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Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer
concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random
forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the
prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is
set up via a comprehensive literature review. +e database consists of 298 compressive strength data points. +e influential
parameters that are considered as input variables for modelling are curing temperature (T), curing time (t), age of the specimen
(A), the molarity of NaOH solution (M), percent SiO2 solids to water ratio (% S/W) in sodium silicate (Na2SiO3) solution,
percent volume of total aggregate (%AG), fine aggregate to the total aggregate ratio (F/AG), sodium oxide (Na2O) to water ratio
(N/W) in Na2SiO3 solution, alkali or activator to the FA ratio (AL/FA), Na2SiO3 to NaOH ratio (Ns/No), percent plasticizer
(%P), and extra water added as percent FA (EW%). RFR is an ensemble algorithm and gives outburst performance as compared to
GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. +e
accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. +e
proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear
regression expressions.

1. Introduction

Fly ash (FA) is considered as waste material resulted from
thermal coal production [1]. It is carried by the gases re-
leased from the boiler and collected via electrostatic or
mechanical separator [2]. +e annual production of FA is
375 million tons, and its disposal cost per ton is $20 to $40
[3]. Dumping into landfills without prior treatment causes a
malicious effect on the environment [4]. To sustain safe

environment, effective management of waste is needed [5].
Fine particles of FA act as poisons when entering the re-
spiratory system. Furthermore, it pollutes underground
water, which is harmful to aquatic life and causes diarrhea
and skin cancer [6].

Concrete is the second most usable material after water,
as three tons of concrete is produced per person [7, 8]. In the
world, every year 25 billion tons of concrete is produced that
acquires 2.6 billion tons of cement, which will be increased
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by 25% in the next ten years [9, 10]. Cement production
causes a nasty impact on the atmosphere as one ton of
cement emits one ton of CO2 in the air, which alarms the
ecology [11]. Also, limestone is the main source of cement,
and its severe shortage may occur after 25–30 years [12, 13].
+erefore, green concrete production is needed to decline its
malignant impact on the natural environment [14]. FA is
used as supplementary cementitious material to produce
green concrete [15]. It is worthy as it reduces the cement
utilization and also its harmful effects on the ecology when
dumped into landfills.

Since last two decades, the use of FA-based geopolymer
concrete (GPC) is rising constantly as it reduces the con-
sumption of cement [16–19]. FA-based GPC has been widely
used in construction, but still no empirical model is de-
veloped to predict its compressive strength (fc

′) on the basis
of mix proportion with maximum input parameters. fc

′ of
FA-dependent GPC varies with different parameters like
specimen age (A), curing time (t), initial curing tempera-
ture (T), molarity of NaOH solution (M), percent SiO2
solids to water ratio (% S/W) in the formation of sodium
silicate (Na2SiO3) solution, ratio of alkali to FA (AL/FA),
ratio of Na2SiO3 to NaOH (Ns/No), addition of extra water
as percent FA (%EW), percentage of total aggregate by
volume (%AG), ratio of fine to total aggregate (F/AG), and
percentage of plasticizer (%P) [10, 20–27]. +is generates
lack of clarity in the prediction of fc

′ of FA-dependent GPC.
Furthermore, rapid growth of soft computing techniques for
the development of empirical equation by using experi-
mental data has been just noticed [28, 29].

Artificial intelligence (AI) techniques have been used
widely in the civil engineering field for the prediction of
different mechanical properties of concrete. Methods like
random forest (RF) [30, 31], support vector machine (SVM)
[32], artificial neural networks (ANNs) [33], adaptive neuro
fuzzy interface (ANFIS) [34], decision tree (DT) [35],
multivariate adaptive regression spline (MARS) [36], genetic
programming (GP) [37], and gene programming (GEP) [38]
were used vastly by different researchers [39–41]. Recently,
ANN was used to accurately predict the mechanical prop-
erties of rice husk ash concrete [33] and workability of self-
compacting concrete [42]. No empirical equation was
provided in these models, which can be used practically,
although these models show a strong correlation. +is is due
to the complex model of ANN structure which limits the
wide scale adoption of ANN techniques [43]. +e multi-
collinearity is the main issue in these models [44]. Likewise,
an updated ANN technique was used to predict the com-
pressive strength of silica fume concrete and elastic moduli
of recycled aggregate concrete. Due to the complications in
the proposed relationship, just a graphical interface was
developed to make the model functional [45]. +e com-
parative study of ANN and ANFIS was carried out for the
prediction of compressive strength of concrete which
revealed that ANFIS provides better and strong correlation
than ANN [46]. RF is an ensemble machine learning
technique which has been effectively used in the prediction
of uniaxial compressive strength of rubberized concrete [30].
+e RF gives outburst performance in modelling strength of

coal grout material [31]. +e adamant results were obtained
in the prediction of compressive strength of self-compacting
concrete with antenna search-based RF algorithm [47].

