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Abstract
Machine learning‐based efficient temperature‐dependent small‐signal modelling ap-
proaches for GaN high electron mobility transistors (HEMTs) are presented by the authors
here. The first method is an artificial neural network (ANN)‐based and makes use of the
well‐known multilayer perceptron (MLP) architecture whereas the second technique is
developed using support vector regression (SVR). The models are trained on a large set of
measurement data obtained from a 2‐mm GaN‐on‐silicon device operating under varying
operating conditions (bias voltages and ambient temperatures) over a wide frequency range
of 0.1 to 20GHz. An excellent agreement is found between themeasured and the simulated
S‐parameters for both models over the entire frequency range. It is identified that the
training process and prediction capability of ANN is superior to SVR. However, the SVR is
more robust when compared to the artificial neural network (ANN) in term of its sensitivity
to local minima and uniqueness of the final solution. Subsequently, the performances of the
proposed ANN‐ and SVR‐based models are improved by incorporating particle swarm
optimization (PSO) in the model development process. The PSO improves the uniqueness
of the ANN model whereas it enhances the performance of the SVR by optimising its
control parameters. The proposed models exhibit very good accuracy and scalability.

1 | INTRODUCTION

GaN high electron mobility transistor (HEMT) possesses
excellent features such as higher electron saturation velocity,
electronmobility, breakdown voltage and operating temperature
[1, 2]. These features make it an optimal device for the design of
advanced communication circuits such as power amplifiers (PAs)
and low noise amplifiers (LNAs) [3–5]. However, the GaN de-
vices face multiple technical challenges such as reduction in the
output power, gain and power efficiency due to thermal effect
and DC‐RF dispersion [6, 7]. Furthermore, the lower resistivity
and thermal conductivity of Si (silicon) with respect to other
substrates, such as SiC and Diamond, result in relatively inferior
RF characteristics for the HEMTs due to self‐heating and
substrate‐loading effects [8]. This self‐heating in addition to the
ambient temperature has strong impact on the small‐ and large‐
signal characteristics ofGaNHEMTdevices. It is also important
to note that the reliability of circuits designed without consid-
eration of these heating effects is also questionable.

Keeping the above aspects in perspectives, a number of
electrothermal modelling techniques of GaN devices subjected
to large‐ and small‐signal induced thermal effects have been
reported [9–15]. In recent times, the artificial neural network
(ANN)‐basedmodelling techniques are getting popular for both
large‐signal [9–12] and small‐signal modelling [13–15]. One of
the most important features of ANN is its ability to learn com-
plex nonlinear relationship and adaptwell to the newdata [16]. In
addition, ANN has the ability to learn and mimic the behaviour
of devices, without looking into physics of the device, and hence
finds usefulness in the modelling of GaN HEMT transistor
device having strong nonlinearities. The support vector regres-
sion (SVR) is also being employed for solving RF andmicrowave
device behavioural modelling problems [17–23]. The SVR is
often preferred as it looks for global optima in contrast to the
conventional structural risk minimization (SRM) algorithms,
which look for local minima as in the case of ANN. The ANN‐
based modelling for GaN‐on‐SiC HEMT using S‐parameter
measurements at a limited temperature range of 20 to 80oC
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was reported in [13]. The model consisted of two hidden layers
with 20 to 28 neurons in each layer and this complicates the
model implementation in computer‐aided‐design (CAD) tools.
TheotherANN‐basedmodels either considered only the voltage
and frequency dependence or used simple linear approach [14,
15] to predict the temperature‐dependence, which could be
acceptable at low temperatures. However, at high temperatures,
some S‐parameters such as S22 show nonlinear behaviour [11]
and the reported techniques may not be scalable for such
scenarios.

This paper proposes small‐signal modelling techniques
based on ANN and SVR for GaN‐on‐Si HEMT device strongly
impacted by the thermal effects. The ANN‐based technique
utilises an enhanced procedure to implement a double hidden
layer of five neurons. This drastically reduces the model
complexity, simplifies its implementation and enhances
simulation‐speed of the CAD implemented model. This tech-
nique, developed using wide range of temperature data of 25 to
175oC, providesmore insight as compared to the earlier reported
ANN‐based small‐signal modelling techniques [13, 15]. Here,
the temperature is the third input in addition to the voltage and
frequency achieving excellent agreement between the measured
and the modelled performance. During the model development
process, the back propagation (BP)‐based procedure is used to
train the ANN model. One of the main limitations of BP is its
initial guess dependency. The final solution may not converge to
provide best fitting if the initial values of the model parameters
(weights and biases) are far from the optimal ones. To overcome
this limitation, particle swarm optimization (PSO) [24, 25] has
been used in conjunction with the ANN here. PSO as a global
technique is used to initiate the training process by exploring the
search space to find the area of optimal solution. Then in the next
phase the BP as a local technique could provide stronger
exploitation with higher rate of convergence to find the optimal
final solution. This implemented PSO‐BP technique improves
the efficiency and accuracy of theNNsmall‐signalmodelling and
this could be considered as an additional contribution with
respect to the previously reported works. Furthermore, this
paper also develops for the first time a SVR‐based temperature‐
dependent small‐signal modelling technique for GaNHEMT. It
has been reported that SVR‐based model with properly selected
parameters could provide almost similar performance as
compared to the ANN‐based model [26]. However, inappro-
priate selection of the parameters could result in an over‐ or
under‐fitting and this may deteriorate the SVR‐based model

performance. This necessitates careful user intervention to set
the parameters of SVR to overcome this issue of over‐ and
under‐fitting. This paper therefore makes use of PSO with the
SVR model to address this problem.

