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Abstract: Background: Mammography is the preferred method for the diagnosis of breast cancer.
However, this diagnostic technique fails to detect tumors of small sizes, and it does not work well
for younger patients with high breast tissue density. Methods: This paper proposes a novel tool for
the early detection of breast cancer, which is patient-specific, non-invasive, inexpensive, and has
potential in terms of accuracy compared with existing techniques. The main principle of this method
is based on the use of temperature contours from breast skin surfaces through thermography, and
inverse thermal modeling based on Finite Element Analysis (FEA) and a Genetic Algorithm (GA)-
based optimization tool to estimate the depths and sizes of tumors as well as patient/breast-specific
tissue properties. Results: The study was conducted by using a 3D geometry of patients’ breasts
and their temperature contours, which were clinically collected using a 3D scanner and a thermal
imaging infrared (IR) camera. Conclusion: The results showed that the combination of 3D breast
geometries, thermal images, and inverse thermal modeling is capable of estimating patient/breast-
specific breast tissue and physiological properties such as gland and fat contents, tissue density,
thermal conductivity, specific heat, and blood perfusion rate, based on a multilayer model consisting
of gland and fat. Moreover, this tool was able to calculate the depth and size of the tumor, which was
validated by the doctor’s diagnosis.

Keywords: finite element modelling; breast cancer; thermography; thermal modelling; genetic
algorithm; Comsol Multiphysics; Livelink; MatLab

1. Introduction

One of the most common causes of disease-related death among young women in
developing countries is breast cancer [1]. Changes in a cell genome can be caused by various
factors such as hormonal dysfunctions or external causes, which lead to the development of
cancerous cells. The most important factor is the stage of disease, as it plays an important
role in treatment procedure and the recovery rate [2]. Genetic predisposition, a burdened
family history, lack of childbirth experience, abortions, and age are the main risk factors
that may cause the development of tumor, in addition to lifestyle with pernicious habits
such as smoking, alcohol, obesity, lack of physical activities, etc. [3,4].

Figure 1 shows that breast cancer constitutes 11.7% among all cancer cases including
both genders worldwide [5], whereas the mortality rate from breast cancer for females
is 15.5% among all cases of cancer for females worldwide. It is proven that the early
detection of breast cancer can be highly treatable. According to the stages of the cancer
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development process, patients with stages 2 and 3 of the disease were more common (84%
in the compartment). This is due to the fact that stage 1 breast cancer is only determined
during regular mammography checkup, without clinical manifestations.
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Figure 1. Distribution of cancer incidence and mortality rate for both genders worldwide [5].

Major methods of breast cancer diagnosis are mammography, ultrasound investiga-
tion, MRI, and biopsy. The main purpose of a biopsy is to determine if the tumor is benign
or malignant. It involves a microscopic and histochemical examination of a tissue sample.
This procedure is carried out after the discovery of the tumor.

Mammography is currently the most popular method. X-ray mammography is a
classic version of mammography which has been used for several decades. X-ray mam-
mography can be performed on a large number of women in a short time. This is ideal for
mass preventive examinations. The procedure, which compresses the breast, is painful
and uncomfortable. In addition, there are some limitations to its use. Firstly, this type of
mammography is mainly recommended for older women above 40 years of age. This is
because the images are more informative from this age due to the decrease in density of
the glandular tissue of the mammary glands, which allow for the optimal transmission
of X-ray radiation. This method is most effective for large tumors that are denser than
surrounding tissues. Secondly, there is a potential threat of an adverse effect on a woman'’s
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body, since this method uses ionizing radiation (X-rays). Therefore, it is recommended that
X-ray mammography be performed no more than once a year.

Ultrasound examination uses high-frequency acoustic waves. The method is used as
the main complementary method for the diagnosis of breast diseases to determine whether
the lump discovered is a cyst filled with liquid or a solid tumor. Ultrasound is more
effective for younger patients as their mammary glands have denser structure.

An MRI scan is best suited for young women who have a hereditary predisposition to
breast cancer. Unlike mammography, magnetic resonance imaging is performed without
X-ray radiation, and the effectiveness of MRI studies does not depend on the density of
breast tissues. However, MRI is very expensive and can be found only in major hospitals
of big cities.