Genetic programming (GP), one of the strong soft
computing techniques, is worthy as it develops a model
without considering the previously established relation-
ships [48, 49]. Recently, GP is extended to gene expression
programming (GEP), which uses linear chromosomes of
fixed length and encodes a small program [50]. GEP is
advantageous as it gives a simple and reliable mathematical
equation that can be used practically. In civil engineering, it
is used as a substitute for ordinary prediction techniques
[39, 51–57]. GEP is employed to predict the influence of the
strength class of cement on the compressive strength of
mortar, the split tensile strength of concrete, and the fresh
and hardened properties of the self-compacting mix
[39, 51–57]. Farooq et al. [58] predicted the compressive
strength of high-strength concrete using RF, ANN, DT, and
GEP, providing coefficient of determination equal to 0.96,
0.89, 0.90, and 0.90, respectively. In RF, weak learners are
used as base learners. +is bagging mechanism of RF
provides obstinate results. GEP leads RF as it is an indi-
vidual model that provides an empirical relation between
input and output parameters that can be used in field
calculation.

Compressive strength is the major factor to be con-
sidered in the design and analysis of concrete [59]. In-
tensive research is carried out to find the compressive
strength of FA-dependent GPC [60, 61]. For the sustain-
ability of FA and to save cost and time, it is needed to
develop a reliable and accurate equation that would relate
mix proportion and compressive strength of FA-dependent
GPC. +e comprehensive revision of literature reveals few
empirical equations for the prediction of compressive
strength of FA-dependent GPC [39, 54, 57]. However, the
prediction from these empirical equations are limited to a
specified experimental study and is not practicable and
reliable beyond the specified dataset. Alkaroosh et al. [62]
established a model to predict the compressive strength of
FA-dependent GPC using 56 datasets extracted from a
particular research paper [63]. +e suggested equation uses
no variable to counter the formation of sodium silicate
solution. Also, the model illustrates a linear relation in the
molarity of NaOH and compressive strength. However,
other studies reported an inverse relationship between the
compressive strength and molarity of NaOH solution [64].
To cover this lack of correspondence, RF and GEP tech-
niques are used to develop a more accurate, effective, and
generalized model that predicts the compressive strength of
FA-dependent GPC with acceptable error. A comprehen-
sive and detailed dataset file is established from the liter-
ature that includes cube samples of size 150mm and
100mm and cylindrical samples having size
(200 × 100)mm (height × diameter). +e ample number of
data points guarantees the reliability of the model for data
points outside the dataset file. +e performance of the RF
and GEP model is tested through statistical checks, para-
metric study, and sensitivity analysis and compared with
nonlinear and linear regression models.
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2. Research Methodology

+is section covers the methodology to develop GEP and RF
models for the compressive strength (fc

′) of FA-dependent
GPC.

2.1. Brief Overview of Gene Expression Programming.
Koza recommended the GP technique as an alternative to
genetic algorithm (GA) which uses fixed length binary
strings [65]. +e use of nonlinear parse tree structure marks
the GP as an acceptable technique. It considers the initial
nonlinearity of the data. +e same nonlinearity has been
exercised before [62, 65]. GP is inadequate as it ignores the
independent genome. +e nonlinear structure of GP works
as both the phenotype and genotype. It fails in the devel-
opment of basic and simple model. To overcome incon-
sistencies in the GP algorithm, Ferreira suggested its
modified version known as GEP technique [65]. It is based
on the evolutionary theorem of population. +e major
change in GEP is the transmission of the genome towards
successive generations. Another notable feature is the cre-
ation of entities using chromosome which is comprised of
different genes [66]. In GEP, each gene originates from
terminal set of constants, fixed length parameters, and
arithmetic operations used as a function.+ere is a stabilized
and smooth interface between chromosome level and allied
functions. Chromosomes record the essential information
needed for the establishment of model, and for the de-
duction of this information, a new language, i.e., Karva, is
developed.