The next section of this paper succinctly describes the
device and the relevant measurement. Sections 3 and 4 provide
the model development process using ANN and SVR
respectively. Results and discussion are provided in Sections 5
and 6, whereas Section 7 concludes the paper.

2 | DEVICE PHYSICS AND
CHARACTERISATION

The gate width of the considered device is 2 mm and is
composed of 10 fingers of 200‐µm gate‐width. A photograph
of the coplanar waveguide (CPW) on‐wafer device and its
general structure is shown in Figure 1 [27]. This device has
been grown on Si substrates and fabricated by Nitronex Cor-
poration using NRF1 process. The performance of this device
has been improved by adopting source field plate technique.
The device is characterised using vector network analyser
(VNA) and the data are represented in terms of real and
imaginary parts of S‐parameters.

The device is mounted on a temperature controlled ther-
mal chuck to carry out the S‐parameters at different external
temperature and its representative performance in terms of real
and imaginary parts of S22 are shown in Figure 2. The internal
temperature of the device at active bias condition is the sum-
mation of the temperature defined by the thermal chuck and
the device self‐heating. The measurements were carried out at
the grid of bias conditions listed in Table 1. The same grid of
measurements is conducted at different external temperature
starting from 25 to 175oC in steps of 25oC. All measurements
have been taken over the frequencies from 100 MHz to
20 GHz.

3 | ANN‐BASED MODEL

3.1 | Theoretical preliminaries

ANN consists of interconnecting layers of neurons as their
fundamental constituent. These neurons can learn simple and
sophisticated patterns associated with any data if they are fed

F I GURE 1 Photograph of 2‐mm
(10 � 200 µm) AlGaN/GaN on Si high electron
mobility transistors and its general epitaxial structure

938 - JARNDAL ET AL.



with balanced and sufficient training data. Having learnt
properly the information stored, it can be easily exploited for
prediction on new sets of data [28]. The ANN has been widely
used for solving modelling problems and it has many advan-
tages with respect to other techniques. In particular, its ability
to exploit the nonlinearity stands out the most. In its basic
embodiment, the structure of a unit neuron is shown in
Figure 3. Here, X 1, X 2, …, Xn are inputs, W1, W2, …, Wn
are synaptic weights and b is the bias term.

In particular, a unit neuron takes in the inputs multiplied by
its corresponding weights, sums that up, and then adds a bias
term to scale the weighted sum. The weighted sum could have
the value in the range (‐∞, ∞). To force this to a specified
range, it goes through a linear or non‐linear activation func-
tion. The output y can be calculated using (1), which describes
the learning equation of one neuron. Each neuron uses the

same learning equation to learn the weights and biases. Now,
each neuron can be defined by the same equation with addi-
tional information of layer number and its position in the same
layer. The ANN is formed by interconnection of different
neurons stacked on top of each other.

y¼ ψ
�Xn

i¼1
W iX i þ b

�
ð1Þ

3.2 | Temperature‐dependent model using
ANN

The implemented multilayer perceptron (MLP) ANN archi-
tecture shown in Figure 4 consists of an input layer, inter-
mediate layers that are often known as hidden layers and
output layers [28]. The model topology (number of layers
and neurons) is directly related to non‐linearity associated
with the considered problems. The number of the hidden
layers and their sizes cannot be set a priori, so they are
determined during training of the model and it depends on
the degree of nonlinearity. The learning equation for each
ANN model can be formed by vectorization of individual
neurons. It is formulated in (2) for the considered topology.
The architecture used consists of four input nodes, two
hidden layers with five neurons in each layer, and an output
layer for each S‐parameter. The model is then used to
simulate the voltage, temperature and frequency dependence
of the real or imaginary parts of S‐parameter. The complete
model consists of eight ANN models to simulate the four
complex S‐parameters as shown in Figure 5. Here, VGS,
VDS, T and f are extrinsic gate voltage, extrinsic drain
voltage, ambient temperature, and frequency, respectively.
w1j , w2j , w3j and w4j are input weights, wkj is the inter-
mediate weights (between two hidden layers). Furthermore,
w1
bj , w

2
kb and w3

b are the input‐layer, hidden‐layer and
output‐layer biases, respectively. The tanh is the non‐linear
activation function that is used to build the model. The

TABLE 1 Gate and drain bias voltages of the S‐parameters
measurements

VGS (V)

