be
found, random combinations of three weights are generated quite fast. The most optimal
weights combination is further selected among the generated parameters without any
aliasing. In this work classical fixed step-size RS is used, however, some more optimized
methods such as adaptive step-size RS may also be applied.

4. Simulation Results

This section presents details of simulations carried out to demonstrate the effectiveness
of the proposed methodology in comparison with the existing approaches. The proposed
ensemble models were compared with two boosting classifiers: classical gradient boosting
and extreme gradient boosting, which are further described in Section 4.3. Moreover, the
performance of the ensemble classifiers was compared with the standalone LDA, SVM,
kNN, and CNN models.

4.1. Experimental Settings

The experimental validation of the proposed models was verified on two datasets [31,32].
The datasets were obtained 10-10 EEG electrode positions with modified combinatorial
nomenclature [36]. The datasets used a unipolar reference [37]. The signal was referenced
to the ground earlobe and grounded to the left mastoid. In order to have the same number
of electrodes, two electrodes (C3, C4) were removed from the Akimpech data. As a result
eight-channel (Fz, Cz, Pz, P3, P4, PO7, PO8, Oz) data were extracted from both datasets.
The provided EEG values vectors X were marked with a y label. For EEG vectors containing
target P300 peak y = 1, while for nontarget flashings y = −1.

The raw EEG data of healthy subjects were filtered using a Chebyshev 4th order notch
filter for the frequency range of 58–62 Hz anda Chebyshev 8th order band-pass filter for
0.1–60 Hz range by the authors of the dataset. The frequencies higher than 30 Hz or γ-band
of EEG signal did not need to be considered in the oddball paradigm. Thus, the EEG signal
was again band-passed using the 0.1–30 Hz frequency range. The frequencies below 30 Hz,
which are α-band (8–13 Hz), β-band (13–30 Hz), δ-band (0.1–4 Hz) and θ-band (4–8 Hz)
brainwave frequencies, were mainly considered for P300 component extraction. The data
of ALS patients were already band-passed for 0.1–30 Hz range by the dataset providers.

Some researchers prefer using 1000 ms latency of EEG vectors for classifying P300 com-
ponent, for instance the time period from −200 ms to 800 ms can be considered as in [20].
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The period starting from 0 ms to 700 ms is also a popular choice for P300 detection [38]. To
reduce the redundancy of the dataset, it was decided not to consider the whole 1000 ms
time period for each flashing but only to take the period up to 700 ms after the stimuli.
However, since the dataset considered not only healthy subjects but also ALS patients, it
was decided to extend the period taking into consideration 100 ms before the stimulus.
This can improve the classification, as a sharper difference can be detected between the
voltage detected 100 ms before the stimulus and 300 ms after the stimulus, rather than the
difference between the beginning of the stimulus (0 ms) and the P300 component. Thus, it
was decided to consider the regions starting from −100 ms before the flashing and ending
with the 700 ms after the flashing. By taking the−100 ms to 700 ms latency period, 204 data
points were extracted for each flashing trial, and the sampling rate was 256 Hz.

The removal of the unnecessary EEG data can improve the computational complexity
of the ensemble models, which require more computational resources than classical stan-
dalone classifiers. In addition, the dataset was balanced by removing redundant nontarget
EEG vectors. Initially, there were 25 letters of input provided by the dataset for each subject,
which gave 300 data samples for a single subject. There were 250 nontarget data samples
out of 300. In order to balance the data, only 75 of them were randomly selected for further
training. The dataset comprised 60% of the nontarget class and 40% of the target class data
from data balancing steps. This gave us 125 data samples for each subject. Training data
was collected from 8 healthy subjects, resulting in 1000 data samples. Test data consisted
of 500 data samples of healthy subjects and 625 data samples from ALS patients. Instead
of complex dimensionality reduction techniques, such as principal component analysis
(PCA), the EEG signal was averaged by the channels for its further classification by LDA,
kNN, and SVM.

The proposed models were trained on 1000 data samples and tested for 500 data sam-
ples of healthy subjects. In order to evaluate the models, 3-fold validation was performed.
Each model was trained and validated three times and the average metrics were calculated
for healthy subjects’ training. The trained models were then tested on 625 data samples of
ALS patients.