+e flow diagram of the GEP algorithm is shown in Fig-
ure 1. +e algorithm begins with the random creation of fixed
length chromosomes for each individual.+en, these are similar
to the expression trees (ETs). Afterward, the fitness of each
individual is evaluated. For many generations, the reiteration
begins with different individuals till the development of the
finest outcome. For the reiteration of the population, genetic
function asmutation, reproduction, and crossover are executed.

2.2. Brief Review of Random Forest Regression. In 2001,
Breiman proposed an improved regression technique known
as random forest regression (RFR) [67]. +e key charac-
teristics of RFR are flexibility and speediness in the devel-
opment of the relation between output and input
parameters. Also, random forest handles large datasets more
effectively than other machine learning algorithms. It has
been used in different fields like in banking for the prediction
of response of customer [68], prices direction in stock ex-
change [69], in pharmaceutical and medicine production
[70], and so on. It has also been used in various engineering
fields like potential mapping of ground water using geo-
informatics system- (GIS-) based data [71], compressive
strength prediction of high-performance concrete [35], self-
compacting light-weight concrete [48], high-strength con-
crete [58], and so on.

+e RF technique is comprised of three main steps that
include the assembling of trained regression trees via
training dataset, calculation of the mean value of single

regression tree outcome, and the validation of predicted
results via validation dataset. +e original trained set is used
to calculate a new trained dataset comprising of boot-strap
data. In this step, some of the data points are removed and
swapped with the present data points. +e removed data
points assembled in other dataset are called out-of-bag data
points. +en, the regression function is estimated using 2/
3rd of the data points, and the out-of-bag data points are
used in validating the model. +is process is continued till
the achievement of the required accuracy.

RFR is a built-in process that deletes the data points from
out-of-bag data points and uses them for validation. +is is
the distinctive characteristic of RFR. Finally, for each ex-
pression tree, the total error is computed showing the ef-
ficiency and accuracy of each expression tree.

2.3. Data Collection. Compressive strength (fc
′) is the key

factor to design and analyze concrete. For the sustainability
of FA and to save cost and time, it is needed to develop a
reliable and accurate model that would relate mix propor-
tion and fc

′ of FA-based GPC.
Comprehensive dataset file was compiled from the lit-

erature [62, 63, 72–105]. +e whole dataset is comprised of
298 experimental results of fc

′ of FA-based GPC, which
includes 31 and 166 cube samples having 100mm and
150mm size respectively and 101 cylindrical samples having
size (200 × 100)mm (height × diameter). fc

′ of cylindrical
and cube samples is dependent on length to diameter (L/D)

ratio [106, 107]. Also, fc
′ of 150mm cubes is 5% lesser than

100mm cubes. +e normalization of cube samples with
cylindrical samples is shown in Table 1.+e accomplishment

Start

Construct initial 
population’s chromosomes

Display of chromosomes as 
expression trees (ETs)

Execute or run ETs

Measure fitness

Iterate or
terminate?

End

Best tree selection

Replication

Genetic alteration

Next generation new 
chromosome preparation

Iterate

Terminate

Figure 1: Flow diagram of gene expression programming [29].
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of detailed dataset file guarantees the accessibility and re-
liability of the GEP model to the data which are not utilized
for the establishment of the model.

+e dataset file contains data of fc
′ as a response against

input parameters, i.e., samples age (A) in days, initial curing
temperature (T) of samples in degree Celsius, molarity of
NaOH solution (M), percent SiO2 solids to water ratio
(% S/W) in the formation of sodium silicate (Na2SiO3) so-
lution, ratio of alkali to FA (AL/FA), ratio of Na2SiO3 to
NaOH (Ns/No), addition of extra water as percent FA
(%EW), percentage of total aggregate by volume (%AG),
ratio of fine to total aggregate (F/AG), and percentage of
plasticizer (%P). +e collected samples are all heat cured for
24-hour duration at various curing temperatures as the in-
crease in fc

′ after 24-hour curing time is insignificant [63].
Due to the geo-polymerization, GPC shows higher early
strength; therefore, less research is found in the literature for
prolonged curing time. Also, Van Jaarsveld et al. [108] re-
ported no increment infc

′ for prolonged curing duration after
24 hours. +e distribution of explanatory variables on wide
range guarantees the best performance of themodel [109]. For
all the selected explanatory parameters, the frequency dis-
tribution and cumulative percent are shown in Figure 2.