VDS (V)Range Step size

−2 to 2 0.2 7

−2 to −0.4 0.1 28

−2 to −0.8 0.1 48

F I GURE 3 The basic model of a unit neuron

F I GURE 2 Measured S22 of 10 � 200 µm GaN‐on‐Si high electron mobility transistors at different ambient temperatures
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weights and biases of the model are later optimised using
PSO algorithm to find the optimal values.

y¼ w3
b þ

X5

k¼1

wk tanh

0

@w2
kb þ

X5

j¼1

wkj tanh
�
w1jVGS

þ w2jV DS þ w3jT þ w4j f þ w1
bj

�
ð2Þ

One of themost important parts before training themodel is
feature scaling also known as pre‐processing of the dataset. If
there is significant difference in the range of the feature vectors,

the contour of the cost function will have very skewed elliptical
shapes (very tall and skinny elliptical shapes). If the training al-
gorithm is run on this type of skinny contour, then the gradients
will take very long time to reach the global optimum and
sometimes they could easily get stuck into a local optimum. The
model is built based on the S‐parameters measurements under
the listed bias conditions in Table 1 and over the frequency range
of 0.1–20 GHz. The same listed measurements at ambient
temperatures of 25, 75 and 150 C are used to train and test the
ANNmodels. To check themodel's generalisation capability, the
model is validated using two independent datasets (which are not
used for building the model). The first dataset consists of the
same bias conditions and frequencies atT= 50 C andT= 125 C,
while the other dataset is at T = 175 C. The proposed work
makes use of the concept of normalisation. One of the main
reasons why we used real and imaginary parts of S‐parameters as
opposed to the magnitude and phase of S‐parameters is the
distribution of data points. Except for S21, all other parameters
are by default within the range of [−1, 1] in the case of real and
imaginary parts of S‐parameters.

In principle, the training algorithm initialises the random sets
of weights and biases, updates them, and reassigns them again
after each epoch until the algorithm converges. The cost func-
tion used for this problem is given in (3), where yi is themeasured
S‐parameters and ~yi is the simulated S‐parameters. The
Levenburg‐Marquardt (LM) BP algorithm is used to train and
test the model [29], whereas the Nyugen‐Widrowmethod [30] is
adopted for initialisation of weights and biases. This initialisation
method significantly expedited the training and almost all the
neurons are utilised in the input space. Keeping the nature of the
LM‐BP as a local optimisation technique in context, the ANN

F I GURE 4 The proposed double hidden layer
multilayer perceptron ANN‐based model for
mimicking the S‐parameters

F I GURE 5 Generic depiction of ANN‐based modelling for GaN high
electron mobility transistors S‐parameters
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F I GURE 6 Flow chart of proposed PSO‐ANN‐based model

model has been trained multiple times until satisfactory results
are obtained. Those outcomes resulting in minimum error
computed using (3), are taken into consideration.

MSE ¼
1
N

XN

i¼1

�

yi − ~yi

�2

ð3Þ

3.3 | ANN‐based improved model

The ANN‐based model suffers from the convergence issues at
local minima. The BP algorithm utilises random initial weights
to update and train the model, but this method sometimes
produces over fitted results and this in turn does not perform
well for test sets. So, in principle, the model needs to be trained
multiple times until it gives satisfactory results. This needs
more effort and may not be practical for strong nonlinear
models [15]. Here, this major drawback of ANN model is
addressed by utilising the global optimisation method of PSO.
The PSO is a multiple‐initial‐guess based technique and
therefore reduces the chance of convergence at local mini-
mums. This attribute of PSO is very vital to improve the
effectiveness of the model. The model is developed utilising
the same conditions listed in Table 1, over a frequency range of
0.1−20 GHz. The flow diagram of the proposed performance
enhanced ANN model is given in Figure 6. In this technique,
the PSO starts by creating a set of initial particles. For each
particle in the swarm, it evaluates the fitness function given in
(3), set the local best and global best positions. Then it cal-
culates and updates the velocity of the particle based on the
current velocity, particle individual best position and global
best. Having updated velocity, it again updates the particle
position and goes forward for the next particle and repeats the
same steps until termination criteria is reached. The proposed
procedure is illustrated by the flow chart in Figure 6 and it can
be briefly described as follows:

� First the training set is insertedwith inputs and corresponding
S‐parameter. The optimisation algorithm starts by creating a
population of particles (100 particles). The weights/biases
(61) are initialised using symmetric random weight initiation
function. For each variable, the lower and upper bounds are
set to −1 and 1, respectively.

� The objective function is evaluated. The objective is to
minimise the error between predicted values and the
measured values. Utilising the fitness value, the algorithm
sets the local best position and the global best position of
the corresponding particle.