The computations were performed using Python 3.7.3. The hardware used during
the simulations was NVIDIA GeForce GT 650M together with the 2.6 GHz Quad-Core
Intel Core i7 processor. The simulations were carried out for experimental EEG data (as
described earlier) and in various settings of number of channels, viz., 8-channel EEG,
4-channel EEG, and single-channel EEG.

In order to evaluate the performance of each classifier, the number of true positive
(TP), true negative (TN), false positive (FP), and false negative (FN) predictions were
calculated. The most commonly used metric for performance evaluation is classifier’s
accuracy, which is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

However, when working with unbalanced datasets, accuracy does not show the
overfitting rate. If the dataset is not balanced, it would consist of 10 nontarget flashings
and only 2 target flashings (as only one row and one column out of 12 rows and columns
contain the chosen character). If the classifier identifies only nontarget EEG signals, but
fails to classify the target flashings, there would be 10 correctly recognized nontarget
components. However, in that case, there would be zero true positively recognized target
class components. For this example, the accuracy would still be 85.71%, which seems quite
good. However, the fact is that the classifier failed to identify all of the target peaks. In
order to examine whether the target class was correctly recognized and the number of FN
was low, the recall metric is calculated as

Recall =
TP

TP + FN
. (8)
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Precision value indicates an EEG signal labeled as positive (target response) is positive
and is computed as

Precision =
TP

TP + FP
. (9)

In our case, the data were not perfectly balanced. The number of nontarget classes
exceeded the target classes, as the dataset comprised 60% of the nontarget class and 40% of
the target class after the balancing. That is why the recall value was still considered. In
order to see both characteristics of recall and precision metrics, the F-score was calculated
as a harmonic mean

F-score =
2(Precision ∗ Recall)

Precision + Recall
. (10)

Thus, recall and F-score were mainly used for the performance evaluation.

4.2. Intra-Subject Experiments

The main objective of the present contribution was to develop and test a robust
subject-independent classification approach for a P300 speller. The results of the proposed
approach are presented later; however, in this subsection, the results for the intra-subject
experiments are presented, where the models were trained and tested from the same
subject. In other words, SST training was applied using five ALS patients and five healthy
subjects. 80% of the data from one subject was used for training and 20% for testing.

The averaged metrics were obtained by summing the results from each subject and
dividing by the number of subjects. The experiments were done for eight-channel data,
four-channel data, and single-channel data. The obtained averaged F-score is presented for
each model in Table 1.

Table 1. Intra-Subject Test Results.

Model F-Score (%)

8-Channel Data 4-Channel Data Single-Channel Data

Gradient Boosting 99.53 99.45 84.01
XGBoost 99.70 99.75 85.52

LDA 98.78 98.84 83.35
kNN 98.51 98.54 82.29
SVM 98.80 98.81 82.64
CNN 98.45 92.18 -

LDA-kNN 98.78 98.95 83.35
LDA-SVM-kNN 98.85 99.23 83.28
LDA-SVM-kNN-CNN 98.75 93.56 -
W-LDA-kNN-SVM 99.45 99.37 83.51

It can be observed from Table 1 that there was no significant difference between the
performance when using eight data channels and four data channels. Single-channel data
provided inaccurate results, achieving about an 83% average F-score for all subjects. Thus,
it can be concluded that single-channel data is a poor choice for intra-subject classification.
It is further seen in Section 4.5 that single-channel usage did not provide high performance
in generic training either.

The usage of CNN in LDA-SVM-kNN-CNN did not significantly decrease the per-
formance in the eight-channel data experiment, reaching a 98.75% F-score. However,
it dropped to 93.56% when using four-channel data. All of the other ensemble voting
models provided quite stable results during the experiments on eight-channel and four-
channel data.

When trained and tested for each subject separately, the models achieved higher
performance, compared to the proposed subject-independent training results, presented in
Sections 4.3–4.5. However, it should be noticed, that this approach is not a good option
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when talking about online training and practical usage. As stated earlier, the aim of this
research is to develop a subject-independent classifier, which can be used by ALS patients
without the necessity to train. So, despite the fact that by using SST training the models
were able to reach a 99% F-score, inter-subject results are more important for a user’s
comfort and are detailed in the following subsections.