To develop a more generalized model, both cylindrical and
cube samples are considered. +e range, mean values, and
standard deviation of response and explanatory parameter are
presented in Table 2. To achieve a reliable prediction of fc

′, it is
recommended to use the model within the specified range.

To evaluate the reliability and validity of the data points,
several trials were performed. +e divergence of data points
greater than 20% was excluded in the development of the
model and performance evaluation phase. A total of 298 data
points were used to establish a reliable model for fc

′ of FA-
dependent GPC.+e data points were randomly divided into
two statistically consistent datasets, i.e., training set (30%–
90% data points) and a validation set (70%–208% data
points) [29]. Training data points are used to train themodel,
that is, genetic evolution and validation data points are
utilized to verify and calibrate the generalization capability
of the developed model as described in the literature [56].

2.4. GEP Model Development. In the first step, the most
effective parameters for compressive strength (fc

′) of FA-
dependent GPC were chosen to establish a simplified model.
+e performance evaluation via multiple initial runs indi-
cates to calculate fc

′ of FA based GPC as a function of the
following equation.

fc
′ � f T, A, M,%

S

W
,
AL

FA

,
NS

NO

AG,
F

AG

,%P,%EW􏼠 􏼡. (1)

+e number of genes, chromosomes, and expression trees
(ETs) are distinguished to develop the GEP expression. +e
execution time of the program is controlled using population
size (number of chromosomes). +e combination of genes
leads to chromosomes that are used in coding the sub-
expression trees (sub-ETs). +e complexity of the predictive
GEP model reflects to use population size of 150. +e con-
figuration of the model in the program relies on the head size,
the number of genes that decide the complexity of each term,
and the sum of sub-ETs of the model. Hence, the genes and
head size which are 3 and 10, respectively, are used for the
establishment of the reliable model. +e genetic operators are
used for the genetic variation of chromosomes. During mu-
tation, the random selection of tail or head of genes is executed
and substituted with component of function or terminal sets
randomly. +e transposition performs the substitution of in-
sertion sequence (IS) and the root insertion sequence (RIS)
inside the chromosome. +en, in recombination, chromo-
somes are combined and divided into two to replace their
components. To obtain good algorithm, the suggested setting in
the previous study has been exercised [39]. GeneXproTool is
used for the execution of the GEP algorithm. Table 3 presents
the settings of the parameters used in the execution of the GEP
algorithm, to develop a good model.

2.5. Criteria for Evaluation of Model Performance. To verify
the performance of the developed models, the coefficient of
correlation (R) is usually used. Because of its insensitivity to
division and multiplication of output to a constant, it cannot
be merely utilized for studying the performance of the model
[110]. +erefore, root mean squared error (RMSE), relative
square error (RSE), mean absolute error (MAE), and relative
root mean square error (RRMSE) are also checked. +e
performance index (ρ) covers the function of both RRMSE
and R, so the performance evaluation of the predictive
models using ρ is highly recommended [109]. +e error
checks equations are given as equations (2)–(7).
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����������������

􏽐
n
i�1 expi − predi( 􏼁
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n
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2

n

􏽳
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Table 1: Collection of data and normalization of compressive strength.

Type of sample Number of data points Normalization factor
Cylindrical (200 × 100)mm) 101 1
Cube (150mm) 166 1 × 0.8
Cube (100mm) 31 0.95 × 0.8
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Figure 2: Frequency and cumulative percent of selected explanatory variables.
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R �
􏽐
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i�1 expi − expi( 􏼁 predi − predi􏼐 􏼑
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􏽱 , (6)

ρ �
RRMSE
1 + R

, (7)

where expi, predi, expi, and predi are the ith experimental
outcome, predicted model outcome, experimental average
value, and average predicted model outcome, respectively
while n indicates the total number of data samples.+e higher
R value and lower MAE, RMSE, RRMSE, and RSE values
replicate the fineness ofmodels. For a strong correlation, theR
values should be higher than 0.8 (1 for the ideal model) [111].
Also, the ρ value would be nearly equal to zero.