� Once the local best and the global best positions are known,
the next step is to update the velocity using the memory
values of velocity, current best position and global best
position. The PSO uses (4) and (5) to update the velocity
and position, respectively.

vtþ1 ¼ w ∗ vt þ c1 ∗ r1 ∗
�
pbest − xt

�
þ c2 ∗ r2 ∗

�
gbest − xt

�

ð4Þ

xtþ1 ¼ xt þ vtþ1 ð5Þ

where r1 and r2 are generated randomly between 0 and 1. vtþ1
is the new velocity and vt is the previous velocity. Similarly,
xtþ1 is the new position and xt is the previous position.
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The pbest and gbest are the local best and global best positions,
respectively. The terms w, c1 and c2 are the inertia weight
factor, self‐confidence factor and swarm confidence factor,
respectively. The inertia factor is calculated using (6).

w¼ wmax −
�
ðwmax − wminÞ

MaxIteration
∗ Iteration

�

ð6Þ

Here, wmax and wmin are the maximum and minimum
range for the inertia factor values, which can greatly influence
the updating process of new velocity based on other
parameters.

� The new positions are again passed through the same fitness
function and then all the steps are repeated until the
termination criteria is reached. To build the ANN model
with PSO initialisation, the algorithm runs for 500 iterations.

� After successful completion of all the above steps, the al-
gorithm renders optimal set of weights/biases. These
optimal values are later utilised as initial values for BP
algorithm.

� The initial optimal weights overwrite the BP algorithm.
Then the ANN model is trained on these weights to give the
best results.

4 | SUPPORT VECTOR REGRESSION

4.1 | Theoretical preliminaries

The SVRs are mainly characterised by the use of kernels,
absence of local minima, support vectors and solution deter-
mination by use of feature space [31]. The effectiveness of SVR
depends mainly on the parameters such as type of kernel
function, kernel parameters, support vectors decision bound-
ary and the imposed penalty factor that is box constraint (C ).
The kernel trick maps the low‐dimensional dataset into high‐
dimensional for the algorithm to learn the non‐linear

behaviour of parameters such as S22. In principle, the SVR
algorithm tries to find the margin or regression equation,
which is maximally deviated by ε from the true values. Suppose
the training example is described as {xi, yi}, where i varies
from 1 to n, xi ∈ ℝd and yi ∈ ℝ, then the fitting function is
given by (7). Here, f ðxÞ denotes the predicted value based on
the optimal sets of weights and biases, and ω is weighing vector
and b is the bias term.

f ðxÞ ¼ ωTφðxiÞ þ b ð7Þ

The input vectors xi can be mapped into higher‐
dimensional space, φðxiÞ, where φðxiÞ serves as a kernel
trick to facilitate the easier solution of the non‐linear
problems by mapping them into higher dimensional space
and performing the simple dot products. Equation (7) is
referred to as the learning equation for the SVR, which
modifies according to (8). The model uses ε‐insensitive loss
function, which means the model will not care as long as
error ranges between − ε to ε; which should be maximised
to find the better generalisation. The loss function calculates
the distance between measured yi and the ε boundary using
(9). The parameter C controls the weighing between the
twin goals of making the jjω2jj small (to make the margin
large) and ensuring that examples have functional margin of
at least 1. To address the training examples that lie beyond
the ε‐insensitive zone, slack variables ξi and ξi∗ at each
point can be introduced as the soft‐margin regression.
Therefore, error equation can be modified to (10) [32]
subject to the constraints in (11). This primal optimisation
problem is solved by exploiting the Lagrange multipliers
reproduced in (12) [32].

Μinimize

 
1
2

�
�
�
�ω2
�
�
�
�þ C

Xn

i¼1

LðϵÞ

!

: ð8Þ

LðεÞ ¼
�
0;
jy − f ðxÞj − ε ;

if jy − f ðxÞj < ε
otherwise:

ð9Þ

Μinimize

 
1
2

�
�
�
�ω2
�
�
�
�þ C

Xn

i¼1

�
ξi þ ξi∗

�
!

; ð10Þ

yi − ðω; xi þ bÞ ≤ εþ ξi ð11aÞ

ðω; xi þ bÞ − yi ≤ εþ ξi∗ ð11bÞ

ξi ≥ 0 ξi ∗ ≥0: ð11cÞ

L¼
1
2

�
�
�
�ω2
�
�
�
�þ C

Xn

i¼1

�
ξi þ ξi∗

�
−
Xn

m¼1

�
ηmξi þ ηm

∗ ξi ∗ �

þ
Xn

m¼1
αm
�
f ðxmÞ − ym − ε − ξm

�
þ
Xn

m¼1
αm ∗ � ym

− f ðxmÞ − ε − ξm ∗ �

ð12Þ

where αm, αm∗, ηm and ηm∗ are non‐negative Lagrangian
multipliers. Putting the partial derivatives of (12) with

F I GURE 7 Depiction of support vector regression (SVR)‐based GaN
high electron mobility transistors modelling

942 - JARNDAL ET AL.



respect to primal variables (ω, b, ξi, ξi∗) to zero for opti-
mality and substituting those values back in (10) yields dual
Formula (13). This method then needs to satisfy the

complementarily Karush‐Kuhn Tucker (KKT) conditions in
Equations (14)–(15) [32]. The optimal solution can then be
found using sequential minimal optimization (SMO) algo-
rithm. So, finally the predicted value can be expressed
by (16).