The diagnosis of cancer in its early stages is crucial for its treatment. It is difficult
to diagnose cancer in early stages due to the size of the tumor, which generally does not
induce pain. Existing methods are not conducive for regular mass screening in short
intervals, and they are not suited for regular breast self-examination (BSE) as promoted
by WHO [6]. Some are harmful, painful, or uncomfortable, while others can be expensive
and not readily available. The effectiveness of the approaches can also be dependent upon
factors such as gland density. As a result, many breast cancer cases are discovered in the
late stage when the tumor has become big enough to induce pain and other symptoms
including lymph node damage, drawn nipples, and discolored or destructed breast skin [3].
Treatment in these stages can be challenging.

A non-invasive and inexpensive approach for early breast cancer detection is the
examination of the breast skin surface temperature. Body temperature is a popular indicator
that is used to check human health status. The effective usage of thermal data in clinical
conditions can diagnose many illnesses [7-9]. It is well known that temperature distribution
on the skin depends on factors such as blood perfusion, metabolic rate, and ambient
temperature. Any abnormality such as tumor or inflammation can cause the atypical
distribution of temperature on the skin surface. Tumors have higher heat generation
rates compared with surrounding healthy tissues, thus allowing for the observation of
non-homogeneity in breast thermograms with tumors [10-22].

The study by Prasad et al. [13] compared the accuracy of infrared thermal imaging
(IRTT) and mammography. The results showed that mammography had higher accuracy
(95.38%) than infrared thermal imaging (92.31%). At the same time, thermography was
able to detect three cases of malignant tumor, whereas mammography could not.

Shrestha et al. [14] divided the breast into seven layers including the tumor tissue and
studied the temperature distribution on the breast surface. It was concluded that in the
case of applying dynamic thermography in order to improve tumor detection, the healthy
tissue would reach the steady-state condition earlier compared with the tumor tissue.

Wahab et al. [15] created various models of breasts with different compositions of
glandular and fibrous tissues. It was concluded that the composition of the mammary gland
affects temperature distribution on the breast surface. Further work by Salamunes et al. [16]
examined 123 females using Dual-Energy X-ray Absorptiometry and an Infrared camera.
The results of the study revealed the influence of the fat percentage on the temperature
distribution on the surface of the breast that is captured by IR camera.

Researchers [2,8,17-22] suggested that improvements in the quality of thermal cameras
and the development of machine learning techniques can significantly enhance thermog-
raphy as an adjunct tool for breast cancer detection. They also stated that thermography
could achieve greater advancement if used in combination with segmentation, extraction,
or numerical simulation.

According to Jiang et al. [17] and Bezerra et al. [18], numerical simulation allows for the
study of the relationship between thermal behavior (heat generation, thermal conductivity,
blood perfusion, etc.) and breast physiological states. The most important part of such
study is geometrical modeling, as the model is used for the calculation and definition of
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the variables influencing the physiological change of the breast state. In this regard, it is
important to use the real geometry of the breast, consisting of different layers [14,19-21].

Therefore, in this study, we propose that the combination of thermography and 3D
scanning of the breasts can be used for the early detection of tumors and for further devel-
opment of BSE through the miniaturization of the equipment and Artificial Intelligence
(AI). By using temperature distributions on skin surfaces and the breast’s 3D geometry, it
is possible to use reverse thermal modelling and finite element analysis (FEA) to identify
the presence of tumors in human breasts. Finite element modelling (FEM) is mainly used
for forward simulations in the performance of analyses. On the other hand, by combining
FEM with optimization methods in reverse thermal modeling, it would be possible to
determine personalized tissue properties, based on which reverse thermal modeling and
design optimization can then be employed in order to determine the sizes and locations of
breast tumors.

The novelty of this study lies in the development of a unique tool for the estimation of
the depths and sizes of breast tumors using 3D scans of patients’ breasts and personalized
tissue parameters such as density, fat/gland contents, specific heat, and conductivity
through reverse thermal modeling. This tool consists of an FEM solver and optimizer,
using thermograms and 3D breast scans as inputs. Optimization is used to search for
optimal patient-specific parameters based on temperature distribution on the breast skin
and for thermal modelling using FEM, which is called backward thermal simulation.
For this study, the experimental procedure involved the collection of clinical data such
as 3D models of the breasts and thermograms (skin surface temperature distributions).
The temperature readings and 3D models of healthy breasts, personalized data such
as thermal conductivity, specific heat, density, and blood perfusion heat loss rate were
computed for each patient by using reverse thermal modeling, which combines FEM and
design optimization. These parameters were then used for reverse thermal modeling
through FEM and design optimization based on the patient-specific data obtained above to
search for the sizes and depths of tumors. Each procedure included patient-specific data
and diagnostic results from a medical doctor, which was then used to validate the method
proposed herewith.