3. Results and Discussion

3.1. GEP Expression for Compressive Strength of FA-Depen-
dent Geopolymer Concrete. +e expression tree given by the
GEP algorithm is shown in Figure 3, which is further

decoded to get an empirical equation for the compressive
strength of FA-dependent GPC. +e ETs are comprised of
five arithmetic operators, i.e., − , +, /, ×,

�
·3

√
.

do: curing temperature (T) in degree Celsius, d1: age of
the specimen (A), d2: alkali or activator to the FA ratio
(AL/FA), d3: Na2SiO3 to NaOH ratio (Ns/No), d4: molarity
of NaOH solution (M), d5: percent volume of total ag-
gregate (%AG), d6: fine aggregate to total aggregate ratio
(F/AG) d7: percent plasticizer (%P), d8: percent SiO2 solids
to water ratio (%S/W), and d9: extra water added as percent
FA (%EW).

Equation (8) can be used for the prediction of com-
pressive strength (fc

′) of FA-dependent GPC (MPa). It
consists of four variables, i.e.,A, B , C, andD, presented as
equations (9)–(12), which are extracted from sub-ETs 1, 2, 3,
and 4, respectively, as presented in Figure 3.

fc
′(MPa) � A × B × C × D, (8)

where

A �

�����

%
S

W

3

􏽲

− %P + M ×
F

AG

×
AL

FA

× 6.6􏼠 􏼡 + %EW − %AG,

(9)

B � −

��������������������
A + 80

0.08(T − 18)
+

NS

NO

+ M
3

􏽳

,

(10)

C �
F

AG

− M × %EW( 􏼁 −
0.0003

NS/NO) − %EW( 􏼁( 􏼁 − 0.0003,
􏼠

(11)

D �

�����������������
1.2(%P − % (S/W))

T

3

􏽲

+

��������
0.2

F/AG( 􏼁( 􏼁

3

􏽳

+ 0.8. (12)

3.2. Evaluation of the Performance of the GEP Model.
Figure 4(a) shows the comparison of two regression lines,
namely, the GEP model output values and experimental
values for both the validation set data and training set data.

Table 2: Range, mean, and standard deviation of response and explanatory variable.

Parameters Maximum value Minimum value Mean value Standard deviation
Output variables
T (OC) 120 23 71.57 24.61
A (days) 540 1 20.87 45.73
A/F 0.3 1 0.4545 0.1187
NS/NO 4 0.4 2.275 0.5168
M 20 8 11.68 2.6415
(% AG) 80 60 72 4.753
F/AG 0.5 0.2 0.3568 0.0493
% P 11.3 0 1.998 2.326
% S/W 81.4 43.4 61.68 10.167
% EW 35 0 3.889 6.341
Response
fc
′(MPa) 63 8.2 37 11.154

Table 3: +e setting of parameters of the GEP algorithm.

Parameters Adjusted GEP setting
General parameters
Number of chromosomes 150
Number of genes 3
Head size 10
Linking function Multiplication
Functions set +, − , /, ×, 3
Arithmetical operators
Constants/gene 10
Type of data Floating data
Upper bound value 10
Lower bound value − 10
Gene operator
Mutation rate 0.001380
Inversion rate 0.005460
IS transportation rate 0.005460
RIS transportation rate 0.005460
Gene recombination rate 0.007550
Gene transportation rate 0.002770
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+e slope of the regression lines shows a strong correlation,
i.e., 0.9892 and 1.000 for validation set data and training set
data, respectively.

+e absolute error between the output of GEPmodel and
experimental values is shown in Figure 4(b). It provides an
idea of maximum percent error in the GEP model. +e
maximum error percentage and mean error percentage are

computed as 8.32% and 6.47%, respectively, which approves
the similarity between GEP model outcomes and experi-
mental values. Also, the frequency of the maximum error is
less. Nearly 90% of GEP model outcomes of the validation
dataset have an error of less than 10%, and the average
percent error is below 5.56%. +is confirms the reliability
and generalization capability of the GEP model.
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For the reliable and accurate GEP model, the ratio of
total data points to the total input variables should be
minimum three [109]. +is research uses a higher value
equal to 30. +e statistical checks for both validation data
points and training data points are listed in Table 4. For the
GEP model, MAE, RMSE, and RSE of training data points
are calculated as 5.832, 5.971, and 0.325, respectively, and
2.057, 2.643, and 0.0675 for validation data points. +e
similarity in the statistical checks guarantees the general-
ization capability of the GEPmodel. Table 4 also shows that ρ
for both sets reaches zero. So, the presented GEP model
could be valid for new data points.