F I GURE 8 Flow chart of proposed particle swarm optimization based
support vector regression model

TABLE 2 MSE for testing set at randomly selected bias conditions
and ambient temperatures (ANN model)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = 1.6 V 1.23 1.54 1.99 2.12 1.25 2.25 2.71 3.55

VDS = 7V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 25oC

VGS = −1 V 1.81 2.51 1.23 4.58 2.25 3.55 2.46 3.59

VDS = 28 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 100oC

VGS = −1.5 V 2.35 3.09 1.81 2.89 1.47 2.46 3.45 2.41

VDS = 28 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 150oC

TABLE 3 MSE for validation using independent set at different
ambient temperature for randomly selected dataset (first three:
interpolation case, last three: extrapolation case) (ANN Model)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = −1.4 V 4.78 5.24 3.25 5.69 4.18 5.33 4.19 6.48

VDS = 48 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 50oC

VGS = −1.8 V 3.16 6.31 3.14 4.27 3.29 4.07 5.55 4.59

VDS = 7 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 125oC

VGS = 1.8 V 3.23 5.44 3.25 5.64 5.57 6.26 4.40 4.46

VDS = 48 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 125oC

VGS = −1.4 V 6.61 5.66 5.12 6.24 4.74 6.22 9.53 5.27

VDS = 7 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 175oC

VGS = −1.3 V 5.23 6.12 7.37 5.98 5.48 4.22 4.29 8.48

VDS = 28 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 175oC

VGS = −1.8 V 5.67 4.82 5.26 6.29 6.57 5.99 7.40 4.42

VDS = 48 V e−4 e−4 e−2 e−2 e−5 e−5 e−4 e−4

T = 175oC
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Maximize

0

@
Xn

i¼1

yi
�
αi ∗ þ αi

�
− ε

�
αi ∗ þ αi

�
−
1
2

Xn

i;j¼1

�
αi ∗ − αi

��
αj ∗ − αj

�
K
�
xi; xj

�

1

A

ð13Þ

So that:

Xn

i¼1
yi
�
αi − αi∗

�
¼ 0;where αi; αi ∗ ∈ ½0 C� ð14Þ

αi
�
εþ ξi − yi þ f ðxiÞ

�
¼ 0; ξiðC − αiÞ ¼ 0 ð15aÞ

αi ∗ � εþ ξi ∗ −yi þ f ðxiÞ
�
¼ 0; ξi ∗ �C − αi∗

�
¼ 0; ∀i
ð15bÞ

(a) (b)

F I GURE 9 The measured and simulated S‐parameters at (a) VGS = 0 V, VDS = 7 V and T = 25 C; (b) VGS = −0.8 V; VDS = 28 V and T = 25 C using ANN
model

(a) (b)

F I GURE 1 0 The measured and simulated S‐parameters at (a) VGS = −1.4 V, VDS = 7 V, and T = 175 C; (b) VGS = −1.7 V; VDS = 28 V, and T = 175 C
using ANN model

TABLE 4 MSE for testing set at randomly selected bias conditions
and ambient temperatures (ANN Model with PSO initialisation)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = 1.6 V 1.37 3.21 2.25 1.22 2.63 2.52 1.71 2.25

VDS = 7 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 25oC

VGS = −1 V 2.79 2.46 1.52 2.84 2.14 3.02 1.42 3.25

VDS = 28 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 100oC

VGS = −1.5 V 1.15 3.88 1.73 2.52 3.18 2.41 1.55 2.46

VDS = 28 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 150oC

Abbreviation: PSO, particle swarm optimization.
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αiαi ∗ ¼ 0; ηiηi
∗ ¼ 0: ð15cÞ

f ðxÞ ¼
Xn

j¼1

�
αj ∗ − αj

�
K
�
x; xj

�
þ b; ð16Þ

where xj is the support vector, n is the number of support
vectors, the terms αj∗ and αj in bracket are weight co-
efficients of support vectors, b is the bias and Kð⋅Þ is the
kernel function.

4.2 | Temperature‐dependent modelling
using SVR

The SVR model is built for the measured S‐parameters (real
and imaginary parts), as can be seen in Figure 7, under the
listed bias conditions in Table 1 and over the frequency
range of 0.1–20 GHz. Once again, the same listed mea-
surements at ambient temperatures of 25, 75, 100, and
150 C are used to train and test the model. To check the
model's generalisation capability, the model is validated using
two independent datasets (which are not used for building
the model). The first dataset consists of the same bias
conditions and frequencies at T = 50 C and T = 125 C,
while the other dataset is at T = 175 C. The training data is
standardised/normalised with respect to mean and standard
deviation. The model utilises Gaussian kernel function and
the SMO solver in this case. The kernels convert the data
into high dimension, which is typically more representative.
However, the high dimension implies higher computational
cost and needs more training data.

