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Simple Summary: AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine
kinases. In normal physiological conditions, AXL is involved in removing dead cells and their
remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the
course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to
activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is
instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial
transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune
responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance.
The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a
broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying
AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become
metastatic and drug-resistant.

Abstract: The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the
clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to
immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing
natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer.
Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as
stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell
survival and increases migratory and invasive potential. In cells of the tumour microenvironment,
AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-
mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several
antibody-based and small molecule AXL inhibitors have been developed and used in preclinical
studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved
the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as
monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure
and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL.
We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults,
in order to disseminate and relapse.

Keywords: AXL; TAM receptors; epithelial-mesenchymal plasticity; drug resistance; metastasis

1. Introduction

Metastatic propensity and drug resistance are two fundamental features of cancer,
which cause treatment failure and death of cancer patients. These two key features are
intrinsically related. A proportion of cancer cells (so-called drug-tolerant persisters or
DTPs) survive exposure to a drug and give rise to cancer relapse. On the other hand,
during the metastatic process, cells are likely to utilize the same basic survival mechanisms
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to adapt to the hostile environment of foreign tissues. Survival and invasion are dependent
on signaling pathways acting downstream of various surface receptors, including receptor
tyrosine kinases (RTKs). In many cases, gain-of-function mutations in RTK-encoding genes,
and their amplification or overexpression are associated with metastatic propensity and
drug resistance. In various cancer types, patients’ survival is improved by drugs targeting
RTKs as mono- or combination therapy. Understanding the biology of RTKs in normal and
cancerous tissues is essential for tailoring therapeutic approaches. The TAM family of RTKs
has emerged as an important driver of cancer, and among this family, AXL has attracted the
most attention as a molecule when expressed possesses prognostic value in several cancer
types, including breast, ovarian, lung, and pancreatic cancer [1,2]. Moreover, preclinical
studies have convincingly demonstrated AXL involvement in metastasis and resistance to
various anti-cancer agents (see below). Several ongoing clinical trials have investigated
the therapeutic benefits of AXL inhibition [3,4]. The exclusive role of AXL in cancer
progression is likely associated with AXL normal function in clearance of apoptotic cells
and immunosuppression. In addition, the implication of AXL in epithelial cell plasticity in
tumours explains its role in drug resistance and metastasis. Here, we discuss AXL function
in normal homeostasis and review the current literature on the underlying mechanisms to
explain the distinctive role of this receptor in cancer biology.

2. Overview of the Structure and Regulation of AXL Receptor
2.1. Structural Features of TAM Receptors and Their Interactions with the Ligands

AXL and two related proteins: TYRO3 and MER are single-pass transmembrane
receptors. AXL ectodomain contains two fibronectin type III-like and two immunoglobulin-
like repeats, with the latter responsible for the interactions with the ligands, Growth
Arrest-Specific protein 6 (GAS6) and Protein S1 (PROS1) (Figure 1). As it will be dis-
cussed later, interactions between ligands and phosphatidylserine (PtdSer) are required
for the full activation of TAM receptors and their functions in normal tissues and tumour
microenvironment. In addition to GAS6 and PROS1, three other proteins have been identi-
fied as potential ligands of TAM receptors, Galectin-3, TUBBY, and TUBBY-like protein 1
(TULP1) [5–7]. However, their role in physiological processes regulated by TAM receptors
is currently underexplored. The homology is not evenly distributed over TAM protein
sequences; it is very high within the kinase domains (60–66% identity) and much lower in
the ectodomains (30–35% identity). Structural differences in ectodomains of TAM receptors
reflect their functional divergence and different affinities to the ligands. It has been broadly
accepted that PROS1 binds TYRO3 and MER only, and GAS6 interacts with all three TAM
proteins with the highest binding affinity to AXL [8]. However, a recent study has shown
that PROS1 binds and activates AXL in glioma spheroids [9].