Different statistical measures are also considered for the
external validation of the GEP model. +e literature rec-
ommended that the inclination (slope) of one of the re-
gression lines (k′ or k) crossing the origin should be nearly
equal to 1 [38]. Table 5 shows that the slope of regression
lines is 0.995 and 1.001, which verifies the correlation and
correctness. +e literature also recommended that the
square of correlation coefficient between the experimental
and model predictive output (R′2o ) or between model
predictive output and experimental values (R2

o) should
come near 1 [112]. Table 5 confirms the validity of the GEP
model. So, the proposed GEP model is not just a
correlation.

3.3. Evaluation of Random Forest Regression Model.
Random forest regression technique is an ensemble algorithm
that utilizes weak learner as a supervised learner and provides a
best-performed model based on the coefficient of correlation
(R) as shown in Figure 5.+is algorithm divides the model into
twenty submodels based on different n-estimator and gives
model with maximum R. +e mean ensemble R is equal to
0.9732 which depicts that all the twenty submodels strongly
correlate with the predicted and experimental values. Amongst
all these, the submodel with 40 estimators gives outburst

performancewithmaximumR equal to 0.9826. It is attributable
to the use of weak learners as a decision which is used in
ensemble algorithm [58].

+e relation between the response and the predictor is
shown via the slope of regression lines in Figure 6(a).+e RF
algorithm gives noticeable slope of the regression line as
1.000 and 0.9913 for training set data and validation set data,
respectively, which proves the superiority of the RF
algorithm.

+e absolute error plot between the RF algorithm pre-
dicted values and experimental values is presented in
Figure 6(b). In comparison with the GEP model, the RF
model shows less error as the maximum percent error and
average percent error are calculated as 4.89% and 2.14%.+e
RF algorithm yields outstanding results but does not provide
an empirical equation like GEP.

Furthermore, the performance of the RF algorithm-based
model is also verified through statistical error checks. Table 4
shows that statistical error checks for RF algorithm-predicted
values are lesser than those of the GEP model predicted
outputs, in both the training and validation stage. +is
confirms that the RF algorithm gives good performance than
GEPmodel as it is an ensemble one that uses the decision trees
as weak learners [58]. Also, R′2o and R2

o are used for its external
validation of RFmodel as tabulated in Table 5.+eir values are
calculated near to 1, which verifies that RF algorithm does not
work as simple correlation.

3.4. GEP Model Comparison with Linear and Nonlinear Re-
gression Models. +e past research reveals that for fc

′ of FA-
dependent GPC, no GEP model has been developed using the
influential input parameters considered in this study. So, it is
needed to develop nonlinear and linear regression expressions,
for the same dataset, and compare it with the GEP model
presented as equation (8). Equations (13) and (14) present the
linear and nonlinear regression equations, respectively.
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Figure 4: Performance evaluation of the GEP model. (a) Comparison between model and experimental outcomes for compressive strength
from training and validation set data. (b) Absolute error plot of GEP predicted outcomes and experimental values.
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Table 4: Comparison of statistical measures amongst GEP, RF, nonlinear, and linear regression models.

Model
RMSE RSE MAE RRMSE (%) R ρ

TRNG
1 VLDN

2 TRNG VLDN TRNG VLDN TRNG VLDN TRNG VLDN TRNG VLDN

RF 3.034 1.986 0.193 0.0350 2.876 1.862 10.084 4.163 0.9826 0.9943 0.0546 0.02087
GEP 5.971 2.643 0.325 0.0675 5.823 2.057 16.949 4.949 0.8586 0.9643 0.0911 0.02519
Linear 6.986 5.546 0.589 0.3040 6.543 4.967 19.20 10.21 0.8074 0.8976 0.1062 0.05382
Nonlinear 6.593 5.054 0.497 0.2980 6.053 4.875 18.53 9.021 0.8357 0.9247 0.1009 0.04687
1TRNG shows training set data. 2VLDN shows validation set data.