4.3 | SVR‐based improved model

One of the main reasons for the deterioration of the per-
formance of the SVR model is the improper values of the
parameters. For a given SVR model, there are six parameters
which primarily affect the performance of the model. These
parameters are called hyper parameters. Proper tuning of
these parameters for a given problem plays a significant role
in building the model. In the SVR, the central parameters
are the box constraint or regularisation parameter (C ), tube
size of ε‐insensitive loss function (ε), kernel scale, kernel
function, polynomial order and presence and absence of the
standardisation of the measured set. The tube size of ε‐
insensitive loss function (ε) defines the margin of tolerance.
Higher and lower values of ε, controls the number of the

TABLE 5 MSE for validation using independent set at randomly
selected different ambient temperatures (first two: interpolation case, last
three: extrapolation case) (ANN Model with PSO initialisation)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = −1.4 V 4.98 4.04 5.99 4.17 4.28 6.33 3.98 6.35

VDS = 48 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 50oC

VGS = −1.8 V 5.47 5.55 4.27 4.59 4.77 4.26 4.36 4.16

VDS = 48 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 125oC

VGS = −1.3 V 6.67 5.58 5.14 5.66 5.18 5.36 7.28 6.18

VDS = 28 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 175oC

VGS = −1.7 V 5.51 5.56 5.77 4.57 4.28 7.89 4.33 5.29

VDS = 28V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 175°C

VGS = −1.8 V 4.29 7.80 5.17 6.18 5.89 5.77 5.19 7.59

VDS = 48 V e−5 e−5 e−3 e−3 e−6 e−6 e−5 e−5

T = 175°C

Abbreviation: PSO, particle swarm optimization.

(a) (b)

F I GURE 1 1 The measured and simulated S‐parameters at (a) VGS = 0 V, VDS = 7 V, and T = 25 C; (b) VGS = −0.8 V, VDS = 28 V, and T = 25 C for the
ANN model with PSO initialisation
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(a) (b)

F I GURE 1 2 The measured and simulated S‐parameters at (a) VGS = −1.4 V, VDS = 7 V, and T = 175 C; (b) VGS = −1.7 V, VDS = 28 V, and T = 175 C for
the ANN model with PSO initialisation

F I GURE 1 3 Modelled and measured S‐parameters at VGS = −1.5 V, VDS = 48 V, and T = 25, 100, and 175°C using particle swarm optimization‐ANN
model
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support vectors in the decision boundary, which directly
controls the optimal values of weights and biases and
consequently controls the optimal hyperplane for the
problem. The term C outlines the imposed penalty on the
observations which go beyond the ε range. It controls
the underfitting and overfitting of the model. The Kernel
function plays a significant part in solving complex non‐
linear problems using linear methods. The intuition is to
convert the low‐dimensional dataset to high‐dimensional
dataset and perform dot products. Pre‐processing and nor-
malisation of the data is also a very critical step in getting
optimal results. In the proposed model, Gaussian kernel
function is used. The hyper parameters are initialised with
random values. C and sigma (σ) are set to be within the
range of [1e‐3 1e3]. The range of error (ε) is set between
[1e‐6 1e3].

The process in repeated many times until we get the
optimal results. The flow chart of the proposed model is
summarised in Figure 8. The same PSO parameters are chosen
as discussed in Section 3. All steps are the same, except here
only three parameters are used with defined upper and lower
boundaries. These optimised particle values obtained using
PSO are then utilised to get the optimal model.

5 | ANN‐BASED MODEL VALIDATION

5.1 | Evaluation of simple model

The proposed ANN model is implemented using MATLAB.
Subsequently, the mean squared error (MSE) is calculated using
(3) for the training/validation and testing set (interpolation and
extrapolation sets). The minimum errors using LM‐BP algo-
rithm for the two sets for randomly selected bias and tem-
perature values are listed in Table 2. Figures 9 and 10 compare
the modelled and measured S‐parameters, randomly selected
from training/validation and testing sets, at two extreme
ambient temperatures under distinct bias conditions. An

excellent agreement between the measurements and simulation
is obtained over all considered bias voltages and temperatures.
To reiterate, the prediction capability of the model has been
evaluated by independent measured data sets than the one used
for model development (see Table 3). It can thus be inferred
from the validation, the developed ANNmodel provides a very
good accuracy for both interpolation and extrapolation cases.