4.3. Eight-Channel Data Simulations

The classification models were trained on the eight-channel data of eight healthy
subjects and tested on four healthy subjects. The channels used are represented in Figure 4a.
Two baseline classifiers were also trained and tested on the same data. The first classifier
was a classical gradient boosting. Gradient boosting has shown high performance for
EEG classification in different applications, such as rehabilitation systems [39] and the
P300 speller [40]. In this work, the gradient boosting classifier was modeled by using
the sklearn python library [41]. The second classifier was extreme gradient boosting or
XGBoost [42]. Due to its high performance and time efficiency over recent years, XGBoost
has become a popular option for different applications, and the P300 speller is not an
exception [43]. Both XGBoost and gradient boosting classifiers are designed with the
maximum number of trees limited to 100, where each tree can have a maximum depth of
three nodes. A default learning rate of 0.1 was used for the experiments [41]. There were
no pruning and no parallel threads used for the baseline classifiers. XGBoost uses tree
booster, which is preferable to the linear booster, as the linear booster may fail to fit when
using complex time-series EEG data.

Figure 4. EEG electrodes placement on a scalp: (a) 8-channel data experiments; (b) 4-channel data experiments; (c) single-
channel data experiments.

While training for eight-channel data, the weights of the W-LDA-SVM-kNN model
were found using RS. RS performed nested 5-fold cross-validation on the data of eight
healthy subjects to find the optimal weights. There were 800 data samples used for training
and 200 data samples used for the test to find the optimal weights. Searching for the
weights took 41.58 s for the data from eight subjects. The obtained weights were as follows:

• LDA weight: w1 = 0.19
• SVM weight: w2 = 0.71
• kNN weight: w3 = 0.25

The obtained weights can be used for further experiments, without renewal. The
average time for elapsed for testing was 3.91 s as seen from the results, presented in Table 2.
The last column of Table 2 represents the computational time spent for various models
while testing the same amount of data. The proposed classifiers provided good results,
except for the model that used CNN. The LDA-SVM-kNN-CNN ensemble voting model
turned out to be computationally ineffective due to the complex structure of the neural
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network. Moreover, the model suffered from overfitting, as the value of the F-score was
more than 7% lower than the accuracy value.

Table 2. Test results using 8-channel data of healthy subjects.

Model Accuracy (%) Recall (%) F-Score (%) Time Elapsed (s)

Gradient Boosting 98.21 80.45 81.91 16.25
XGBoost 99.90 97.01 97.89 4.88

LDA 98.82 98.98 98.79 0.61
kNN 97.23 96.82 97.01 0.16
SVM 99.55 99.20 99.12 3.79
CNN 88.45 83.14 84.33 2686.98

LDA-kNN 99.92 99.90 99.08 0.72
LDA-SVM-kNN 99.94 99.25 99.13 3.83
LDA-SVM-kNN-CNN 88.17 83.15 81.29 2687.57

W-LDA-SVM-kNN 99.93 99.20 99.12
general: 3.91

weights search: 41.58

The fastest model proposed was the LDA-kNN fusion, which took only 0.72 s to train
for eight subjects. This can be explained by the fact that LDA is an efficient choice for EEG
classification with low computational complexity, and kNN is an instance-based algorithm
that computes the distance for only k = 3 neighbors. For the same experiment, standalone
LDA required 0.61 s for training, while it took only 0.16 s for kNN to train the same amount
of data. The weighted ensemble model did not show any performance improvement
compared to the simple averaged LDA-SVM-kNN model. However, both models provided
the best F-score, achieving more than 99.12%.

Obviously, the proposed ensemble classifiers require more time to process the data
than the classical standalone models. However, it is seen from Table 2 that the difference
between the elapsed time is not very meaningful. Thus, it can be said that ensemble learning
does not require many more computational resources when trained on eight subjects.
Moreover, the proposed classifiers provided better results than the gradient boosting in
terms of computational complexity. This is explained by the fact that the gradient boosting
nests decision trees one after another to achieve the necessary performance. XGBoost works
much faster than the classical gradient boosting, however, it was still slightly outperformed
by the proposed ensemble voting classifiers, except for the LDA-SVM-kNN-CNN. Table 3
represents the simulation results obtained from testing on five ALS patients’ data. The
overall performance of the classifiers decreased compared to the results of testing on the
healthy subjects’ data. Still, the proposed methods did work with ALS patients. This
means that the classifiers are subject-independent even in terms of comparing healthy
subjects with patients with a brain disorder. The baseline classifiers performed slightly
better, reaching more than 85% F-score. The weighted voter classifier W-LDA-SVM-kNN
outperformed gradient boosting and achieved the best performance metrics among the
proposed classifiers in this case. So it can be assumed that the SVM classifier, which had
the most value in the weighted voter, performed better on ALS eight-channel data than
LDA and kNN.

