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Abstract

This study deals with the comprehensive modelling, analysis, and control of a DC micro-
grid (MG) in islanded mode. The proposed DC MG comprises a wind turbine, a photo-
voltaic (PV) source, battery storage, DC/DC source, and load side converters with DC
loads. To this aim, a circuit-oriented modelling of the whole system is developed. The PV
source is modelled with a single-diode electrical circuit. Afterward, a mathematical model
of the system with state-space representation was derived. A detailed analysis of PV system
design is performed because the parameters of PV are appearing in the dynamic model of
DC MG. For the purpose of controller development, the dynamic model of the DC MG,
which is modelled by a non-linear-non-affine eight-order system, is linearized around an
equilibrium point using the Jacobian matrix framework, while stability using eigenvalue is
carried out showing that the stability is guaranteed under operating condition. Finally, for
the first time, the state-dependent Riccati equation (SDRE) technique is proposed to find
the optimal regulation problem for the DC MG with non-linear-non-affine dynamics. The
numerical simulation studies first confirm the validity of the performed mathematical, then
the effectiveness of the proposed non-linear controller is evaluated under illumination and
load change.

1 INTRODUCTION

1.1 Motivation

Nowadays, due to the high price of fossil fuels, the tendency
to utilize clean energy resources such as wind and solar energy
has significantly increased. It is believed that the fastest photo-
voltaic technology and reductions in installation costs may be
effective solutions for reducing dependency on conventional
power systems [1, 2]. Recently, the microgrids (MGs) concept
has emerged due to the need for an electric power supply in
remote and rural areas, data centres, and electric vehicles (EVs)
[3]. MGs are small grids that generally incorporate several dis-
tributed generators (DGs) such as photovoltaic (PV) arrays and
batteries, loads, and energy storage systems [4, 5]. MGs can
operate in parallel with the main grid, and the loads are often
fed through the local sources or the main grid [6]. However, in
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emergencies such as external disturbances, the corresponding
generators and loads in MGs may unplugged from the grid and
operate as an islanded MG [7]. Therefore, the ability of MGs to
operate in islanded mode can significantly reduce the consump-
tion of electricity and thus, enhance the reliability of the grid. In
recent years, DC MGs have become promising structures and
attracted more interest than AC MGs due to several inherent
characteristics, such as the lack of reactive power, easier control
strategy design, and cost-effective low-loss DC/DC converters.
The worldwide application of DC MGs in more-electric aircraft,
ship MGs, the International Space Station (ISS), and data cen-
tres, reveals the employment of DC MGs [10, 11]. A plethora
of research on modelling, analysis, design, and control strate-
gies of DC/DC converters, whether loaded by constant power
loads (CPLs), resistive loads, and other types of loads, have been
reported [12–14]. In DC MGs, the modelling and control prob-
lems become more complex as the numbers of DGs and loads
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FIGURE 1 One-line diagram of a typical hybrid
wind/PV/battery based DC MG

dramatically increased. To this aim, several methods have been
proposed by researchers over the years, which will be discussed
in the literature.

1.2 Literature review

In the typical DC MG in the islanded mode as depicted in
Figure 1, DC sources are generally connected to DC-link by
source-side DC/DC converters. According to Figure 1, when
multiple DC/DC converters and loads are connected to a com-
mon DC bus, the problem of modelling and analysis becomes
challenging. A systematic way to model the DC MG system is
to model each component by its electrical circuit.

The PV system, which is connected to the DC bus through a
boost converter, is modelled thereby creating an electrical cir-
cuit. A good candidate for this modelling is generally called
the single-diode model. The majority of research considered
this model in their studies as it is simple [8–10]. Usually, the
wind turbine and PV modules can operate either in maximum
power point tracking (MPPT) or voltage mode control (VMC)
which is related to power management strategy, battery state
of charge (SOC), and load conditions. Many techniques such
as perturbation and observation (P&O) [11], adaptive fuzzy-
logic [12], distributed MPPT [13], and genetic algorithm-based
optimization MPPT [14] etc., have been used to track MPP
at various operating conditions. When the PV source is oper-
ated in MPPT, the battery storage could be either in the charge
or discharge mode which is dependent on the load levels.

Therefore, the battery is responsible for power balancing
among the DGs and loads. A DC/DC converter with bidirec-
tional power flow capability is essential to allow power-sharing
between the battery and the other DGs [5]. From the load point
of view, a load with DC/DC converters, when tightly regulated
can be viewed as a CPL. Also many techniques have addressed
the control issue of the bidirectional DC/DC converter loaded
by CPL such as sliding mode and passivity-based control
[15, 16].

Up to now, many efforts have been dedicated to sev-
eral aspects of DC MGs such as control, stability analysis,
power-sharing method, and modelling. Within this context,
the commonly used decentralized droop control method for
low-voltage DC MG has been proposed in [17]. A hierarchical
three-layer control framework, consisting of primary, secondary,
and tertiary control has been presented in [18]. The stability
analysis of a DC MG using the Nyquist criterion has been
studied in [19], while in [20], a robust stability analysis has
been proposed. To facilitate the synthesis of a modular DC
nano grid system, a loss-free resistor (LFR) modelling concept
has been developed in [21]. In a typical DC MG, switching
converters are time-varying non-linear dynamical systems.
Moreover, since the PV source has at least one diode in the
lumped circuit model, therefore the whole system is highly
non-linear. According to Figure 1, there are four basic DC/DC
converters in the system. Likewise, many non-linear and linear
strategies have been proposed in the literature for the control
of DC MGs either without CPLs or at the presence of CPLs.
For instance, adaptive back-stepping control [22], sliding-mode



418 ARABSHAHI ET AL.

approach [23], passivity-based method [24, 25], linear designs
such as the classical LQR problem [26] etc., have also been
studied.

In the absence of CPLs, studies have focused on the voltage
regulation problem. A robust sliding mode framework was pro-
posed in [23], were applied to DC/DC boost converter to mit-
igate the instabilities caused by negative incremental impedance
of the CPLs. A passivity-based concept was developed in [25],
applied to a DC MG with a non-linear-non-affine system
model under parametric uncertainty for output voltage regula-
tion. The linear methods are designed based on the linearized
models of the system, whose operations are limited around an
equilibrium point. Generally, linear control methods adopted
the Jacobian linearization framework to linearize system. For
example, the quadratic regulation for linear systems, called
LQR, was successfully applied in a wide variety of applications,
such as switching power converters [26], an inverted pendu-
lum [27], and unmanned quad-rotor helicopter [28], however,
many studies were focused on control systems with non-linear
dynamics.