2.2. AXL Receptor Regulation by Proteolytic Cleavage

AXL expression is regulated at the level of gene transcription, by miRNA (will be
discussed in the following sections), and at the posttranslational level by ectodomain
shedding. The receptor is cleaved by proteolytic enzymes, ADAM10 and ADAM17, in the
area immediately adjacent to the transmembrane helix, leading to the release of ~80 kDa
ectodomain into the extracellular milieu [10,11]. The shed ectodomain, termed soluble AXL
(sAXL), can bind AXL ligand GAS6 and provide negative feedback by interfering with AXL
activation. In addition, AXL receptor is a substrate for γ-secretase. After shedding the ex-
tracellular part, γ-secretase cleaves the remaining part within the transmembrane domain,
releasing intracellular AXL fragment. This fragment can be transported to the nucleus
via a nuclear localization signal (NLS) located next to the transmembrane domain [10].
Nuclear AXL was detected in cultured non-small cell lung cancer cells [12], in schwannoma
and melanoma samples by immunohistochemistry [13,14]. Recently, a direct interaction
between AXL and TP53 gene promoter DNA has been reported to repress TP53 gene
transcription in mesothelioma cells [15]. The mechanism of incorporation of nuclear AXL
into chromatin surrounding TP53 promoter remains obscure. Although NLS adjacent to
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the transmembrane domain is present in TYRO3, but not in MER. Nuclear localization
of either receptor was reported in leiomyosarcoma and acute lymphoblastic leukemia,
respectively [16,17].

Figure 1. A scheme portraying TYRO3, MER and AXL receptors. Conserved domains, fibronectin
type III (FNIII), immunoglobulin (Ig)-like, transmembrane (TM), and kinase domains are shown.
Phosphorylated tyrosines within kinase domains and distal cytoplasmic regions are indicated. The
scheme shows SH2-containing docking proteins interacting with AXL C-terminal phosphotyrosines.
p85, regulatory PI3K subunit; PLC, phospholipase C; SRC, cellular tyrosine kinase c-SRC; LCK,
lymphocyte-specific protein tyrosine kinase; GRB2, growth factor receptor-bound protein 2.

3. Overview of AXL-Regulated Signaling
3.1. Docking Sites for Signaling Proteins

Binding a ligand results in AXL receptor dimerization and cross-phosphorylation at
several tyrosine residues positioned within the kinase autoregulatory loop (Y698, Y702 and Y703)
and distal portion of the cytoplasmic domain (Y779, Y821 and Y866) (Figure 1) [18,19].
The impact of the autoregulatory loop phosphorylation has not been investigated in
the context of AXL, but mutating homologous residues to phenylalanines, within MER,
strongly repressed or entirely abrogated protein kinase activity [20]. Phosphorylation at
Y779, Y821 and Y866 generated docking sites attracting signaling molecules with SH2
domains. Specifically, phosphorylation at Y821 recruited a number of effectors, including
phospholipase Cγ, phosphatidylinositol 3-kinase (PI3K) regulatory subunits p85α and β,
cellular tyrosine kinase c-SRC (SRC), lymphocyte-specific protein tyrosine kinase (LCK) and
growth factor receptor-bound protein 2 (GRB2). Phosphorylated Y779 or Y866 represented
docking sites for p85α/β and phospholipase C, respectively [19] (Figure 1). Therefore,
the engagement of AXL receptors may lead to the activation of critical pathways implicated
in cell survival and proliferation, mitogen- activated protein kinases (MAPK), PI3K, protein
kinase C (PKC), and SRC.