Table 5: External validity of the proposed GEP and RF models.

Expression Constraint GEP model RF model
k � 􏽐

n
i�1(expi × predi)/􏽐

n
i�1 (exp2i ) 0.85< k< 1.15 1.001 1.000

k′ � 􏽐
n
i�1(expi × predi)/􏽐

n
i�1 (pred2i ) 0.85< k′ < 1.15 0.995 0.9995

R2
o � 1 − (􏽐

n
i�1 (predi − expo

i )2/􏽐
n
i�1 (predi − pred

o

i )2), expo
i � k × predi R2

o � 1.0 0.9998 0.9965
R′2o � 1 − (􏽐

n
i�1 (expi − predo

i )2/􏽐
n
i�1 (expi − expo

i )2), predo
i � k′ × expi R′2o � 1.0 0.9849 0.9994
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Figure 5: A random forest regression model with twenty submodels.
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Figure 7 compares the results of the GEP model and
nonlinear and linear regression models. For all three models,
the statistical checks like RSE, MAE, RMSE, RMSE%, R, and
ρ are mentioned in Table 4. ρ and RMSE of the GEP model
for both validation set and training set are lesser than those
of the linear and nonlinear regression models. ρtraining and
RMSEtraining for the GEP model are 14% and 14.5% lower
than those of the linear expression, respectively. Also, in the
validation phase, the GEP model performs better than
nonlinear regression expression as ρvalidation differs by 44%.
Figure 7 illustrates that linear and nonlinear regression
models fail to cover a large range of fc

′ effectively. Hence, the
application of regression expression is restricted.

Some limitation of regression analysis like the use of
predefined equations either nonlinear or linear and pre-
assumption of residuals normality restricts its application
[111], while GEP modelling chooses the nonlinear relation
between input and output parameters effectively and pro-
vides a higher generalizedmodel, which significantly reduces
the error as compared to regression analysis.

3.5. Sensitivity and Parametric Analysis. Sensitivity analysis
(SA) checks the relative contribution of input parameters
considered to predict the compressive strength (fc

′) of FA-
dependent GPC, via equation (15) and (16). SA shows the
reliance of output on input parameters.

Nj � fmax yj􏼐 􏼑 − fmin yj􏼐 􏼑, (15)

SA �
Nj

􏽐
i�1
n Nj

, (16)

where fmin(yj) and fmax(yj) are the jth minimum and
maximum predictive model output, respectively while input
values are kept constant at mean value. Nj gives the range of
jth input variable by taking the difference between fmax(yj)

and fmin(yj). Both training data points and validation
points are consistent; therefore, SA and a parametric study
were carried out for only training data points [39, 111]. +e
result of the sensitivity analysis is presented in Figure 8. It
verifies that the relative contribution of input variables is
similar in the perspective of material engineering.

+e GEP empirical equation, i.e., equation (8), is used to
evaluate the effectiveness of influential input parameters by
conducting parametric study. +e parametric analysis of the
GEP model is presented in Figure 9. +e changes in com-
pressive strength were noted against the change in the value
of only one input parameter from maximum to minimum,
and the rest of all input variables are kept at mean value.

+e curing temperature in the most important parameter
to control the compressive strength (fc

′) of FA-dependent
GPC, as shown in Figure 8 which reflects that curing tem-
perature comparatively contributes 25.3%. Figure 9 illustrates
an increase in fc

′ at different rates with an increase in A, T,
(Ns/No), %AG, (F/AG), and %P while it decreases with
(AL/FA), %EW, (% S/W), and M.