Recently, studies [29, 30] addressed the State-Dependent Ric-
cati Equation (SDRE) strategy as a striking tool for the sys-
tematic design of non-linear feedback controllers for a broad
class of non-linear, affine, and non-affine systems. The main
idea behind this theory is to bring the non-linear system to a
state-dependent linear system using a process called extended
linearization.

Most of the earlier research in the control and stability anal-
ysis of DC MG considers single or two DC/DC converters in
their analysis and ignores the rest of the DC MG. Moreover, the
PV source is generally modelled by a constant voltage source
[31]. On the contrary, in this paper, the PV source is modelled
by a well-known and practical model [8, 10]. As will be shown
later, the dynamic model of the proposed DC MG in this study
is a system with a non-linear-non-affine structure. This matter
motivated us to develop the SDRE based non-linear feedback
control technique for a class of wind/PV/battery based DC
MG with non-linear-non-affine dynamics as it is suitable for
regulation the states variables to converge to their equilibrium
points.

1.3 Main contributions

In spite of the fact that the whole DC MG system is an integra-
tion of conventional DC/DC power converters and well-known
models of PV as well as a battery; however, this paper deals with
a more complex network topology when compared to previous
research works in [24, 25]. On the other hand, this paper deals
with a more realistic system. Then, mathematical details corre-
sponding to our developed model are presented.

The proposed DC MG has a typical structure and consists
of a small wind turbine, a PV system, battery storage, DC/DC
converters, a resistive load, and a CPL. We utilized a circuit-
oriented modelling approach to address the modelling of the
DC MG. In this regard, at the first step, we used the single-
diode model of the PV source. It will be shown in Section 3

that the parameters related to the PV source can be observed in
the state-space model. There are five parameters, usually called
unknown parameters [32], in the module and corresponding val-
ues in a PV plant those are the photo-generated current (Iph),
dark saturation current (Io), diode ideality factor (D), series (Rs),
and shunt (Rsh) resistances. We use a system of implicit/explicit
equations to find the values of those parameters. Some of these
parameters are needed to be estimated. Therefore, this paper
proposed to find the value of those parameters using simple
classical Gauss-Seidel (GS) algorithms. Notably, it is not manda-
tory to use the GS method, however, the convergence is satis-
factory [32]. It is also shown that by applied mathematics, the
PV source can operate under various irradiance. Afterward, we
established our hybrid DC MG using the state-space model. In
summary, the main contributions of this paper are as follows:

∙ A detailed modelling and analytical analysis are developed for
DC MG comprising wind/PV/battery sources in this paper.
This kind of systematic modelling gives more insight into the
system design and operation.

∙ The DC MG dynamical model is expressed by ẋ(t) =
f(x(t), u(t)). Detailed analysis of the Jacobian linearization
process for an eight-order DC MG system around an operat-
ing point is conducted; then, the model is represented in the
form of the state-space model. In addition, the determination
of the eight-order state-space time domain is a non-trivial task
since the system is highly non-linear and non-affine, respec-
tively. Moreover, the eigenvalue diagram of the system is plot-
ted to demonstrate the stability of the system. The numerical
simulation results which are generated in MATLAB confirm
the correctness of the linearization process.

Up to now, the analysis and output voltage regulation of DC
MG with non-linear-non-affine structure have been performed
and elaborated in [24] and [25], while, in this study, for the
first time, the application of a non-linear control method based
on SDRE regulator for a DC MG system comprising hybrid
wind/PV/battery model is examined. Furthermore, the PV
modelling part has more elaborated with valid and reasonable
techniques. The SDRE regulator is successfully applied to the
system. The conducted analysis shows the superiority of the
non-linear feedback controller over the linear one and con-
stant linear feedback when both illumination and load change
occur.

1.4 Paper organization

The rest of this paper is organized as follows: Section 2
addresses detailed system modelling, including load, converters,
wind turbine, and PV generator models. Section 3 is dedicated
to a linear and non-linear representation of the DC MG sys-
tem. The design of the linear quadratic regulator framework is
presented in Section 4. The concept of the proposed non-linear
controller is studied in Section 5. Section 6 uses the simulation
tests to verify the theory by performance evaluation. Eventually,
conclusions are drawn in Section 7.
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FIGURE 2 Proposed DC MG equivalent electrical circuit

2 MATHEMATICAL MODELLING OF
THE PROPOSED DC MG IN ISLANDED
MODE

To start our analysis, each component in the DC MG should be
modelled. This kind of modelling gives us insight from inside
the system. Accordingly, the electrical model of the battery and
loads are specified first, then PV source and wind turbine are
modelled as well.

2.1 Battery, load, and converters model

An electrical circuit of the DC MG in islanded mode is shown
in Figure 2. The DC MG consists of a PV system, which is
connected to a DC bus through a DC/DC boost converter.
Likewise, a wind turbine energy conversion system is con-
nected to the DC bus using a DC/DC boost converter. A
bidirectional DC/DC converter is used for the integration of
the battery storage system. The battery storage is modelled
via electromotive force (E ) with an internal resistor(r ). One
of the loads is (R1) directly connected to the main DC bus,
and the other load is a combination of the DC/DC buck
converter and resistance (R2). Since the output voltage of
the buck converter is tightly regulated, the converter with
load together consumes constant power [24]. Moreover, a
line resistor RL represents the loss of the transmission line and
ui (i = 1, 2, 3, 4) is the duty cycle of the switches. It is assumed
that the PV source with a single-diode model feeds the DC
MG.

Rsh

Ish
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Iph D

Id

V

I

FIGURE 3 Single-diode electrical equivalent circuit of the PV generator
[10]

2.2 Modelling of the PV source in the DC
MG

There are many options to model a PV, including the single-
diode, double-diode, and even triple-diode models [10]. In this
study, the PV generator is modelled via a current source in par-
allel with a diode and a shunt resistance. Moreover, a resistor is
connected in series as shown in Figure 3. With the application
of Kirchhoff ’s current law, the relationship between the termi-
nal voltage (V) and current (I) of PV can be described by the
following equation [10]:

I = Iph − Id − Ish (1)

I = Iph − Io

{
exp

(
V + RsI

nVt

)
− 1

}
−

V + RsI

Rsh
(2)

where n is the number of cells in the PV module connected in
series, and Vt is the thermal voltage junction of the PV.
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The thermal voltage is mainly stated as [10]:

Vt =
KTD

q
(3)

where K is Boltzmann’s constant (= 1.389×10−23 J∕(◦K)), q
is defined as the electron charge (= 1.609 ×10−19(◦C)), D is
the diode ideality factor, and T is the temperature. In the manu-
facturer’s datasheet, the following information always exists for
the standard test conditions (STC: temperature, 25 ◦C; irradi-
ance, 1000 W∕m2): short−circuit current Isc; open-circuit volt-
age Voc; voltage Vmpp and current Impp at the maximum power
point (MPP); temperature coefficient for the short-circuit cur-
rent; and open-circuit voltage (Ki, Kv). There are three major
key points on every I − V characteristic. These major key points,
(0, Isc), (Voc, 0), and (Vmpp, Impp), are illustrated in Figure 4 [10,
32].