3.2. AXL Dimerization Partners and Diversification of Downstream Signaling

In addition to homodimerization, AXL receptors are able to heterodimerize with
TYRO3, leading to cross-phosphorylation and activation of downstream PI3K and MAPK/ERK
signaling pathways [21,22]. AXL also interacts with the more distantly related receptors,
such as epidermal growth factor receptor (EGFR), human epidermal growth factor re-
ceptor 2 (HER2), tyrosine-protein kinase Met (cMET), and platelet-derived growth factor
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receptor (PDGFR) [23–27]. The data indicate that AXL may trigger phosphorylation of
other receptors and stimulate downstream signaling in a cell type-specific fashion. For
example, in esophageal squamous cell carcinoma cells, AXL directly binds and phosphory-
lates EGFR in an EGF-independent mode. This leads to the activation of the mechanistic
target of rapamycin (mTOR) via PKC without PI3K/AKT involvement. Subsequently, AXL
mediates a bypass of the PI3K-AKT module, leading to the development of resistance to
PI3K inhibition [25]. In ovarian cancer cells, the interaction between AXL and EGFR family
members or cMET is stimulated by GAS6. It results in the phosphorylation of interacting
receptors, ERK pathway activation, and enhanced cell motility [26]. Crosstalk between vas-
cular endothelial growth factor receptor 2 (VEGFR2) and AXL has a different configuration,
and involves SRC family kinases (SFK). In endothelial cells, AXL does not phosphory-
late VEGFR2. Instead, in vascular endothelial growth factor A (VEGF A)-treated cells,
VEGFR2 activates SFK, which phosphorylates AXL at Y779 and Y821 in GAS6-independent
manner. This cross-talk stimulates ERK via VEGFR2 and PI3K-AKT signaling through
AXL, with both pathways being important for corneal neovascularization [28]. Therefore,
the configuration of AXL-regulated molecular networks is cell type-specific and depends
on the repertoire of co-expressed receptors, availability of GAS6 or other ligands, and
differentiation status of cells.

4. AXL Functions in Normal Tissues. Lessons from Mice

Although AXL becomes detectable in embryonic tissues at day 12.5 after fertilization,
AXL−/− and TAM triple knockout mice are viable and fertile. However, TAM−/− animals
develop various abnormalities after birth, including autoimmune disorders, blindness, and
male infertility [29,30].

4.1. Defective Efferocytosis in Immune System of TAM−/− Mice Results in Autoimmunity

AXL is present in a wide spectrum of cells in adult tissues, including dendritic cells,
macrophages, and platelets [31]. A primary cause of abnormalities in TAM triple knockout
animals is the defective clearance of apoptotic cells and their accumulation in mouse tis-
sues. Impaired phagocytosis of apoptotic cells in the immune system is largely responsible
for the autoimmune phenotype observed in TAM-deficient mice [32]. The clonal selec-
tion of immune cells generates large amounts of dying cells, which undergo clearance by
macrophages, dendritic cells, and other phagocytes through efferocytosis. Cells undergoing
apoptosis experience modifications of autoantigens, disintegration of their membranes, and
leakage of cellular contents (so-called secondary necrosis) [33]. The release of autoantigenic
potentially toxic danger signals by dying immune cells, which were not cleared by phago-
cytes, drives autoimmune reactions. This leads to rheumatoid arthritis and systemic lupus
erythematosus in humans, and autoimmune phenotype in TAM-deficient mice [33,34].

4.2. Blindness and Male Infertility in TAM Knockout Mice

Similar to the autoimmune phenotype, blindness and male infertility in TAM knockout
mice are caused by the defects in efferocytosis. Pathology in the retina of TAM triple knock-
out mice is caused by functional inactivation of a specialized type of phagocytes containing
TAM receptors—retinal pigment epithelial cells (RPE). These cells phagocytose the outer
segments of retinal photoreceptors, and thereby remove toxic oxidative phototransduction
products. Impairing the function of RPE by TAM knockout leads to widespread apoptosis
in the retina, retinal dystrophy, and blindness [34]. A very similar retinal phenotype was
observed in mice with combined deletion of genes encoding both TAM ligands, pros1 and
gas6, further demonstrating that TAM signaling is indispensable for apoptotic cell clearance
in the retina [35]. Pathology in the retina is mostly attributed to the inactivation of MER.
Retinal phenotypes are similar in MER−/− and triple TAM−/− mice, but absent in AXL or
TYRO3 single knockouts [34].

Phagocytosis in the testis is predominantly carried out by Sertoli cells. These TAM-
expressing phagocytes are responsible for the clearance of abundant dead germ cells
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generated during spermatogenesis. The inactivity of Sertoli cells in TAM−/− mice lead to
the accumulation of apoptotic cells in seminiferous tubules where spermatozoa are formed,
whereby subsequent male infertility results [32].