2. Clinical Data Collection

This study involves the collection of patient data (Figure 2a) in a clinic; surface
temperature data was collected using a non-invasive infrared imaging camera and the
scanned geometry of the breast was taken using a 3D scanner. The study was approved by
Nazarbayev University Institutional Research Ethics Committee (identification number is
294/17062020).

(b) (©)

Figure 2. Clinical office for collecting patient data (a), the 3D Scanner Sense 2 (b), and IR camera IRTIS-2000 ME (c).
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The geometry of the breast was scanned by a smart 3D scanner called Sense 2 from 3D
Systems (Figure 2b), which is a very light and easy-to-use scanner with excellent resolution,
used for scanning objects from 200 to 2000 mm, and with a scanning accuracy of 0.9 mm.
The front panel of the device is equipped with two cameras and an IR sensor. The scanner
generates 3D models of the subjects being scanned by using image processing, while the IR
sensors are used to measure the distance between the scanner and the patient. Temperature
distributions on the breast skin surfaces were recorded by the thermal camera IRTIS-2000
ME (Figure 2c), which is used for medical research and in the diagnosis of a wide range of
illnesses, including oncological diseases. Its temperature resolution for the entire field of
view is 0.02 °C and its temperature measurement accuracy is 0.1 °C.

The collected information was used to generate 3D solid breast models to serve as
input in the proposed diagnostic method for tumor diagnosis. The collection of data was
conducted in the Oncology Center in Nur-Sultan city, Kazakhstan.

The 3D scanner exports data as surfaces in the STL format rather than full-sized 3D
solid models. Therefore, the geometric data had to be manually processed in order to fully
construct 3D solid breast models in a CAD system. A scanned model is shown in Figure 3
as an example.

Figure 3. A 3D scanned model of the breast.

The scanned surface model was then processed and manipulated in a CAD program,
converting it into a full-fledged 3D solid model from which FEM meshes could be generated
for FEA simulation and reverse thermal modeling (Figure 4).

Figure 4. Full-fledged 3D model of the breast.
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3. Governing Equations

The human body continuously generates heat through metabolic processes. Heat
exchanges among internal organs and the external environment occur through conduction,
convection, and thermal radiation, which can be described by the energy conservation
equation for bioheat transfer as follows:

Qgenerated = Qstored =+ Qlost +W (1)

where the term Qgeyerated stands for the rate of heat generated by metabolic process; Qsored
is the rate of heat stored in tissues and fluids; Qy,; is the rate of heat lost to the environment;
and the work performed by the tissues is W, which can be neglected due to its low value.

During metabolic process, the heat generation rate ¢,,(x,t) varies in the range of
5-10,000 W/m3. Integrating heat generation rate over a control volume gives the following:

Qgenerated = /v qm (x,t)do 2)

where x stands for spatial coordinate and ¢ is time.
Heat stored in control volume is:

Qstored = /Z}pc(ﬁ)%dv 3)

Fourier’s law of conduction as a form of heat loss over the control volume surface can
be expressed as follows:

Qconducted = /A kVT(&, t)'ﬁ dA 4)

where k is the thermal conductivity of the tissue.
Heat loss rate due to blood perfusion is also a component of heat lost to blood flow,
according to Fick’s law:

leood = pbcbwb(T - Tv) %)

where pjc;, stands for blood heat capacity and wj, for volumetric blood perfusion rate; T, is
the arterial temperature.