Usually, it is suggested to use the information available in
the module datasheet to extract the unknown parameters. These
unknown parameters were discussed previously. With the sub-
stitution of these major key points into Equation (2), a set of
equations are derived at STC as follows [10]:

Vt =
RsImpp + Vmpp − Voc

nln

{(
Isc−Impp

)
(Rs+Rsh )−Vmpp

Impp(Rs+Rsh )−Voc

} (4)

Rs =
Voc − Vmpp + nVtln (𝜆)

Impp
(5)

where 𝜆 in (5) is calculated by

𝜆−1 =
VmppIsc(Rs + Rsh) + IscRsImpp(Rs + Rsh)

nVt(ImppRsh + ImppRs − Vmpp)

+
Voc(ImppRs − Vmpp)

nVt(ImppRsh + ImppRs − Vmpp)
.

The Rsh value at STC can be derived as:

Rsh =
nVt (Rs + Rsh) + Rsexp (𝛽) (IscRs + IscRsh − Voc)

nVt + exp (𝛽) (IscRs + IscRsh − Voc)
(6)

where 𝛽 is calculated by 𝛽 = (ImppRsh − Voc + Vmpp)∕nVt.

TABLE 1 The extracted parameters for the single module and 1 kW array
at STC

Datasheet

parameters [34]

Estimated for

module

Equivalent

array

Isc = 8.13 A Iph = 8.13 A Iph = 16.26 A

Voc = 30.6 V Io = 0.038 𝜇A Io = 0.076 𝜇A

Impp = 7.58 A D = 1.242 D = 1.242

Vmpp = 24.4 V Rs0 = 0.4 Ω Rs = 0.368 Ω

Ki(mA/◦C)=4.39 Rsh0 = 1500 Ω Rsh = 2563 Ω

Kv(mV/◦C)=−104.95 Rs = 0.245 Ω Impp = 15.16 A

n = 50 Rsh = 1708.7 Ω Vmpp = 73.2 V

It is observed from (5) and (6) that these two equa-
tions are implicit in nature. Therefore, an iterative-based
method like the GS may be used to extract three unknown
parameters [32]. Further information associated with the GS
method is addressed in [32], while the flowchart of the whole
algorithm is shown in Figure 5. The error criteria are defined
as Error(%) = |(xi+1 − xi )∕xi+1| × 100, and 𝜀 is the predefined
mismatch (1e −6). It is noteworthy that the values of Rs and Rsh

in (5) and (6) should be initialized to start the GS algorithm
because the equations are transcendental [32].

The selection of a suitable initial value is a critical step in start-
ing iterative algorithms. Generally, the value of Rs is low (0 ∼

mΩ), whereas Rsh is high (in the range of kΩ) [10]. According
to Figure 4, these two parameters are initialized at:

Rsi = (Voc −VB ) ∕IB (7)

Rshi = VA∕ (Isc − IA ) (8)

where Rsi and Rshi are the initial values for Rs and Rsh,
respectively, VA ≅ 0.2Voc and IB ≅ 0.2Isc [33]. After numerically
extracting Vt , Rs and Rsh, the remaining parameters can be ana-
lytically derived. These two parameters, Io and Iph, are given as:

Io =

(
Isc −

Voc − IscRs

Rsh

)
exp

(
−

Voc

nVt

)
(9)

Iph = Io exp

(
Voc

nVt

)
+

Voc

Rsh
(10)

Now, all equations needed to extract the five unknown param-
eters have been obtained. A UD−185MF5 Mitsubishi module
datasheet [34] is selected as the case study module, and the
unknown parameters are extracted via the proposed procedure.
After extracting five unknown parameters under the STC, all
these parameters can be substituted in the I–V characteristic
Equation (2) for 0 ≤ V ≤ Voc to obtain the current. Since I–V

characteristic equation is an implicit equation, the iterative tech-
nique must be applied [10]. The same procedure as mentioned
in the earlier study [32] is used in this paper to construct a PV
power plant. The extracted parameters for the module and cor-
responding parameters for the 1-kW array are given in Table 1.
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FIGURE 5 The flowchart of the GS algorithm for extracting unknown parameters of PV [32]

It is seen from Table 1 that the value of Iph is equal to Isc . This is
not unexpected, however, these two parameters are nearly iden-
tical [35]. The I–V and P–V characteristic curves for the module
as well as the 1-kW array are depicted in Figure 6.

Notably, the PV source model characteristic which is
taken from simulink environment is plotted in Figure 6c,d
next to the model used in this paper. As can be seen,
both I −V and P −V characteristic are nearly identical at
STC.

Furthermore, the convergence paths of the GS method for
Rs and Rsh are also plotted in Figure 6d. It is assumed that ” =
10−6. Accordingly, after a number of iterations, the convergence
criterion is satisfied. As will be shown in the following section,
the PV source parameters like Rs , Rsh etc., would appear in the
dynamic state-space model of DC MG. The previous analysis
provides a better understanding of the PV system design and
operation which is ignored in the same earlier research works
[24, 25].

2.3 Modelling of wind turbine

A typical structure of a wind turbine energy conversion
system was shown in Figure 2. The model involves a wind
turbine, a permanent magnet synchronous generator, and
a rectifier. The rectifier is used to convert AC power to
DC, whilst the boost converter is responsible for adjusting
the wind turbine power by means of switching function
regulation.

Usually, the mechanical power which is captured by a wind
turbine can be calculated by [36]:

Pmech =
1
2
𝜌ArCp (𝜆, 𝛽wind ) v3

w (11)

where 𝜌 is the air density; Ar is the area swept by the wind
blades; vw is the wind speed; and Cp is the power coefficient.
The power coefficient, Cp, is obtained by the blade pitch angle
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FIGURE 6 Output characteristics under STC: (a) I − V for a module, (b) P − V for a module, (c) I − V for the 1-kW array, (d) P − V for the 1-kW array, (e)
The convergence paths of Rs and Rsh obtained by the GS method

(𝛽wind ) which is constant during MPPT control and tip speed
ratio as given by [36]:

𝜆 =
𝜔t Rb

vw
(12)

where Rb is the blades radius and 𝜔t is the rotating speed. For a
typical wind turbine, Cp − 𝜆 plot is given in Figure 7a.