4.3. AXL Stimulates Efferocytosis by Regulating Cytoskeletal Dynamics

Efferocytosis performed by dendritic cells and macrophages is predominantly de-
pendent on AXL and MER, respectively [36]. GAS6 and PROS1 bind TAM receptors
at 2:2 stoichiometry, but the physical availability of the ligand is not sufficient to en-
sure biological functions of the receptors. N-terminal γ-carboxyglutamic acid-rich (GLA)
domain of GAS6 undergoes vitamin K-dependent carboxylation, and this modification
stimulates the interaction of the ligand with PtdSer in plasma membranes. In normal
circumstances, flippases ensure that PtdSer is located exclusively in the inner leaflets of
plasma membranes. However, the cleavage of flippases at early stages of apoptosis results
in the externalization of PtdSer in dying cells and apoptotic bodies [37]. Externalized
PtdSer represents eat-me signals for macrophages and other phagocytes. AXL and MER
exposed on the surface of phagocytes interact with their ligands GAS6 and PROS1 bound
to PtdSer-rich membranes of target objects. In addition to TAM receptors and their ligands,
other receptors and protein complexes are involved in forming contacts between phago-
cytes and their targets [38]. Those include direct PtdSer receptors, T-cell immunoglobulin,
and mucin domain-containing molecules (TIMs) and αvβ3 or αvβ5 integrins binding to
PtdSer-interacting ligand, the milk fat globule-EGF Factor 8 (MFG-E8). The binding of
phagocytes to their targets initiates membrane ruffling, formation of longer protrusions
with subsequent engulfment of phagocytized objects. Underlying cytoskeletal reorganiza-
tion is regulated by the concerted action of several small GTPases, including RAC1 and
RHOG [39,40]. The guanine exchange factor Dedicator Of CytoKinesis 180 (DOCK180) in a
complex with scaffold proteins EnguLfment and MOtility 1 or 2 (ELMO1 or ELMO2) are
responsible for the spatiotemporal activation of RAC1, membrane ruffling, engulfment,
and phagocytosis [38,40].

4.4. AXL Limits the Innate Immune Response

In addition to the stimulation of phagocytosis, TAM receptors, and in particular AXL,
protect tissues from autoimmune disorders by limiting the duration of the innate immune
response. The activation of Toll-like receptors (TLR) in macrophages and dendritic cells by
endogenous danger signals induces an inflammatory response, which is attenuated via the
activation of suppressor of cytokine signaling proteins (SOCS) 1 and 3. These inhibitors
of Janus kinases/signal transducer and activator of transcription proteins (JAK/STATs)
signaling are components of E3 ubiquitin ligase complexes, degrading adaptor molecules,
which are required for the TLR pathway activation [41]. In dendritic cells, the expression of
SOCS1/3 proteins depends on the presence of AXL, and is driven by a pathway involving
STAT1, AXL/IFNα,β receptor (IFNAR) complex and GAS6 [42]. The inactivation of this
immunosuppressive pathway, in combination with the defects in efferocytosis, is a key
determinant of the autoimmune phenotype in TAM−/− mice.

5. AXL and Cancer Cell Motility. Is Efferocytic Machinery Hijacked by Cancer Cells?
5.1. Motile Cancer Cells May Utilize DOCK180-ELMO Signaling Implicated in Efferocytosis

In cancerous tissues, apoptotic cells are commonly cleared by the professional phago-
cytes expressing TAM receptors, namely dendritic cells and macrophages. However, non-
professional phagocytes, such as tumour cells, can also engulf and ingest both dying [43,44]
and living cells [45]. TAM receptors seem to participate in the non-professional clearance of
apoptotic cells in cancer. The ectopic expression of MER in MCF10A and several cancer cell
lines stimulate efferocytosis in vitro [44]. AXL is overexpressed in cells of solid tumours
suggesting that GAS6-AXL-DOCK180-ELMO pathway may theoretically enable cancer
cells to clear tumour tissues from apoptotic corpses. To our knowledge, this assumption
has not been addressed so far. However, the data indicate that motile cancer cells may rely
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on this pathway to drive cytoskeletal dynamics. Indeed, in breast cancer cell lines, AXL
physically interacts and phosphorylates ELMO1/2 at two tyrosine residues, and this is
required for GAS6-induced RAC1 activation and cell invasiveness [46]. As discussed above,
AXL may stimulate signaling pathways via crosstalk with other RTKs, and in addition
to GAS6 other ligands, may activate RAC1 via AXL-ELMO-DOCK180 signaling module.
At least one example of GAS6-independent and AXL-dependent activation of RAC1 has
been reported. The treatment of glioblastoma cells with Hepatocyte Growth Factor (HGF)
resulted in cMET-AXL co-clustering, AXL phosphorylation at Y779, recruitment of ELMO-
DOCK180 complex, RAC1 activation, reorganization of the cytoskeleton, and enhanced
cell motility [47]. The assumption that AXL is involved in different cell motility-inducing
pathways, initiated by various growth factors, is in line with in vitro studies demonstrating
that targeting AXL by RNA interference or AXL inhibitors diminished cell migration. These
observations were made in different cell lines, derived from the pancreatic, breast, bladder,
NSCLC, thyroid cancer, and liposarcoma [48].