+e alkali-activating solution being used in the GPC
liberates silicates and hydroxides that form strong alumina
silicate polymeric structure. As to speed up its reaction
process with the source material, the GPC needs additional
heat: to improve the mechanical properties of GPC. fc

′
increases as curing temperature increases up to 100°C as
shown in Figure 9. After 100°C, the loss in moisture from
concrete decreases its strength [64]. Wardhono et al. [77]
showed through scanning electron microscopy (SEM) that
after 240 days, the gel fills out the interior voids, which
results in the formation of semihomogenous, but com-
pacted, microstructure.+erefore, after 240 days, the decline
in the incremental rate is noted. +e change in total ag-
gregate is related to the fine aggregate to total aggregate ratio.
fc
′ increases with increment in total aggregate amount as

shown in Figure 9.
+e ratio of alkali-to-FA and sodium silicate-to-sodium

hydroxide and molarity of NaOH are all linked. Sodium
silicate changes the microstructure and significantly increases
the compressive strength. +erefore, preparation of sodium
silicate solution with high ratio of percent silica-to-water is
needed. Low alkali-to-FA ratio combines with high sodium
silicate-to-sodium hydroxide ratio, and less molar solution of
NaOH will result in greater fc

′. However, the NaOH solution
should be sufficient to finish the dissolution process. Same
results have also been reported in the literature [78].

Total water used in GPC is the combination of water
needed for the preparation of sodium hydroxide solution
and sodium silicate solution and the extra water added for
adjusting the workability. For the workable GPC mix and to
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avoid cracks, it is essential to add a plasticizer and extra
water [95]. Figure 9 shows that the relative contribution of
plasticizer or extra added water to fc

′ is 6.71% and 18.85%,
respectively. +e extra added water beyond certain limit
leads to segregation and bleeding of green concrete.

+e results in Figure 9 are linked with previous literature
[78, 95]. +e parametric analysis accurately shows the effect
of input parameters to predict fc

′ of FA-dependent GPC.

4. Limitations and Recommendation for
Future Work

+e research work performed in this article does have certain
drawbacks; however, it can be counted as data-mining-based
research.+e broadness and comprehensiveness of the data is
essential for the reliability and proficiency of the predictive

models. +e range of the datasets used in this research was
restricted to 298 experimental data points. +is research did
not consider the compressive strength of fly-ash-based geo-
polymer concrete at elevated temperature. Also, this study
lacks in providing the empirical relation for other mechanical
properties of FGPC like split tensile strength and flexural
strength as limited research is available in the literature for
both the mechanical properties. In fact, an appropriate testing
dataset should be completed as it is essential part in engi-
neering viewpoint. However, this research considered a wide
range dataset with ten most influential parameters for
modelling compressive strength of FA-dependent GPC.

Furthermore, it is also recommended that the new da-
tabase developed should be investigated with various su-
pervised machine learning techniques like artificial neural
network (ANN), recurrent neural network (RNN), support
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vector machine learning (SVM), adaptive neuro fuzzy in-
terface (ANFIS), and multivariate adaptive regression spline
(MARS).

5. Conclusions

In this study, random forest (RF) and gene expression pro-
gramming (GEP) are used to develop a mathematical expres-
sion for the compressive strength fc

′ of fly-ash- (FA-)
dependent geopolymer concrete (GPC). +e RF and GEP
models are developed on the data collected from the past re-
search, and the most effective variables are considered as input
parameters. +e proposed GEP empirical expression can be
used for the utilization of toxic FA in place of dumping into
landfills. +is would eventually lead to sustainable green con-
struction. Following are the conclusions deducted via a su-
pervised machine learning algorithm.

(1) +e highest R and lowest error checks are observed in
the RF model as compared to GEP, nonlinear, and
linear regression models. +e RF as ensemble ma-
chine learning algorithm gives a remarkable per-
formance with R, MAE, RMSE, RSE, and ρ equal to
0.9826, 2.896, 3.034, 0.193, and 0.0546 for training
dataset, respectively, and 0.9943, 1.862, 1.986, 0.0350,
and 0.02087 for validation dataset, respectively. Also,
RF and GEP model accurately meets the specifica-
tions for external validation.

(2) RF model outburts performance but lacks in providing
an empirical equation. In comparison with nonlinear
and linear regression models, the GEP model gives
outburst performance and provides an empirical ex-
pression, which is suitable for the preliminary design of
FA-dependent GPC.

(3) +e sensitivity analysis reveals that curing temperature
is the most sensitive and dominant parameter in
handling the production of FA-dependent GPC. +e
parametric study of the GEP model shows that the
model correctly covers the effect of all explanatory
variables.

(4) Furthermore, it is recommended to perform a leachate
study before the addition of FA as geopolymermaterial.
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