As shown in Figure 7a, there is an optimal point on the Cp −

𝜆 curve, which is implied that the power coefficient may reach
its maximum value Cpmax if the rotor speed can be adjusted
so that the turbine operates at optimum tip speed ratio 𝜆opt .
Figure 7b, shows the power rotor speed characteristic curves for
different wind speeds where the optimum power line represents
the maximum power points. For the PMSG, the electromotive
force Eg is proportional to the generator speed, which is deter-
mined by [36]:

Eg =
4.44
4𝜋

𝜓PM NP𝜔m (13)

where 𝜓PM is the flux linkage of the PMSG, NP is the number of
pole pairs, and 𝜔m is the shaft speed of the generator. Accord-
ingly, if the aerodynamic power is captured from the wind tur-
bine and fed PMSG, the phase terminal voltage Vt would be
[36]:

Vt = Eg − Ia (Rs + j𝜔mLS ) (14)

where Ia is the phase current, Rs is the stator phase
resistance, and LS is the stator phase inductance. The
generator rectifier voltage can be then realized as
[36]:

Vlink =
3
√

6
𝜋

Vt (15)

where Vlink denotes the DC-link voltage or input voltage of the
boost converter. The following section aims to study the non-
linear and linearized dynamic models of the DC MG.
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FIGURE 7 Typical characteristics of wind turbine: (a) Cp − 𝜆 curve (b) power-rotor speed characteristic curves for different wind speeds

3 NON-LINEAR AND LINEARIZED
MODELS OF DC MG FOR CONTROLLER
DEVELOPMENT

This section addresses the complete modelling of the DC MG
shown in Figure 2 in the state-space non-linear and linear forms.
Accordingly, with the application of Kirchhoff’s current (KCL)
and voltage (KVL) laws in the DC/DC boost converter, one
can obtain the following equations:

L1

diL1

dt
= vC1

− vC2
(1 − u1) (16)

C1

dvC1

dt
= Iph − Io

(
exp

((
vC1

+ iL1
Rs

)
a
)
− 1

)
−

vC1
+ iL1

Rs

Rsh
− iL1

(17)

where a in (17) is equal to a = 1∕(nVt ). For the DC/DC bidi-
rectional buck-boost converter, it can be written as:

L2

diL2

dt
= E − r iL2

− vC2
u2 (18)

C2

dvC2

dt
= iL1

(1−u1) + iL2
u2−

vC2

R1
− iL3

(1 − u3) + iL4
(1 − u4)

(19)

Similarly, considering KCL and KVL in the DC/DC buck con-
verter, one can obtain:

L3

diL3

dt
=
(
vC2

− iL3
RL (1 − u3)

)
(1 − u3) − vC3

(20)

C3

dvC3

dt
= iL3

−
vC3

R2
(21)

Finally, based on KVL, and KCL, the following set of differen-
tial equations are obtained:

L4

diL4

dt
= vC4

− (1 − u4) vC2
(22)

C4

dvC4

dt
= Iwind − iL4

(23)

The corresponding constraints are defined as follows: vC2
> 0,

vC3
> 0, iL1

≥ 0, iL3
≥ 0, i4 ≥ 0

In the Equations (16)–(23), iLi
and vCi

(i = 1, 2, 3, 4) are the
instantaneous inductor current and capacitor voltage, respec-
tively, ui are the switching function of the converters or con-
trol input signals and Iwind is the injected current to the DC
MG by the wind turbine, respectively. In the next subsection,
the non-linear system will be linearized around an equilibrium
point.
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3.1 Non-linear model and linearization
around an equilibrium point

Let us reform and model the system into the gen-
eral state-space form as ẋ(t ) = f(x(t), u(t)). Obviously,
voltage and current of the capacitors and inductors
are the state variables which are represented by: xT =

[x1 x2 x3 x4 x5 x6 x7 x8] = [iL1
vC1

iL2 vC2
iL3

vC3
iL4

vC4
]

Therefore, the averaging state-space model of the system can
be rewritten as:

f (x, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

L1

(x2 − x4 (1 − u1 ))

1

C1

(
Iph − Io

(
ea(x2+Rs x1 ) − 1

)
−

x2+Rs x1

Rsh

− x1

)
1

L2

(E − rx3 − x4u2 )

1

C2

(
x1 (1 − u1 ) + x3u2 −

x4

R1

− x5 (1 − u3 ) + x7 (1 − u4 )
)

1

L3

(
x4 (1 − u3 ) − x5RL (1 − u3 )2 − x6

)
1

C3

(
x5 −

x6

R2

)
1

L4

(x8 − x4 (1 − u4 ))

1

C4

(Iwind − x7 )

(24)

With these constraints: x2 > 0, x6 > 0, x1 ≥ 0, x5 > 0 and x7 >

0. It is observed from (24) that we have to deal with an eight-
order non-linear-non-affine system. It should be noted that for
the sake of simplicity, all time-domain variables (e.g. x(t ) and
u(t )) are shown as x and u. Because the state variables are multi-
plied by the control signals, the system becomes non-linear, and
due to the existence of non-linear control input u2

3, the system
becomes non-affine. In the following, we consider the stability
of the dynamic model of the DC MG given in (24). The DC MG
system is stable at a given equilibrium point if the state trajectory
converges to an equilibrium point with a small disturbance. This
means that the system is stable if all of the eigenvalues of the lin-
earized system around an equilibrium point have a negative real
part.

Supposing that uT = [u1 u2 u3 u4] = [0 0 0 0], then ẋ = 0
is solved to find the equilibrium points of the unforced system:

∗
x2 −

∗
x4 = 0 →

∗
x2 =

∗
x4 (25)

Iph − Io

(
e
a
(
∗

x2 +Rs
∗

x1

)
− 1

)
−

∗
x2 +Rs

∗
x1

Rsh
−

∗
x
1
= 0 (26)

E − r
∗
x
3
= 0 →

∗
x
3
=

E

r
(27)

∗
x
1
−

∗
x4

R1
−

∗
x
5
+

∗
x
7
= 0 (28)

∗
x
4
−

∗
x
5

RL −
∗
x
6
= 0 (29)

∗
x
5
−

∗
x6

R2
= 0 →

∗
x
5
=

∗
x6

R2
(30)

∗
x
8
−

∗
x
4
= 0 →

∗
x
8
=

∗
x
4

(31)

Iwind −
∗
x
7
= 0 →

∗
x
7
= Iwind (32)

By substituting
∗
x
5

from (30) into (29) and (28), then Iwind from

(32) into (28), yield:
∗
x
1
= −Iwind + (

R1+R2+RL

R1R2
)
∗
x
6

and
∗
x
2
=

∗
x
4
=

∗
x
8
= (1 + RL∕R2)

∗
x
6

. Finally, by substitution of
∗
x
1

and
∗
x
2

from

the aforesaid equations and
∗
x
5

from (28) into (24), the follow-

ing equations are obtained as:

Iph − Io

⎛⎜⎜⎝e
a

(
−Iwind+

(
R1+R2+RL

R1R2

)
∗
x6

)
− 1

⎞⎟⎟⎠
−

1
Rsh

((
1+

RL

R2

)
∗
x6 − Iwind +

(
R1 + R2 + RL

R1R2

)
∗
x6

)

−

(
R1 + R2 + RL

R1R2

)
∗
x
6
= 0 (33)

One of the objectives of control in this study is that the PV
output power (Ppv) should always track the maximum value.