The simple ensemble averaging models LDA-SVM-kNN and LDA-kNN achieved
about 84% accuracy, which is also a meaningful result, despite the fact that these models
were slightly outperformed by the boosting algorithms. Again, LDA-SVM-kNN-CNN
showed the worst result among the proposed models, meaning that the convolution of the
eight-channel data was not a good choice. The proposed CNN architecture failed to extract
the most essential features out of the EEG input data. Thus, it can be summarized that the
CNN model is a poor choice for EEG time-series data classification in a subject-independent
P300 speller.
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Table 3. Test results using 8-channel data of ALS patients.

Model Accuracy (%) Recall (%) F-Score (%)

Gradient Boosting 85.01 83.56 85.98
XGBoost 89.95 87.42 88.21

LDA 78.09 77.48 77.02
kNN 82.52 82.21 82.15
SVM 83.98 84.01 83.79
CNN 68.26 65.13 64.49

LDA-kNN 84.79 81.00 82.95
LDA-SVM-kNN 84.20 84.97 83.99
LDA-SVM-kNN-CNN 76.04 73.89 74.45
W-LDA-SVM-kNN 85.36 83.97 86.00

4.4. Four-Channel Data Simulations

Multichannel EEG classification allows covering different regions of the human brain;
however, it makes it much more complex. It has been shown by the comparison of
14-channel data and 4-channel data classification that increasing the number of EEG elec-
trodes does not increase the accuracy of the P300 speller [44]. For instance, decreasing the
number of channels from 64 to 20 using channel selection and nontarget data reduction
provided better results in terms of computational complexity and did not affect the accu-
racy negatively [45]. The EEG channels can be efficiently selected using different methods,
such as abchannel-aware dictionary with sparse representation for the P300 speller as
in [45]. Group sparse Bayesian linear discriminant analysis (BLDA) can also be applied for
channel selection. As reported in [46], by applying group sparse BLDA to the data collected
from 16 different subjects, it was found that the most optimal channels selected by the
algorithm were located close to visual ERP areas. Despite the fact that optimal EEG channel
selection is subject-dependent, the abovementioned results lead to the common idea that
the selected channels should be located in the parietal and occipital zones of human brain.
The presented results show that the CPz, P4, P3, Pz, O1, Oz, and O2 channels were the
most efficient electrodes for the majority of the subjects using most of the channel selection
methods. Authors recommend using the Pz, Oz, O1, and O2 combination of channels as
the most efficient [46].

In order to check whether the number of EEG channels can be decreased without
affecting the accuracy negatively, experiments have been conducted using four EEG chan-
nels. The four channels used for the experiment were chosen from the visual ERP area
of a human brain, according to the results that were presented by other researchers. The
channels selected were P3, P4, Pz, and Oz. The placement of the electrodes is represented in
Figure 4b. The combination of PO7, PO8, Pz, and Oz was also tried during the experiments;
however, its accuracy was on average about 3.5% lower than the combination of P3, P4, Pz,
and Oz.

Table 4 presents the obtained results for four-channel data features classification. Test-
ing on ALS patients using four channels generally improved the classification performance
among the proposed ensemble models. Comparing these results with the eight-channel ex-
periments (see Table 3), the F-score increased on average by more than 5% for the proposed
ensemble models, which did not use CNN. In contrast, the performance of the LDA-SVM-
kNN-CNN model decreased by more than 10%. This is explained by the structure of the
CNN classifier, which is very dependent on the input shape. That is another reason why
the CNN is inefficient for EEG time-series classification in the P300 speller. Every time the
number of channels is changed, the architecture of the CNN classifier should be changed
too, which is a very complex procedure.
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Table 4. Test results using 4-channel data.