By substituting all the above equations into Equation (1) and converting the surface
integration into volume integration with Gauss’ theorem, subsequently dropping the
integrals when the control volume tends to zero, we will then obtain the Pennes bioheat
equation [23] at a point in the space inside the breast in PDE form:

oT . .
pear = V-kVT + ppcpwy(T — Tyy) +4q,,, (6)
From the bioheat equation, it can be seen that in steady state conditions, the term
on the LHS of Equation (6) disappears. The following equation describes the boundary
condition on the skin surface for heat convection with the surrounding air:

—kVT = h(T — Tampient) @

where h is the convection coefficient, with an assigned value of 13.5 W/ m? °C, according
to [24].
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4. Numerical Methods

The Pennes equation is reformulated as follows:

aT > '
pCo +V- <_ kw) = euCowp(Ty = T) + 4, ®)

where
p is tissue density (kg/m3);
C s tissue heat capacity (J/ (kg K));
T is temperature (K);
z is tissue thermal conductivity tensor (W/(m K));
pp is blood density (kg/m3);
Cp is blood heat capacity ( ]/ (kg K));
wy, is blood perfusion rate (m3/(m3s));
T, is temperature, arterial blood (K);
q,, is metabolic heat source (W/m3).

To estimate the effects of density and specific heat of tissues, the transient heat transfer
process should be considered [24].

A numerical solver for the bio-heat equation based on the Finite Element Method
(FEM) was used. Considering Equations (6) and (7), a finite element model can be obtained
as follows:

15, (%0t ST ey 2 5T+ e 53 8T — (@, + 01Coe0 (T, — T)) W + pe S WA ) d0 -5 e (T = Toiont) Wads =0 (9)

where V is the volume integral range, S is surface integral range, and Wy is the
weighting function used in the FEM spatial discretization scheme.

The following steps should be taken to determine the numerical solution: create the
3D geometry model of the breast; mesh the geometry; define tissue material, as well as
thermal and physical properties; specify the boundary conditions of the model; and finally,
solve the governing equation numerically.

5. Multilayer Model

Real breasts are not homogeneous in tissue types and material properties, and they
consist of different layers of tissues, with different physical parameters. In this case, the
use of a multilayer geometric model of the breast will increase the accuracy of thermal and
reverse thermal modeling, improve the search for physical parameters, and enhance the
study of the characteristics of the tumor. The proposed model consists of two layers: gland
and fat (Figure 5). The aim of this study was to find the parameters of each layer and the
volumetric percentage of the fat and gland in the breast.

Figure 5. A 3D personalized multilayer model of a breast consisting of gland and fat layers, and a tumor.
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6. Design Optimization Methods

A genetic algorithm is adopted in the optimization process in reverse thermal model-
ing to search for tissue properties, tumor sizes, and locations based on input breast surface
temperature values measured by the IR camera. It is based on a biological evolutionary
theory and numerically applied to optimization problems. The algorithm was originally
developed by Johny Holland [25]. Its concept for the canonical genetic algorithm procedure
is shown in Figure 6.

in Generate initial " Are_ N
> lati Evaluate fitness | > comparison » best individual
Poptiahon criteria met?
A
no
r"“-"‘ _____________________________ '1 ¥ '
1 \ 4 :
1
: : translate
1 selection 1
i i l
1 1
1 1
1 1
1 i
: generate a new :
: population Y ! out
1 1
: crossover H
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 ' 1
1 ‘ 1
1 . 1
: mutation :
i | i
1 1
I RN — J

Figure 6. Standard procedure of a canonical genetic algorithm [25].

The first step is initialization, where the first population of search properties is gener-
ated randomly. From the population, x; individuals are picked based on their probability
to breed into the next generation. The probability is calculated by the relation of individual
and total fitness values, which are estimated through thermal modelling based on the
accuracies of their surface temperature predictions in comparison with the corresponding
input measured values:

f(x:)
YLy f(x))

The next step is to cross over selected individuals. Supposing there is a chromosome
with length I. A random number c is picked from 1 to I. As an example, the first child’s
chromosome is formed from the first c elements of the second parent, and the last / to c
elements of the first parent. For the second child, the procedure is reversed. An example is
shown in Figure 7.

P{x; is selected} = >0 (10)

Parent 1 1001{010010 Child 1
Parent 2 0101}111011 Child 2

0101 010010
1001 111011

Figure 7. Crossover operator example.