Considering Equation (2) corresponds to PV current, a more
realistic form of the output power of PV source is calculated by:
[10, 32],

Ppv = I ×V =

(
Iph − Io

{
exp

(
V + RsI

nVt

)
− 1

}
−

V + RsI

Rsh

)
V

(34)

To find the maximum value of Ppv using (34), both I and V

should be maximized simultaneously. It is seen that solving (34)
to find the maximum value of Ppv is not a trivial task, as it is a
non-linear transcendental equation, however one can take the
following reasonable assumptions:

∙ As mentioned earlier, the value of Rs is nearly zero [32], there-

fore the approximation of:exp(
V

nVt

) ≫ exp(
RsI

nVt

) is valid [35].

∙ Moreover, the value of Rsh is high, in the range of kΩ, consid-
ering Rsh ≫ Rs , which means the term of (RsI )∕Rsh is negli-
gible as well [35].

Therefore, the output power of the PV source would be
rewritten:

Ppv = I ×V =

(
Iph − Io

{
exp

(
V

nVt

)
− 1

}
−

V

Rsh

)
V

(35)

The power of PV would be determined using (35), as it only
depends on V . At the maximum power point, the derivative of
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P with respect to V is zero [10, 32], therefore one can obtain,

Iph − Io −
IoV

nVt
exp

(
V

nVt

)
−

2
Rsh

V − Io exp

(
V

nVt

)
= 0

(36)

Now, the maximum value for V in (36), can be determined using
numerical solvers which give us the maximum power of the PV
source as well, however, other techniques like P&O may be used
to find the maximum value of Ppv . Meanwhile, the PV source
model in our DC MG can operate at various irradiance by only
changing the value of Iph.

3.2 Model verification and eigenvalue
analysis

To investigate the stability of the linearized system, the eigen-
values of the Jacobian matrix should be analysed. Solving (33),

which is non-linear in nature, yields the solution for
∗
x
6

. Sub-

sequently, equilibrium points of the DC MG system can be

obtained via finding the solution of
∗
x
6

. By linearizing the state-

space form according to (24) around an equilibrium point,
matrices A and B of the model will be computed as given
in Appendix A. The following equilibrium points are obtained

as:
∗
x = [1.1 91.47 120 91.47 6.53 58.8 10 91.47]T

A plot of the state variables without any control inputs
uT = [u1 u2 u3 u4] = [0 0 0 0] is depicted in Figure 8 with
the following initial conditions: [x01 x02 x03 x04 x05 x06
x07 x08]T = [1 − 1 0.2 1 − 1 0.2 1 − 1] which shows
that the state trajectories gradually converge to their equilib-
rium points. Besides, two different simulations are carried out
for the purpose of validation and demonstrating the accuracy of
the state-space model as well. First, a real simulation is accom-
plished by considering electrical components of DC MG like
DC/DC converters, power MOSFETs etc. Moreover, another
simulation is done by using the state-space non-linear model.
For the sake of simplicity, both simulations is done for the case
of the buck converter. The load voltage and current waveforms
are depicted in Figures 9a,b which denote the buck converter
operates in continuous current mode (CCM). The correspond-
ing parameters for simulation are given in Table 2. Recall that

TABLE 2 The given parameters for buck converter

Parameters Value

Inductor (L3) 200 𝜇H

Capacitor (C3) 100 𝜇F

Resistance (R2) 9Ω

Critical resistance (Rcrit ) 15Ω

Transmission line (RL ) 5Ω

Input voltage (Vin) 270 V

Output voltage (Vout ) 100

Switching frequency ( fs ) 20 kHz

CCM refers to the current in the inductor remaining positive for
the entire switching period. Subsequently, the conversion ratio
would be Vout = Vind for buck converter means that the output
voltage is controlled by adjusting the duty ratio d. However, a
different analysis is required for the discontinuous current mode
(DCM). In other words, the dynamics will be altered and out-
put voltage does not follow the expression as in CCM which is
depicted in Figures 9c and 9d respectively. As can be seen, the
difference between the two waveforms is evident. Increasing R2
more than its critical value (or light load current) leads to DCM.
In summary, it can be concluded that for DCM case, the pre-
sented dynamics in (20) and (21) are not quite accurate when
compared to the real simulation. Further details about mode
boundaries for the conventional buck, boost, and buck-boost
converter are given in [37].

Through linear state-space representation, eigenvalue-based
analysis can be utilized to study the stability of the system. In
Figure 10, an eigenvalue diagram of the linearized system is pre-
sented. It can be seen from this figure, all eigenvalues have a
negative real part, are located in the left half- plane (LHP) of an
imaginary axis.

It means that the linearized system around the equilibrium
point is stable. Notably, without any control inputs, the state
variables converge to their equilibrium point. Therefore, results
prove that the linearization process in Appendix A is valid.

3.3 Objectives of the control

In this paper, four control objectives can be defined for the DC

MG which are: x2 →
∗
x2 x4 →

∗
x
4

x6 →
∗
x
6

x8 →
∗
x
8

The objectives x2 →
∗
x
2

and x8 →
∗
x
8

denote that the set-

points
∗
x
2

and
∗
x
8

should always track maximum power points. For

instance, the maximum power point of PV is calculated by (43)
using any numerical solvers for a given set of parameters related
to PV (i.e. Iph, a, Rsh, and Io). Likewise, in the wind turbine, the
maximum power captured from wind is intended. Two remain-
ing objectives belong to DC bus and load voltages which are
constant predefined setpoints. To achieve voltage regulation for
the hybrid DC MG with the non-affine-non-linear dynamical
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FIGURE 9 Buck converter waveforms in (a,b) CCM and (c,d) DCM

model, we will use a suboptimal non-linear regulator. Now, the
linear and non-linear models of the DC MG are obtained. In
the next section, we will investigate how to design a control
strategy.