In addition to AXL-ELMO-DOCK180, other AXL-activated pathways stimulate cell
motility and invasiveness in vitro. In particular, in hepatocellular carcinoma cells, AXL in-
duces cell migration via activation of PI3K, and subsequent AKT- and GTPase-independent
stimulation of p21 (RAC1) activated kinase 1 (PAK1), a critical kinase implicated in cy-
toskeleton remodeling and control of directional motility [49]. In addition to the direct
regulation of cytoskeletal processes, AXL was reported to stimulate cell motility by increas-
ing the turnover of focal adhesions [50]. Mechanistically, this novel pathway represents
direct phosphorylation of the scaffold protein, neural precursor cell expressed, develop-
mentally down-regulated 9 (NEDD9) by AXL, the recruitment and phosphorylation of
other signaling proteins, such as Paxillin, and destabilization of cell adhesions leading
to motile cell phenotype. Understanding whether the elements of this pathway are also
implicated in efferocytosis downstream of integrins and TAM receptors remains to be
explored.

5.2. Are Exosomes in Tumour Microenvironment Involved in AXL-Induced Cell Migration?

The activation of AXL signaling by PtdSer-containing membranes is not limited to
apoptotic cells. Apoptotic debris is not the sole source of externalized PtdSer in both
normal and pathological conditions. Small extracellular vesicles (sEVs) or exosomes are
roughly 100 nm particles produced by platelets, other types of normal cells, as well tumour
cells. sEVs play an important role in intercellular communications in normal tissues, and
in tumour-stroma crosstalk in cancer [51]. Outer leaflets of sEVs membranes are enriched
for PtdSer [52], which is compatible with the hypothesis that TAM receptors are involved
in signaling pathways initiated by sEVs [53]. Indeed, sEVs isolated from serum promoted
migration of prostate, colon, lung, or breast cancer cells in vitro by activating TYRO3 in
the presence of PROS1 [54]. sEVs-activated migration via TYRO3 is mediated by RHOA-
ROCK2 pathway, and inactivation of cofilin via phosphorylation. Studies have not yet been
conducted to explore whether the availability of ligands determines which TAM receptor
is activated by sEVs. Perhaps, in the bloodstream where the concentration of PROS1 is
much higher than GAS6 [55], TYRO3 is primarily responsible for sEVs-induced pathways
in circulating tumour cells. It is possible that in tumour microenvironment, where the level
of GAS6 is high [56,57], AXL takes a central stage.

6. AXL and Drug Resistance in Cancer
6.1. Survival in Toxic Conditions (Analogy with Professional Phagocytes)

The clearance of apoptotic cells often occurs in toxic environments where profes-
sional phagocytes must survive and perform their functions. The engagement of TAM
ligands with PtdSer on the surface of apoptotic cells allows phagocytes to sense toxicity
and activate pro-survival mechanisms, including canonical PI3K-AKT and RAS-MAPK
pathways. By hijacking TAM-activated pathways, cancer cells acquire the capability to
survive when they detect early signs of apoptosis in the environment. Accordingly, numer-