The last step is to implement a mutation on each child’s chromosome. The random
number v is generated between 1 and [, so that the v-th element in the gene randomly
changes to 0 or 1, with probability ranging from 0.001 to 0.01. The procedure in Figure 6 is
repeated until the fitness value is met [26].
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7. Model Setup

In order to run numerical simulations, boundary conditions should be set according
to experiment. During the collection of patient data, room temperature was recorded,
therefore providing each simulation with its own ambient temperature (Table 1).

Table 1. Experiment ambient temperature.

Patient Number Ambient Temperature [°C]
26.60 £ 0.1
24.60 £0.1
20.77 £0.1
26.95 £ 0.1
2621 +0.1

Q| = | W I DN |~

The convection coefficient was set at 13.5 W/m? °C, as stated earlier and according
to a previous study [27]. The internal thoracic wall was set to a constant temperature
for internal organs at 37 °C. The third component of the Pennes equation is internal heat
release due to metabolism. Blood perfusion is defined as the volumetric blood flow, based
on an average flow rate per volume of tissue, in an area that contains sufficient capillaries.
Most tissues, including most of the skin and brain, have high perfusion, with a perfusion
coefficient designated as w;,. These parameters are listed in Table 2, according to [27].
In this study, two computational studies were conducted: the first part assumed that
there was no blood perfusion, which means that w;, was zero; in the second part of the
study, blood perfusion was added to the equation. Reverse thermal modeling with an
optimization process and 3D breast geometry and thermograms as inputs will help to
find patient-specific tissue properties, which are a key novelty of this study. The heat
transfer parameters as thermal conductivity, specific heat and density, and blood perfusion
coefficient and fat/gland contents were obtained from different patients by reverse thermal
modeling with design optimization, as described above.

Table 2. Pennes equation parameters [27].

Parameter Name Breast Tumor
Blood perfusion (mL/s/mL) 0.0006 0.012
Arterial temperature (°C) 37 37

Metabolic heat generation

700 70,000
(W/m?)

In the GA-based optimization, the number of samples for the first generation is 100,
further generations consist of 50 samples, and the maximum number of generations is 20.
The objective in the optimization was set to minimize the difference between computed
temperature and temperature from experimental measurements from patients.

The FEM analysis was performed using Comsol Multiphysics with the following steps:

Create new parametric material in Material library;
Link with Solidworks to import 3D geometry;

Set depth and radius of tumor parametric;

Set simulation to transient;

Generate mesh;

Set constant temperature of 37 °C to thoracic wall;
Set convection on breast skin surface;

Set internal heat generation for tissues;

Set temperature probes on skin surface.

WP NG LN
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Comsol Multiphysics has an optimization tool based on stochastic and gradient-based
methods. The disadvantage of those methods is that they can get stuck in local minimumes.
In order to overcome this problem, Comsol Multiphysics is coupled with MatLab Livelink,
where MatLab can be employed for GA optimization while Comsol Multiphysics is used
for finite element analysis. MatLab is capable of performing the optimization process, while
MatLab Livelink can make the MatLab optimizer and the Comsol FEM solver communicate
to perform the optimization and FEA simultaneously in order to achieve the objectives of
finding patient-specific tissue properties and tumor sizes and locations. Additionally, this
tool also requires Solidworks Livelink, so that the tumor model can be moved inside of 3D
multilayer model in the optimization design parameter search, which is then redrawn by
the CAD program and imported into the FEA program again for subsequent FEM mesh
regeneration and FEA computations in the whole optimization loop (Figure 8). The fitness
function for MatLab is presented in Algorithm 1.

Algorithm 1 The fitness function for MatLab

function y = function name(x)

import com.comsol.model.”

import com.comsol.model.util.*
model = mphload(‘filename’)
model.param.set(‘Parameter_1’, x(1));
model.param.set(‘Parameter_2’, x(2));
model.study(‘std1’).run;

T = mphinterp(model,T’, “‘coord’, [x,y,z]’);
Temp = T(end);

y = abs(Temp — Temp_exp);

end

) Matlab

optimization process|

Solidworks
redraw model

Comsol
thermal simulation

Figure 8. Optimization algorithm for Comsol.

The first line defines the name of the function y. Code lines from the second to the sixth
open the Comsol model and set the required parameters. The line “model.study(‘std1’).run”
activates the simulation, and the code mphinterp(model,'T’, “‘coord’, [x,y,z]’) extracts tem-
perature values from given coordinates. Finally, the fitness function y is the absolute value
of differences between the computed and experimental temperatures.