4 LINEAR QUADRATIC REGULATOR
(LQR) CONTROLLER DESIGN

In this section, an LQR regulator controller is developed.
The LQR controller offers design flexibility through weighting

matrices, and the closed-loop system achieves optimal perfor-
mance because it is defined by a quadratic cost function. On
the other hand, unlike the state feedback controller, the LQR
controller locates the eigenvalues where the system has the best
dynamic response. The design objective of this controller is
to define the feedback law (u) so that the state variables track
the desired trajectories and the following cost function is mini-
mized:

J =
1

2

∞

∫
0

(
xT Qx + uT Ru

)
dt (37)
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where R and Q are the weighting matrices. The feedback control
law is defined as follows:

u = −Kx (38)

where K = R−1BT P and P is the solution of Algebraic Riccati
Equation (ARE) defined by:

AT P + PA − PBR−1BT P + Q = 0 (39)

The design parameters Q and R are selected so that Q is a pos-
itive semidefinite matrix and R is a positive definite matrix. The
selection of Q and R is crucial to the stabilization and perfor-
mance of the system. It is noteworthy that these matrices are
taken as diagonal matrices either with only constant values or
state-dependent [30, 38]. Moreover, the pair (A,B) is pointwise
stabilizable (controllable).

This controllability means that the matrix
Rank([BAB… An−1B]) = Ψ should be a full-row rank
matrix, where Ψ is the number of state variables.

In summary, we applied the following steps to design our
controller strategies:

1. To design an LQR controller, (24) is linearized around an
equilibrium point using the Jacobian linearization frame-
work.

2. Verify the pair of (A, B) is pointwise stabilizable (control-
lable) at x̃ = 0.

3. Find a gain matrix K such that all of the eigenvalues of the
closed-loop system are located at the left-half plane, using
the pole assignment.

Calculate the state feedback controller (38) gain matrix (K).
Motivated by the LQR problem, SDRE theory was developed

to solve the regulation problem for systems with non-linear
dynamics. The SDRE technique is an extended linearization
control or state-dependent coefficient (SDC) method that
provides procedures similar to the LQR to the non-linear
regulation problems for both input-non-affine [30] and affine
systems with a cost function like (37) [29].

5 NON-LINEAR STATE FEEDBACK
CONTROLLER BASED ON SDRE

In our DC MG model, since the state variables are multiplied by
input variables, the system becomes non-linear. Moreover, the
exponential term in (17) belongs to the diode in the PV model
also adds more non-linearity. Due to the existence of control
input u2 in (20), the system becomes non-affine. In summary,
since the whole system is a non-linear-non-affine, we are moti-
vated to develop a control strategy that is capable to regulate the
system with the non-linear-non-affine structure. Although a lot
of works have been done in this regard, however, this controller
has not been examined for DC MG, especially with high non-
linear and non-affine structures. Consider the following non-
linear-non-affine dynamic system:

ẋ (t ) = f (x ) + g (x, u) (40)

where x∈ ℝn is the state vector, u∈ ℝm is the input vector, and
f (0) = 0 is the equilibrium point of the system. It should be
noted that ℝ is the set of real numbers; ℝn and ℝm are n- and
m-dimensional real Euclidean spaces.

It is assumed that the vector functions f (x ) and g(x, u) are
continuously smooth and non-linear with respect to their argu-
ments in C 𝛼 for 𝛼 ≥ 1 and one-time differentiable functions
for all x and u in Ω. Moreover, these two vector functions are
bounded by t →∞, and the derivative of function g(x, u) with

respect to u is non-zero (
𝜕g(x,u)

𝜕u
≠ 0, x ∈ Ω). The objective of

the controller design is to find a control law u (for t > 0) that
forces the states/outputs of the system (for t > 0) to regulate
so that the cost function in (37) is minimized. At the next step,
the non-linear-non-affine system in (40) should be expressed as
a state-dependent linear system or SDC form as follows:

ẋ = A (x ) x + B (x, u) u (41)

where A(x ): Ω → ℝn×n and B(x, u): Ω → ℝn×m . It should be
noted that for a function f (x ) with n > 1 and f (0) = 0, there
are infinite ways to express the non-linear system in (40) in the
SDC form.
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Definition: The SDC representation in (41) is pointwise stabi-
lizable in the bounded open set Ω if the pair of A(x(t )),B(x, u)
is stabilizable in the linear model for all (x, u) ∈ Ω and t ≥ 0.
To find the suboptimal solution for the cost function (37), there
are two steps:

1. First, the Hamiltonian equation is written as H =
1

2
(xT Qx + uT Ru) + 𝜆T (A(x(t )x(t )) + g(x, u)), and the fol-

lowing conditions are applied:

𝜕H

𝜕𝜆
= ẋ (t ) ,

𝜕H

𝜕x
= −�̇�,

𝜕H

𝜕u
= 0 (42)

With a few mathematical manipulations, the control law is
obtained in the form of: u = −R−1BT (x, u)P (x, u)x .

1. Computing the following equation would lead a solution for
k(x, u) [30].

AT (x ) P (x, u) + P (x, u) A (x )

−P (x, u) B (x, u) R−1BT (x, u) P (x, u) + Q = 0 (43)

In [30], the continuity of P (x, u) is proved for its arguments. To
analyse the stability of the non-linear-non-affine system, con-
sider the following theorem.

Theorem: The non-linear-non-affine system in (40) with the
quadratic cost function in (37) can be stabilized using the feed-
back control law if the solution of P (x, u) is positive semidefi-
nite.

Proof: Consider the following Lyapunov function [30]:

V = xT P (x, u) x (44)

By taking the derivative of V with respect to t , one can obtain
[30]:

V̇ = xT

⎛⎜⎜⎜⎝
AT (x ) P (x, u) x + P (x, u) A (x )

−P (x, u) B (x, u) R−1BT (x, u) P (x, u)

−P (x, u) B (x, u) R−1BT (x, u) P (x, u)

⎞⎟⎟⎟⎠
x (45)

To ensure the stability of the system, the value of V̇ must be
negative. By substituting (43) into (45), the following equation
can be created [30].

V̇ = −xT
(
P (x, u) B (x, u) R−1BT (x, u) P (x, u) + Q

)
x

(46)

In (46), Q is positive semidefinite, R is positive definite, and
P (x, u) is positive definite. It can be concluded that the term
BT (x, u)B(x, u) is positive. Therefore, the stability of the sys-
tem is proven. It should be emphasized that the online control
update formulation is used for a system with non-linear-non-
affine dynamics. Accordingly, the following equations can be
solved repeatedly. Therefore, the updated optimal gain can be

Assign the initial condition x0, the weighting R, Q matrices and 
DC MG Parameters

Select SDC representation for the system

Calculate the value of P(x,u) using Eq. (47)

Yes

No

Calculate the feedback control law of u(t) using Eq. (48)

Is P(x,u) 
stabilizable and
 controllable?