5.2 | Evaluation of improved ANN model

The improved model makes use of the PSO for initialisation of
optimal weights and biases corresponding to global minimum.
Once again, the same conditions are taken to check the model's
ability and robustness over entire frequency range. It can be
inferred from the results inTables 4 and 5, theMSE for randomly
selected ambient temperature and bias conditions for ANN
model with PSO initialisation, is significantly superior as
compared to the accuracy achieved by simple ANNmodel. This
enhanced accuracy can be attributed to the improved initial
values. A visual depiction in Figures 11–12 for the extreme
ambient temperatures shows an excellent consonance between
themodelled andmeasured S‐parameters. This demonstrates the
effectiveness of the PSO in the ANN‐basedmodel development
process. It is thus safe to convey that the use of PSO is very

TABLE 6 MSE for testing set at randomly selected bias conditions
and ambient temperatures (SVR model)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = 1.6 V 2.942 4.98 1.16 1.14 4.46 4.17 2.19 2.56

VDS = 7 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 25oC

VGS = −1 V 3.59 5.36 1.27 1.45 3.28 4.07 2.54 3.69

VDS = 28 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 100oC

VGS = −1.5 V 1.55 4.84 2.14 1.45 2.57 3.96 4.49 2.66

VDS = 28 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 150oC

Abbreviation: SVR, support vector regression.

TABLE 7 MSE for independent validation set at different ambient
temperature (first three: interpolation case, last three: extrapolation case)
(SVR Model)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = −1.4 V 5.32 7.12 4.19 3.47 4.32 3.59 6.91 3.66

VDS = 48 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 50oC

VGS = −1.8 V 4.88 6.77 4.52 3.64 5.64 6.51 5.51 5.27

VDS = 7 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 12oC

VGS = −1.5 V 4.19 3.95 4.97 4.26 4.19 7.58 6.29 6.16

VDS = 48 V e−3 e−3 e−2 e−2 e−5 e−5 e−4 e−4

T = 125oC

VGS = −0.6 V 4.48 5.55 5.19 6.12 4.25 3.91 3.41 7.37

VDS = 7 V e−2 e−3 e−2 e−2 e−5 e−5 e−2 e−3

T = 175oC

VGS = −1.7 V 7.02 7.21 6.99 8.58 5.23 5.31 4.51 5.17

VDS = 28 V e−2 e−3 e−2 e−2 e−5 e−5 e−2 e−3

T = 175oC

VGS = −1.8 V 5.18 4.33 5.78 5.77 5.84 2.58 5.09 4.24

VDS = 48 V e−2 e−3 e−2 e−2 e−5 e−5 e−2 e−3

T = 175oC

Abbreivation: SVR, support vector regression.
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F I GURE 1 4 Comparison of modelled and measured S‐parameters at VGS = −0.8 V, VDS = 28 V, and T = 25 C using support vector regression

F I GURE 1 5 Comparison of modelled and measured S‐parameters at VGS = −1V, VDS = 28 V, and T = 175 C using support vector regression
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beneficial as it significantly enhances the accuracy of the model.
Figure 13 shows also the model simulation at a fixed active bias
condition and different ambient temperature of 25, 100 and
175 C. This also validates the extrapolation capability of the
model.

6 | SVR‐BASED MODEL VALIDATION

6.1 | Evaluation of simple SVR model

The proposed SVR model is implemented using MATLAB.
The predicted MSE is calculated for the training/validation
and testing set (interpolation and extrapolation sets) using LM
algorithm. The MSEs for these scenarios, for randomly
selected temperatures and bias conditions, are given in Tables 6
and 7. Once again, modelled and measured S‐parameters at
different bias conditions and extreme ambient temperatures
are compared in Figures 14 and 15. An excellent agreement
between the measured and modelled values for both the
imaginary and real parts of S‐parameters exist and this proves
the accuracy, effectiveness, and robustness of the developed

TABLE 8 The optimal values of hyper
parameters using PSO

Response/parameter Kernel function Box constraint ðCÞ Epsilon (ε) Sigma (σ)

Re (S11) Gaussian 2.53 2.68e‐4 1.04

Img (S11) Gaussian 1.99 2.49e‐4 0.98

Re (S21) Gaussian 3.14 5.73e‐4 1

Img (S21) Gaussian 3.23 6.84e‐4 1.03

Re (S12) Gaussian 1.57 1.92e‐5 1.15

Img (S12) Gaussian 1.98 1.91e‐5 2.38

Re (S22) Gaussian 2.91 3.24e‐4 0.91

Img (S22) Gaussian 3.89 2.33e‐4 1.05

Abbreviation: PSO, particle swarm optimization.

TABLE 9 MSE for testing set at
randomly selected bias conditions and ambient
temperatures. (PSO‐based SVR Model)

Bias and temperature Re S11 Img S11 Re S21 Img S21 Re S12 Img S12 Re S22 Img S22

VGS = 1.6 V 1.56 1.22 1.16 2.32 2.25 2.31 1.29 1.35

VDS = 7 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 25oC

VGS = −1 V 2.39 1.35 1.98 1.93 2.25 2.88 1.93 1.53

VDS = 28 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 100oC

VGS = −1.5 V 2.25 1.84 1.47 1.81 1.64 3.25 1.52 2.61

VDS = 28 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 150oC

Abbreviations: PSO, particle swarm optimization; SVR, support vector regression.