Thus, the research methodology is demonstrated in Figure 9, which summarizes all
the stages of the integrated diagnostic tool.
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Figure 9. Block diagram of the proposed research.

8. Results and Discussion

In this study, five patients” data were used to perform the patient-specific reverse
thermal modeling and tumor diagnosis in order to demonstrate the capabilities of the
technique developed and to validate the models built. Table 3 demonstrates the age and
demographic details of each patient.

Table 3. Age and demographic details of each patient.

Family Age of
Patient Age Sex Number of Number of Age of First History of Onset of Age at
Number 8 Pregnancy Births Birth Breast Menstrua- Menopause
Cancer tion
1 59 Female 5 2 25 1 14 53
2 45 Female 9 7 19 0 12 Not started
3 59 Female 5 2 25 1 14 53
4 58 Female 4 3 22 0 12 49
5 52 Female 3 2 23 0 12 51

A mesh convergence study should be conducted before the analysis is performed
so that the simulation results will not be improperly influenced by the mesh generated;
simultaneously, computational efficiency and numerical accuracy can be achieved. In
order to find the optimal number of elements for running a simulation, the temperature
probes were performed at the nipples to check the predicted temperature values for
convergence. By increasing the number of elements, differences between readings at
the probes were compared, until an average difference of 1% was reached. Table 4 shows
the mesh convergence process for patient number one.

Table 4. Mesh convergence study for patient number one.

Number of Elements Temperature Difference (%)
280,414 34.01
320,584 35.3 3.79
401,383 34.55 2.12

442,842 34.2 1.01
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Table 5 presents the results of the mesh convergence study, which shows the optimal
number of elements for patients’ breast models with which mesh convergence was achieved.

Table 5. Number of mesh elements for each breast.

Breast Number Number of Elements
1 442,842
2 524,347
3 482,453
4 543,214
5 498,210

Table 6 includes the extracted tissue parameters of three patients’ breasts using reverse
thermal modeling; these were based on a homogeneous model using the healthy breast’s data
as inputs. The parameters were subsequently used as initial guesses for a multilayer model
simulation to estimate the specific tissue parameters of each layer in the diseased breast.

Table 6. Estimated parameters of the homogeneous model.

Patient C([)‘ll,(};f?gty Density [kg/m®] Sp{ifli(fgicolél]eat BIO[(;?LI;: /ré&s]ion
1 1.49 901.51 2201.51 0.00015794
2 1.34 951.26 2010.48 0.00011972
3 1.14 997.24 1812.25 0.00010012
4 1.25 998.67 1849.25 0.00010876
5 1.32 1047.82 1797.17 0.00010172

Using the homogeneous breast model’s parameters as initial guesses, specific parame-
ters of gland and fat, including conductivity, density, specific heat, and blood perfusion
rate, were estimated (Tables 7-11). Based on the estimated fat layer dimension, the content
of gland and fat were calculated in percentage.

Table 7. Estimated specific breast parameters (patient #1).

Conductivity Density Specific Heat Bioo'd o
[W/m °C] [kg/m®] [J/kg °Cl Perfusion Fat %

[mL/s/mL]

Gland 1.57 898.68 2357.69 0.00016652
Fat 1.32 919.62 2106.58 0.00014267 64.6

Table 8. Estimated specific breast parameters (patient #2).

Conductivity Density Specific Heat BiooFl o
[W/m °C] [kg/m®] [J/kg °Cl Perfusion Fat %

[mL/s/mL]

Gland 1.50 978.62 2059.69 0.00012619

Fat 1.20 925.62 1982.65 0.00011652 52.7
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Table 9. Estimated specific breast parameters (patient #3).
Conductivity Density Specific heat pe]ﬂﬁ(s)fon Fat %
o 3 o °
[W/m °C] [kg/m”] [J/kg °Cl] [mL/s/mL]
Gland 1.26 1005.65 1924.65 0.00011619
Fat 1.07 952.61 1661.62 0.00009616 67.62
Table 10. Estimated specific breast parameters (patient #4).
Conductivity Density Specific Heat Bioo.d o
[W/m °C] [keg/m®] [J/kg °Cl Perfusion Fat %
[mL/s/mL]
Gland 1.31 1010.14 19974 0.00011731
Fat 1.20 987.21 1701.1 0.00010021 61.1
Table 11. Estimated specific breast parameters (patient #5).
Conductivity Density Specific Heat Bloo.d o
[W/m °C] [kg/m®] [J/kg °Cl Perfusion Fat %
[mL/s/mL]
Gland 1.41 1101.25 1891.21 0.00010514
Fat 1.23 994.4 1703.14 0.00009831 51.4