   P(x,u) has the unique symmetric positive semi-definite solution

Start

Stop

FIGURE 11 Overall flowchart of the studied nonlinear controller using
SDRE technique

obtained at each step [30].

Pn+1 (x, u) AT (xn ) + AT (xn ) Pn+1 (x, u)

− Pn+1 (x, u) B (x, u) R−1BT (xn, un ) Pn+1 (x, u) + Q = 0

(47)

The feedback control law is:

u = −R−1BT (xn, un ) Pn+1 (x, u) xn (48)

The overall flowchart of the proposed SDRE controller is
illustrated in Figure 11. The SDC representation of the non-
linear-non-affine DC MG system described in (24) is presented
in Appendix B. In this context, it is necessary to ensure that
the pair of (A(x), B(x,u)) is exactly equal to the non-linear sys-
tem when multiplied by x and u (ẋ(t ) = f (x ) + g(x, u)) [29].
According to the aforementioned conditions, the origin x =

0 ∈ Ω is an equilibrium point of the system with u = 0, such
that f (0) = 0 and B(x, u) ≠ 0 ∀ x ∈ Ω which means that we
should move the equilibrium points of the system to the ori-
gin. Therefore the equilibrium points have translated x̃ = x −
∗
x.This process is accomplished in Appendix B. In summary, the
block diagram of the proposed SDRE controller is shown in
Figure 12.
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TABLE 3 Specifications of the proposed DC MG

Parameters Value

Inductors (L1, L2, L3, L4) 200 (𝜇H)

Capacitors (C1, C2, C3, C4) ( 𝜇F) 100, 200, 100, 100

Battery voltage (E) E = 120 V

Battery internal resistance (r) 1 Ω

RL 5Ω

R1, R2 R1 = 144 Ω, R2 = 9 Ω
Pmpp 1200 W

Iwind 10 A

Desired trajectories
∗
x
2
= Vmpp,

∗
x
4
= 270 V,

∗
x
6
= 100 V,

∗
x
8
= 200 V

R and Q Q = 10I8, R = diag(10, 10, 1, 0.1)

u(t)u*
u(t)~

DC MG with nonlinear 
nonaffine structure

x(t)

Disturbance

SDRE Controller

x*

x(t)~

FIGURE 12 Block diagram of the SDRE controller

6 IMPLEMENTATION RESULTS AND
ANALYSIS

In this section, to verify the previous theory, the studied DC MG
system shown in Figure 2 is implemented to simulate and anal-
yse the developed controllers in the MATLAB environment. It
is assumed that the 1-kW PV source is connected to the main
DC bus via a DC/DC boost converter and injects its maximum
power. Also, the wind turbine operates at the maximum point
and delivers maximum power to the DC MG.

Remark: There are two different assumptions in this paper:
The solar irradiance will be change while the load is constant
and vice versa; In addition, the wind velocity change while solar
irradiance and load are constant. On the other hand, the injected
current by the wind turbine (Iwind ) would change.

Therefore, step load change and illumination changes in
terms of irradiance and wind velocity are considered external
disturbances. The parameters to conduct the simulation studies
are taken from Table 3. The performance of two studied con-
trollers under step load change and illumination change will be
evaluated.

6.1 Load change

A code is written in MATLAB to compute the control law
(44). The simulation time is set at 0.06 s, and the time step

is selected as 10−6 s. In both simulation simulations, the ini-
tial condition and weighting matrices are selected as x(0) =
[1 − 1 0.2 1 − 1 0.2 1 − 1]T. The performance of the state vari-
ables in presence of SDRE and LQR controller is shown in
Figure 13. In this case, at t = 0 s, the DC MG is operating at
the steady state which means the PV delivers maximum power
output, the battery is charging, and the wind turbine injects its
maximum power as well; however, at t = 0.02 s, suddenly, the
bus load increases (R1 decreases from 144 to 100Ω); at t = 0.04
s, the DC load decreases (R2 increases from 9 to 14Ω). When
the bus load increases at t = 0.02 s, subsequently, the battery
will be discharged to compensate power shortage. However,
with decreasing DC load at t = 0.04 s, the corresponding duty
cycle u3, which is depicted in Figure 14, is adjusted such that
to maintain the DC load voltage and then, the battery will be
charged again. As can be seen, visually, those dynamic perfor-
mances which are obtained by applying

SDRE regulator have better than LQR. However, the follow-
ing findings are expressive:

1. Unfortunately, during load change, it is discovered that
some states are not controllable when the LQR con-
troller is applied while the oscillation can be seen in Fig-
ure 17 for the case of wind current; thus LQR is not
implementable.

2. We consider the following saturation function on the control
inputs u1, u2, u3, and u4 to limit their values to the range of
[0,1] [29].

Sat (u (t ) , umax) =

⎧⎪⎨⎪⎩
umax |u (t )| > umax

u (t ) |u (t )| ≤ umax

−umax |u (t )| < −umax

(49)

6.2 Illumination change

In this simulation, the solar irradiance and wind velocity will
change according to the following. At t = 0 s, the DC MG is
operating at steady state which means the PV delivers maximum
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FIGURE 13 Dynamic performance of state variables using LQR and SDRE regulators converge to their desired values under load change

power output, the battery absorbs power, and the wind turbine
injects its maximum power as well.

Hence, the PV generates the current Iph = 16.26 A, the cor-
responding output voltage which is obtained by (36) would be
computed as Vmpp = 78.15 V and maximum power of PV there-
fore is Pmpp = 1196 W. Moreover, the wind turbine generates
its maximum current which is Iwind = 10 A, the output voltage
of the rectifier is set at 200 V, and therefore, wind generates
Pwind = 2000 W. At t = 0.02 s, Iph drops to 10 A and the corre-
sponding maximum voltage will be 75.94 V. Subsequently, the
PV output power decrease to 712.5 W. Another disturbance
occurs at t = 0.04 s when Iph decrease from 10 to 5 A and the
maximum voltage is 72.79 V. In this case, the resulting output
power is 339.69 W. Eventually, at t = 0.06 s, the maximum cur-
rent injected by wind decreases to Iwind = 5 A. To construct a
baseline for comparison, constant state feedback or linear state
feedback design is also taken into account and locally are imple-
mented. The simulation results considering two controllers are
given in Figures 15 and 16. Accordingly, the battery in DC MG
is responsible for power balancing when the first illumination
occurs. As can be seen, the battery is charging at t = 0 s, how-
ever, at t = 0.02 s discharges to meet power balance. Moreover,
u3 would be constant during the simulation because the DC

bus voltage is constant and also u4 is constant till wind veloc-
ity remains unchanged. As seen, the dynamic response of con-
stant feedback is suffering from poor performance. At t = 0.04
s, the PV output power goes down (5 A), and at the same time
wind output power drop to 1000 W. In this case, the battery
is being discharged to maintain DC bus voltage. By compari-
son, it can be said that, by applying the SDRE controller, the
oscillation is dramatically decreased while state variables con-
verge to their desired values in a short period of time and settle
quickly.