Model Accuracy (%) Recall (%) F-Score (%)

Testing on healthy subjects

Gradient Boosting 97.65 96.11 97.03
XGBoost 99.53 99.05 99.21

LDA 98.32 98.19 98.19
kNN 97.64 96.99 97.57
SVM 98.56 98.05 98.51
CNN 71.20 70.98 70.55

LDA-kNN 99.33 98.80 98.71
LDA-SVM-kNN 98.52 97.69 97.99
LDA-SVM-kNN-CNN 78.04 71.81 73.77
W-LDA-SVM-kNN 98.52 97.69 97.99

Testing on ALS patients

Gradient Boosting 89.92 87.45 88.59
XGBoost 92.51 91.87 92.09

LDA 84.17 82.47 81.24
kNN 87.46 87.92 85.21
SVM 87.56 87.01 87.34
CNN 60.61 60.08 60.52

LDA-kNN 89.33 89.12 89.17
LDA-SVM-kNN 90.02 88.93 88.88
LDA-SVM-kNN-CNN 65.00 61.39 62.93
W-LDA-SVM-kNN 91.34 90.08 90.73

It is observed from Table 3 that the weighted ensemble voting classifier achieved a
90.74% F-score, which was higher than the gradient boosting with 88.59%. The proposed
simple averaging voters achieved 89.17% using LDA-kNN architecture and 88.88% using
LDA-SVM-kNN fusion, which was also better than the gradient boosting algorithm. XG-
Boost appears as the most accurate model in this case study, however, it suffers from a
long processing time (see Table 2). The proposed models achieved a somewhat similar
performance, and at a reduced computational cost.

4.5. Single-Channel Data Simulations

Multichannel EEG processing is a time-consuming and complex process. Some re-
searchers prefer using a single-channel EEG data for the P300 speller [47]. Single-channel
classification must be performed using some of the central electrodes (such as Fz, Cz, Pz,
or Oz), as it is inappropriate to consider only one hemisphere of the human brain for data
acquisition in BCI speller. Fz and Cz channels are not located in the visual cortex of the
brain, thus for single-channel experiments either the Pz or Oz electrode should be chosen.
To examine whether a single data channel usage was efficient in our case, the Pz electrode
was chosen for further simulations.

The parietal region showed the maximum activity during the oddball paradigm, thus,
the Pz electrode presented in Figure 4(c) was chosen among other active options. During
the simulations, the LDA-SVM-kNN-CNN voter was excluded, as there is no meaning of
CNN usage on a single-channel EEG vector.

The results obtained during testing for four healthy subjects and five ALS patients
are shown in Table 5. A single-channel classification was not as efficient as multichannel
usage. The average accuracy for healthy subjects’ data classification was 91.28% for the
proposed voters, while it was only 78.19% average accuracy for the EEG classification of
ALS patients. The weighted voter was slightly more accurate for ALS data, while there
was no significant change in the results for healthy subjects. The weighted fusion of three
classifiers again slightly outperformed the LDA-kNN voter in terms of performance metrics
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for ALS data, reaching 78.74% accuracy, while LDA-kNN reached only 77.86%. Still, the
proposed ensemble models provided better results than the standalone classifiers.

Table 5. Test results using Pz channel data.

Model Accuracy (%) Recall (%) F-Score (%)

Testing on healthy subjects

Gradient Boosting 90.17 89.32 89.97
XGBoost 91.68 91.51 92.80

LDA 89.15 88.99 89.06
kNN 86.58 86.42 87.10
SVM 87.51 87.21 87.49

LDA-kNN 91.51 91.12 91.40
LDA-SVM-kNN 91.10 90.90 91.00
W-LDA-SVM-kNN 91.24 90.91 91.17

Testing on ALS patients

Gradient Boosting 78.02 77.01 77.46
XGBoost 79.95 78.93 79.59

LDA 73.15 72.89 73.11
kNN 70.58 70.53 70.05
SVM 76.98 77.82 77.09

LDA-kNN 77.86 76.93 77.37
LDA-SVM-kNN 77.98 77.36 77.42
W-LDA-SVM-kNN 78.74 78.15 78.62

4.6. Discussion

When classifying the data obtained from healthy subjects, the LDA-kNN voter achieved
better results and outperformed the SVM-based voters by about 0.33%. This difference
may not seem significant; however, considering the low computational complexity of the
LDA-kNN fusion, this classifier is better to use when training on larger datasets. However,
when using smaller datasets, it is preferred to add SVM into the ensemble model, as it
will provide more accurate results. The weighted ensemble voting model with the SVM
classifier provided the best performance for ALS patients’ data, achieving more than 90%
accuracy when using four-channel classification. There was a tradeoff between the accuracy
and the computational complexity. For large datasets, the LDA-kNN voter will be the better
option. However, W-LDA-SVM-kNN provided more accurate results, but as it requires
much more time for training, it is better to use on smaller datasets.