The results of the above-mentioned GA-based reverse thermal modeling for the
estimation of the sizes and locations of tumors, and the accuracy of the method are provided
in Table 12. Since the doctor’s examination was performed only by palpation and the given
sizes are estimations made during this procedure, the presented reverse modeling results
are considered to be in good agreement with the doctor’s diagnosis. In the case of patient
one, the computed diameter of the tumor is 23 mm, while the doctor’s estimation was up
to 25 mm. For patient two, the calculated diameter is 42 mm, which can be validated by
the doctor’s approximation of around 45 mm. In case of patient three, the computed tumor
diameter is 21.5 mm, which is close to the doctor’s palpation result of 23 mm. On average,
the percentage error of the tumor method is about 0.23%.

Table 12. Estimated tumor depth and diameter compared with the doctor’s conclusion.

Computed Percentage
Patient No TumoI:' Size Doctor’s Computed Error
) Size [mm] Depth [mm] (Tumor Size)

[mm] 0

[%]
1 23 up to 25 23.78 8

2 42 45 31.99 6.7

3 21.5 23 28.18 6.5

4 17.5 16 23 9.3

5 16.1 15 25.1 7.3

Figure 8 shows a comparison of the measured (Figure 10a) and computed (Figure 10b)
temperature distributions for patient one with tumor in the breast. In general, the dis-
tributions of temperature and the locations of the hotspots between the two are in close
agreement. However, we can see some small differences in the shapes of the hotspots; this
can be caused by the non-uniform blood perfusion and distribution of vessels in the real
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breast, while thermal models are uniform in blood perfusion. The computed temperature
at the hotspot is 34.6 °C, which is validated by the thermographic hotspot temperature
with almost the same temperature, resulting in a percentage error of only 0.23%.

(a) (b)

Figure 10. Comparison of measured (a) and computed (b) temperature distributions (patient No. 1) with a percentage error

of 0.23% in hotspot temperature prediction.

In general, the measured (Figure 11a) and computed (Figure 11b) temperature dis-
tributions for the second patient’s breast match, while the temperature at hotspot was
calculated as 34.8 °C. However, the predicted temperature distribution is also quite uniform
compared with the thermogram, which may be due to the non-uniform blood perfusion
and vessel distribution in the real breast in comparison with the uniform perfusion in the
model, as previously discussed. The numerical model was validated since the location
and temperature of the hotspot agree well with the corresponding measurements; the

percentage error was at 0.43%.

Figure 11. Comparison of measured (a) and computed (b) temperature distributions (patient No. 2) with a percentage error

of 0.43% in hotspot temperature prediction.

Figure 12 shows a comparison between the measured breast temperature distribution
(Figure 12a) and estimated multilayer model prediction (Figure 12b) for the third patient.
The doctor concluded that the tumor is located in the upper left quadrant, which can also
be seen as a hotspot in the multilayer model prediction. As in the two previous cases, the
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highly irregular small temperature distribution in the real breast cannot be captured by the
model due to the uniform blood perfusion assumption used.

(b)

Figure 12. Comparison of measured (a) and computed (b) temperature distributions (patient No. 3) with a percentage error
of 0.12% in hotspot temperature prediction.

In Figure 13, a comparison of the thermal image (Figure 13a) and computed (Figure 13b)
temperature contours for patient four is presented. In the thermogram, the temperature at
the hotspot is 34.42 °C, while the computed temperature at that point is 34.5 °C, which is
very close to the former with a percentage error of 0.23%. In addition, the locations of the
hotspots in both the thermogram and the predicted contours agree well.