Cancers 2021, 13, 4864 7 of 17

ous studies identify TAM-initiated pathways, and in particular, GAS6/AXL signaling as
a mechanism of acquired resistance to chemo-, radio-, immune-, and targeted therapies.
As AXL has been recognized as a prospective therapeutic target, several small molecule
inhibitors (AXLi) with various degrees of selectivity or antibody-based inhibitors have
been developed [3,4,58]. AXL inactivation occurs, either by the inhibitors or through RNA
interference sensitized cancer cells to gamma-irradiation, antimitotic, and DNA damaging
compounds in vitro. The application of AXLi-enhanced cytotoxic and anti-tumour effects
of compounds in vitro target RTKs, EGFR, HER2, PDGFR, cMET, VEGFR, and cKIT [48,59].
Moreover, AXL inhibition has a strong potential to overcome therapy resistance in vivo.
This has been shown in various preclinical models of solid tumours, including breast, lung,
pancreatic, ovarian, esophageal, head and neck cancer, malignant melanoma, and brain
tumours. Targeting AXL were shown to sensitize tumours to various types of therapies,
including DNA damaging agents, EGFR, VEGFR, HDAC, G2/M checkpoint, and immune
checkpoint inhibitors (Table 1).

Table 1. Targeting AXL signaling sensitizes solid tumours to various therapies in vivo.

Cancer Type Type of Study Method of AXL
Inhibition Therapeutic Agent Drug Class Reference

Breast cancer (*) CDX mAb (YW327.6S2) Anti-VEGF mAb VEGFR-Targeted therapy [60]

Breast cancer Cell lines-derived
xenografts (CDX) AXL shRNA, AXLi (R428) Doxorubicin Chemotherapy [61]

Ovarian cancer Mouse CDX AXLi (R428) Anti-PD-1 mAb Immunotherapy [62]

Lung cancer CDX mAb (YW327.6S2) Erlotinib EGFR-Targeted therapy [60]

Lung cancer CDX mAb (YW327.6S2) Paclitaxel +
Carboplatin Chemotherapy [60]

Lung cancer, NSCLC CDX AXL shRNA, AXLi Erlotinib EGFR-targeted therapy [63]

Lung cancer, SCLC CDX AXLi (TP0903) AZD1775 WEE1-targeted therapy [64]

Lung cancer, breast
cancer

Mouse CDX, orthotopic
model for breast cancer TAMi (Sitravatinib) Anti-PD-1 mAb

(Nivolumab) Immunotherapy [65]

Lung cancer, NSCLC CDX, (**) PDX AXLi (NPS1034) Osimertinib, EGFR-targeted therapy [66]

Lung cancer, NSCLC Human CDX AXLi (ONO-7475) Osimertinib EGFR-targeted therapy [67]

Esophageal
adenocarcinoma Mouse CDX AXLi (R428) Epirubicin Chemotherapy [68]

Pancreatic cancer

Transgenic model
(KrasLSL-G12D;

Cdkn2alox/lox; Ptf1aCre/+);
orthotopic model

AXLi (R428) Gemcitabine Chemotherapy [69]

Head and Neck
Cancer PDX AXLi (R428) Cetuximab or

radiation
EGFR-targeted therapy or

radiotherapy [70]

Cutaneous
melanoma PDX (***) AXL-107-MMAE (or

EnaV)
Vemurafenib +

Trametinib
BRAFV600E + MEK −

targeted therapy
[71]

Cutaneous
melanoma PDX AXLi (R428) AZD7762 CHK1/CHK2-targeted

therapy [72]

Cutaneous
melanoma; lung

cancer
CDX, PDX (***) AXL-107-MMAE (or

EnaV
Anti-PD-1 mAb

(Pembrolizumab) Immunotherapy [73]

Glioblastoma Mouse spheroid-derived
xenografts AXLi (R428) Anti-PD-1 mAb

(Nivolumab) Immunotherapy [9]

Diffuse intrinsic
pontine glioma PDX; mouse allografts AXLi (R428) Panobinostat Histone deacetylase

inhibitors [74]

(*) CDX, cell lines-derived xenografts. (**) PDX, patient-derived xenografts. (***) AXL-107-MMAE, an anti-AXL antibody-drug conjugate. It
represents a fusion between mAb and the microtubule-disrupting agent monomethyl auristatin E.
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6.2. Protection of Healthy Tissues from Autoimmune Damage and Immune Evasion in Cancer:
Common Mechanisms

Immune checkpoint blockade by PD-1, PD-L1 or CTLA-4 inhibitors improves survival
in a proportion of patients with solid tumours. However, most of the patients do not
respond to the immunotherapy or develop resistance caused by the immunosuppressive
tumour microenvironment (TME). The activity of innate immune cells is required to
stimulate the cytotoxic function of T lymphocytes, and insufficiency of dendritic cells
may cause the failure of immune surveillance. TAM receptors, whose normal function is
to limit the duration of innate immune response, mediate immune suppression in TME.
Specifically, as discussed in a previous section, AXL pathway terminates TLR signaling in
dendritic cells via SOCS1/3. This reduces the secretion of pro-inflammatory cytokines and
counteracts tumour infiltration by T cells [36,37].