6.3 A comparison between the proposed
method and passivity-based design method

As a comparison between the studied controller and proposed
controllers in [24] and [25] the following findings are expres-
sive:

1. Actually, controllers like SDRE ought to compare with LQR
since both methods consider optimality in their design pro-
cedure, and therefore, the comparison would be fair. How-
ever, the simulated system response using SDRE controller
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FIGURE 14 A plot of duty cycle waveforms: u1, u2, u3, and u4 FIGURE 16 A plot of duty cycle waveforms: u1, u2, u3, and u4

FIGURE 15 Dynamic performance of state variables using SDRE regulators and constant state feedback controller under illumination change
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FIGURE 17 Transient response of the SDRE controller (a) Versus
passivity-based design method (b) and (c)

with weighting matrices, Q = 10I6, R = diag(1, 6, 12) and
passivity-based design method are depicted in Figure 17. In
this regard, the performance of the SDRE technique and
passivity based design are demonstrated for the case of six
non-linear-non-affine system. These figures denote the sta-
bility of the closed-loop system and dynamic performance as
well.

2. It is assumed that either solar irradiance or other parameters
remain unchanged. On the other hand, in both simulations
zero would be the nominal values of currents and voltages
after translation. Both simulation are performed under the
same initial conditions x̃ = [1 − 1 0.2 1 − 1 0.2]T and x̃

(or x tilde) is the deviation from the steady state value. The
simulation results are plotted in Figure 17, where it shows
that both controllers successfully regulate the system states
to their equilibria.

3. One of the difference between the two control schemes is
that the proposed SDRE technique here for output regula-
tion is only locally valid which means the system works near
its steady-state operating point, while the passivity-based
design works globally [25, 29].

4. Another differences between the two methods are the
passivity-based design cannot be applied to time-varying

tracking problems but the SDRE approach can effectively
use to address time varying tracking problems [25, 29].

7 CONCLUSIONS

In this study, comprehensive design, mathematical modelling,
control, and analysis of a wind/PV/battery based DC MG with
multiple DC/DC converters and loads were performed. To this
end, first, detailed modelling of the PV source was discussed;
then, the obtained model for the PV was connected to the main
DC bus by forming a boost converter. Afterward, the non-
linear-non-affine state-space model of the DC MG in the form
of ẋ = f(x, u) was developed. The non-linear-non-affine model
of the DC MG has linearized around an equilibrium point.
Time-domain simulations for the linear-non-linear models
showed that all state variables converged to its equilibrium
point, hence proving the validity of the linearized model. More-
over, stability analysis of the linearized system was carried out
using an eigenvalue diagram. In this paper, for the first time, the
SDRE technique was performed to find a suboptimal solution
for a class of DC MG with a non-linear-non-affine dynamic
model. The numerical results showed that the proposed method
successfully regulated the output variables. Furthermore, the
effectiveness of the designed SDRE controller was compared
with the classic LQR and linear state feedback controller.
Eventually, the performance of the SDRE regulator has been
evaluated under illumination and load change shows that the
transient performance is dramatically improved.
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APPENDIX A

It is noteworthy that the symbol of the equilibrium point vari-

ables is specified by “ * ”. Suppose that
∗
x and

∗
u are the equi-

librium points; then, the actual state and input variables can be

written as: x =
∗
x +𝛿x and u =

∗
u+𝛿u. The “𝛿 ” denotes the

small variation around the equilibrium point. Substituting the
values of x and u, we obtain:

�̇�x = f
(∗

x +𝛿x,
∗
u+𝛿u

)
(A.1)
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Now, using Taylor series expansion and neglecting the higher-
order terms (higher than 1st) gives [39]:

�̇�x ≈ f
(∗

x,
∗
u
)
+
𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

𝛿x +
𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

𝛿u (A.2)

However, f (
∗
x,

∗
u) = 0;therefore: �̇�x ≈

𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

𝛿x +

𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

𝛿u. The constant matrices are defined as follows:

A =
𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

, B =
𝜕 f

𝜕x
|
x =

∗
x

u =
∗
u

(A.3)

With matrices A and B, the linearized state-space equations of
the system are given below:

�̇�x ≈ A 𝛿x + B 𝛿u (A.4)

APPENDIX B

Prior to controller design using the SDRE, translation is needed.
Translation means moving the equilibrium points to the origin

x̃ = x −
∗
x and ũ = u −

∗
u. Hence, after the translation, to imple-

ment the proposed SDRE controller, an SDC representation is
needed. As discussed in Section 5, there are infinite ways to
form the state-dependent matrices. However, our SDC repre-
sentation is given below:

Ã (x ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

L1
0 a14 0 0 0 0

−
1

C1
a22 0 0 0 0 0 0

0 0 −
r

L2
−

∗
u2

L2
0 0 0 0

a41 0
∗
u2

C2

−1

R1C2
a45 0 a47 0

0 0 0 a54 a55 −
1

L3
0 0

0 0 0 0
1

C3

−1

R2C3
0 0

0 0 0 a74 0 0 0
1

L4

0 0 0 0 0 0 −
1

C4
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.1)

where:

a14 = −
(1−

∗
u1 )

L2

a22 = −
1

C1

(
1

Rsh

+
Io

x̃2
ea(

∗
x1Rs+

∗
x2 )(ea(x̃1Rs+x̃2 ) − 1)

)
a41 =

(1−
∗
u1 )

C2
a45 =

−(1−
∗
u3 )

C2
a47 =

(1−
∗
u4 )

C2

a54 =
(1−

∗
u3 )

L3
a55 =

RL (1+
∗
u3 )

2

L3

a74 =
(1−

∗
u4 )

L2

B̃ (x, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

L1

(∗
x4 + x̃4

)
0 0 0

0 0 0 0

0
−r

L2

(∗
x4 + x̃4

)
0 0

1

C2

(∗
x1 + x̃1

)
1

C2

(∗
x3 + x̃3

)
1

C2

(∗
x5 + x̃5

)
1

C2

(∗
x7 + x̃7

)
0 0 b53 0

0 0 0 0

0 0 0
1

L4

(∗
x4 + x̃4

)
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.2)

where:
b53 =

1

L3

(
2RL (

∗
x5 + x̃5) − (

∗
x4 + x̃4) − RL (

∗
x5 + x̃5)ũ3

)
.
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