ASVANNAN,VATLY,
WA VAV,
V4 vmggnﬂm

N

val /
NAYSAANN
AYAWATAVAYAY,
AVAYANAVAVAVAY)
ZINCNV NN
VNSASNNRY
NWATADZ VAVAYAV. AV
NNNNN

(a) (b)

Figure 13. Comparison of measured (a) and computed (b) temperature distributions (patient No. 4) with a percentage error
of 0.23% in hotspot temperature prediction.
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The comparison of temperatures for patient five, can be seen in Figure 14. The hotspot
temperature of the thermogram is 33.06 °C (Figure 14a), while the computed hotspot
temperature is 33.16 °C (Figure 14b); percentage error is thus at 0.30%. Furthermore, the
measured and predicted hotspot locations also agree with each other in the upper-left
quadrant.

(a) (b)

Figure 14. Comparison of measured (a) and computed (b) temperature distributions (patient No. 5) with a percentage error
of 0.30% in hotspot temperature prediction.

Figures 15-19 show the 3D models of the five patients” breasts with the computed
parameters of the gland and fat layers, and the tumors. In the case of patient numbers one
and two, the tumors are located at interfaces between the fat and gland layers. Patient
number three has the tumor in the fat layer, while in Figures 18 and 19 the tumors are
located in the gland.

Figure 15. A 3D model with computed parameters (Patient No. 1).
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Figure 16. A 3D model with computed parameters (Patient No. 2).

Figure 17. A 3D model with computed parameters (Patient No. 3).

Figure 18. A 3D model with computed parameters (Patient No. 4).
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Figure 19. A 3D model with computed parameters (Patient No. 5).

The proposed tool for tumor detection shows its usefulness based on the real patient
data. The presented results are based on two kinds of breast models: homogeneous
and multi-layer models. The homogeneous model was used as a starting point in the
calculation of parameters such as conductivity, density, specific heat, and blood perfusion
rate. The calculated parameters enabled the estimation of the tumor size and its location.
Subsequently, the content percentage in the multi-layer model was determined. The final
results were then validated by the doctor through medical examination and thermograms.
The developed tool for the estimation of tumor depth and size, which makes use of real
patient models and personalized physical parameters such as density, specific heat, and
conductivity could be employed in further clinical trials with large sample sizes. For future
studies, there is an ongoing effort to collect and generate more patient-specific data for
machine-learning-based methods as well as for the validation of the current methods.

9. Conclusions

Reverse thermal simulations performed with the Genetic Algorithm-based optimiza-
tion tool were used to estimate the personalized parameters of patients’ breasts, such as
thermal conductivity, density, specific heat, and blood perfusion coefficients in gland and
fat layers, which included the breast’s fat/gland contents along with 3D breast geometry
and thermograms as inputs. The study was initially conducted with a homogeneous
model using real patients’ data to estimate initial guesses of tissue properties for further
simulation with a multilayer model. Simulations were later performed using Comsol
Multiphysics with MatLab Livelink and Solidworks Livelink in an integrated optimization
loop. Firstly, based on temperature contours from the healthy breast, the personalized
breast parameters were estimated and then used as initial guesses for further simulation
with a multilayer model of the healthy and diseased breasts. Using those parameters,
patient-specific/breast-specific parameters and contents of each layer were predicted by
the reverse thermal simulation. Finally, based on the estimated specific parameters of
each breast, further reverse thermal modeling simulation was performed using Genetic
Algorithm and the temperature distribution on the skin as input in order to predict the
depth and size of the tumor. The predicted parameters agreed well with doctor’s diagnosis
through palpation. A comparison of computed and IR thermographic temperature distri-
butions shows general consistency as well as the very good agreement of predicted and
measured temperatures at hotspots. Thus, it is concluded that the breast tumor diagnostic
tool developed, which is based on patient-specific reverse thermal modeling, can accurately
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generate patient/breast-specific tissue properties and predict the size and location of the
tumor in the breast.

Future study will include the collection of a large volume of patients’ data and the
subsequent construction of thermal breast models for further validation and clinical trials.
A Physics-Informed Neural Network (PINN) simulation tool will also be developed for
comparison with the method developed for this study, and to allow for better prediction
of the complex blood perfusion. More sophisticated breast models that contain different
layers with an irregular distribution of vessels may be considered. Future study will also
include the miniaturization of the equipment and the implementation of Al for BSE, as
promoted by WHO. Our long term goal is to diagnose tumors with single-digit diameters
and arbitrary depths during BSE.
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