TABLE 10 MSE for validation independent set at different ambient
temperature randomly (first two: interpolation case, last two: extrapolation
case) (PSO‐based SVR Model)

Bias and
temperature

Re
S11

Img
S11

Re
S21

Img
S21

Re
S12

Img
S12

Re
S22

Img
S22

VGS = −1.4 V 3.48 4.04 3.81 4.18 4.73 5.21 2.47 4.46

VDS = 48 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 50oC

VGS = −1.8 V 4.36 2.38 3.99 3.89 5.51 5.79 4.98 2.66

VDS = 7 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 125oC

VGS = −0.6 V 6.12 6.38 4.77 5.44 5.68 5.58 7.58 5.53

VDS = 7 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 175oC

VGS = −1.8 V 6.57 5.84 6.98 7.25 7.23 7.34 8.44 7.55

VDS = 48 V e−4 e−4 e−3 e−3 e−6 e−6 e−4 e−4

T = 175oC

Abbreviations: PSO, particle swarm optimization; SVR, support vector regression.

JARNDAL ET AL. - 949



F I GURE 1 6 Comparison of S‐parameters at VGS = 0 V, VDS = 7 V, and T = 25 C for SVR model with parameter setting using PSO

F I GURE 1 7 Comparisonof S‐parameters atVGS= −1.7V,VDS= 28V, andT= 175C for SVRmodelwith parameter setting using particle swarmoptimization
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SVR‐based model for wide range of bias voltages and tem-
peratures over the entire frequency range.

6.2 | Evaluation of improved SVR model

The parameter tuning plays an important role to improve the
performance. The improved model utilises the PSO to tune the
box constraint, Epsilon, and sigma values for the Gaussian
kernel. The final optimised values for these parameters are listed
in Table 8. Subsequently, the predicted MSE is calculated for the
training/validation, and testing set (interpolation and extrapo-
lation sets) using LM algorithm. The MSEs for some randomly
selected bias and temperature conditions are given in Tables 9
and 10. The corresponding Figures 16 and 17 compare the
modelled and measured S‐parameters at randomly selected bias
conditions and extreme ambient temperatures.

It can be observed from results that an excellent agreement
between the modelled and measured values exist for the

considered bias voltages and temperatures. It is also identified
that the careful selection of the hyper parameters by PSO
significantly improves the SVR‐based model's accuracy which
can be inferred from all the achieved MSE. It can also be seen
that the extrapolation capability of the SVR model is also
improved by optimising the model parameters using the PSO.
Figure 18 shows also the model simulation at a fixed active bias
condition and different ambient temperature of 25,100 and
175 C. This apparently validates the extrapolation capability of
the model.

Overall, it can be inferred that the training and interpola-
tion capability of both ANN and SVR is almost the same but
ANN has shown better extrapolation capability as opposed to
SVR for this particular problem. In brief, it can be said that the
ANN achieves better prediction capability for this problem. It
is well known that the performance of SVR decreases with the
increase in the size of the training data as it requires more
memory to store the kernel and gram matrix. It is also
imperative to note that the training time for SVR is more than

F I GURE 1 8 Modelled and measured S‐parameters at VGS = −1.5 V, VDS = 48 V, and T = 25, 100, and 175°C using particle swarm optimization‐support
vector regression model
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the training time for ANN. On the other hand, the ANN
model needs to be trained many times until satisfactory results
are obtained. This can be attributed to the initial guess de-
pendency of the LM‐BP and its higher chance of stacking in a
local minimum. However, the introduction of PSO in the
ANN model development effectively solves the initial guess
dependency of LM‐BP. On the contrary, the SVR does not face
such a problem. Actually, the SVR‐based model's performance
can be greatly improved by careful tuning and optimisation of
its hyper‐parameters using PSO. The optimisation of hyper‐
parameter tuning substantially improves the overall perfor-
mance and the prediction capability of the SVR‐ based model.
Finally, it is safe to convey that the ANN model with initiali-
sation using PSO performs the best when compared to the
other models proposed in this paper owing to less training time
and improved accuracy.

7 | CONCLUSION

Here, the development of temperature‐dependent ANN‐ and
SVR‐based models for GaN‐on‐Si HEMT has been reported.
The models have been trained for large set of operating con-
ditions and later tested on two independent sets. First, the
simple topology of ANN has been used efficiently to model
the device and then tested using two independent sets to
validate its interpolation and extrapolation capability. Subse-
quently, SVR has been used to develop alternative modelling
technique for the same device. It makes use of SMO solver to
train the model for speedy model development process. It was
identified that the SVR‐based technique is more robust and
training need not be repeated in contrast to the ANN‐based
technique. It is also worth noting that the SVR takes more
training time than the ANN in the case of large dataset. This
could be attributed to its extra computation operations due to
requirement of more memory space to store the kernel matrix.
Most importantly, the extrapolation capability of SVR model is
inferior. In addition, the ANN model shows very good pre-
diction capability for the in and out of range data. The use of
PSO algorithm in the model development process improves
the performance of both the ANN‐ and SVR‐based model. In
summary, the ANN model with PSO‐based initialisation out-
performs other models in term of prediction capability,
training time, and accuracy.
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