Apart from the tradeoff between the computational complexity and the accuracy, there
was one general weakness, related to memory requirements. Due to the fact that kNN is an
instance-based algorithm, it must store the training data. This may cause problems when
using more training data for online spellers. Nevertheless, 1000 data samples, which were
vectors containing 204 data points, were enough for an efficient result; thus, data storage
should not cause significant limitations.

By comparing different numbers of channels, it turned out that using only four
channels of the parietal zone was more efficient than using a wider range of brain activity
with eight channels. The summary of the results for ALS patients’ data with different
number of EEG channels is presented in Table 6. The accuracy improved by about 5% (on
average) when using the four channel EEG data. Single-channel EEG classification provided
less than 80% accuracy, which was another limitation found during the experiments.
However, if the single-channel EEG timeseries are converted to a frequency domain, the
accuracy may increase as in [47]. Thus, to decrease the number of used electrodes in the
future, it is planned to use frequency domain spectrograms instead of EEG timeseries.
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Table 6. Test results accuracy using ALS patients’ data with different channels

Type of Data LDA-kNN LDA-SVM-kNN LDA-SVM-kNN-CNN W-LDA-SVM-kNN

8-channel data 84.79% 84.20% 76.04% 85.36%
4-channel data 89.33% 90.02% 65.00% 91.34%
single-channel data 77.86% 77.98% - 78.74%

The proposed methodology allows training a universal P300 speller, which does not
need to be retrained for each subject. Despite the fact that the classification was performed
offline, it is assumed that the same tendency will be noted for the online P300 speller as
well. Therefore, ALS patients will not face the necessity of sitting for an hour in front of the
flashing GUI for the speller to collect the training set. The proposed features classification
methodology makes the P300 speller ready for exploitation right from the first trial.

5. Conclusions

In this paper, four different ensemble voting models based on LDA, SVM, kNN,
and CNN classifiers were proposed. The experimental results suggest that the proposed
ensemble voting classifiers trained on the data from healthy subjects are able to classify
bulbar and spinal onset ALS patients’ data. The proposed ensemble voting based on LDA,
SVM, and kNN classifiers provided robust results when tested on different subjects. The
W-LDA-SVM-kNN weighted ensemble voting model achieved the most accurate results
among the proposed classifiers, reaching 91.34% accuracy for four-channel ALS patients’
data. When comparing the proposed methods by the time elapsed during the training,
the most efficient classifier turned out to be the LDA-kNN combination, which achieved a
good accuracy of 99.92% for eight-channel data of healthy subjects but provided less than
90% accuracy for ALS patients. Almost all of the proposed ensemble voting models (except
for the CNN-based model) outperformed standalone classifiers by about 5% during the
experiments on eight-channel, four-channel, and single-channel data. The ensemble model
with CNN turned out to be inefficient for timeseries classification in a subject-independent
P300 speller.

It is planned to extend the methodology in the future and test the given subject-
independent models using data from patients suffering other motor neuron diseases, such
as cerebral palsy or peripheral neuropathy. Moreover, while using the online P300 speller,
the users can be tired and their mental workload may affect the classification as well. Thus,
mental workload classification of EEG [48] is also planned to be used in future research.
The possible usage of a spectrogram representation of the EEG signal is also considered
being combined with ensemble learning in the future. EEG data can be presented as an
intertrial coherence plot or event-related spectral power (ERSP) spectrograms [49] and
processed simply as images. In that case, transfer learning may be used in the future
together with more advanced CNN architectures such as ResNet [50].
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Abbreviations
The following abbreviations are used in this manuscript:

ALS Amyotrophic lateral sclerosis
BCI Brain–computer interface
CNN Convolutional neural network
ED Eigenvalue decomposition
EEG Electroencephalography
EOG Electrooculography
ERP Event-related potential
ERSP Event-related spectral power
GUI Graphical user interface
kNN k-nearest neighbors
LDA Linear discriminant analysis
LSS Least squares solution
LSTM Long-short term memory
PCA Principal component analysis
ReLU Rectified linear unit
SVD Singular value decomposition
SVM Support vector machine
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