In addition to AXL function in professional phagocytes, AXL expression in tumour
cells is yet another factor contributing to immunosuppression. In breast cancer cells,
AXL pathway activation results in decreased expression and presentation of MHC class I
antigens, leading to the decreased tumour infiltration by CD4+ and CD8+ T cells, and
consequently, immune evasion [75,76]. In line with these findings, another important study
has shown that anti-PD1 therapy-resistant melanomas expressed high levels of AXL in
cancer cells [77]. Similarly, AXL signaling correlates with the elevated expression of PD-L1
in EGFR-mutant NSCLC cells [78]. In addition to driving negative feedback regulation in
dendritic cells, AXL and other TAM receptors control functions of NK cells, another critical
component of the innate immune system. In particular, NK cells attack and eliminate those
cancer cells, which are deficient in the expression of MHC class I antigens. TAM-driven
pathways downregulate the expression and function of the receptors, which operate during
the differentiation and maturation of NK cells [79]. By suppressing the activity of NK cells,
TAM signaling promotes metastatic spread in mouse models of malignant melanoma and
breast cancer [80].

Thus, TAM receptors inhibit innate immunity leading to the reduced infiltration of
CD4+ and CD8+ lymphocytes and incapacitate NK cells. Therefore, disabling TAM function
sustains immunostimulatory TME, which may improve the efficacy of immune checkpoint
inhibition [4]. Indeed, selective small molecule AXLi synergizes with an PD-1-blocking an-
tibody to inhibit the growth of ovarian cancer and glioblastoma in xenograft models [9,62].
Moreover, another approach for combined targeting AXL and immune checkpoint has
shown promise. An AXL-specific antibody-drug conjugate Enapotamabvedotin (EnaV)
was generated by crosslinking anti-AXL IgG1 with auristatin E, a cytotoxic agent acting
via destabilization of microtubules [71]. In xenograft melanoma and lung cancer mouse
models, combined application of EnaV and anti-PD-1 therapy significantly prolonged the
survival of mice as compared with single treatments [73] (Table 1).

7. AXL, Epithelial-Mesenchymal Plasticity, Drug Tolerant Persister Cells, and Cancer Metastasis
7.1. Cancer Cells Exist in Distinct Differentiation States

As discussed in the above sections, AXL-expressing tumour cells are endowed with
invasive and drug resistant characteristics. These features are hallmarks of epithelial-
mesenchymal transition (EMT), an embryonic genetic program hijacked by cancer cells.
EMT and the reverse process, mesenchymal-epithelial transition (MET), constitute a major
source of tumour cell plasticity, and represent an important factor of cancer heterogene-
ity [81,82]. Notably, the transcription factors that regulate EMT (so-called EMT-TFs) during
normal embryonic development and tumorigenesis are shared. EMT-TFs belonging to
the ZEB (ZEB1 and ZEB2), SNAIL (SNAIL1 and SNAIL2/SLUG), and TWIST (TWIST1
and TWIST2) families are best-studied in the context of cancer [83,84]. EMT-TFs repress
transcription of epithelial markers, and directly or indirectly activate mesenchymal genes
such as vimentin. In the course of complete mesenchymal reprogramming, cells lose all
epithelial characteristics, gain mesenchymal markers, mesenchymal type of cell polarity,
and high invasive capabilities. It is now broadly accepted that EMT and MET are not binary
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processes, and cancer cells acquire intermediate differentiation states combining epithelial
and mesenchymal features (so-called partial or hybrid EMT) [85,86] (Figure 2A). These
cell populations with hybrid epithelial and mesenchymal characteristics were isolated
from genetically manipulated mouse models and patient-derived xenotransplants [85,87].
Whereas proliferative potential gradually decreases when cells progress from epithelial to
a mesenchymal state, their invasive potential increases. Cells in a hybrid EMT state express
EMT-TFs; they exhibit the highest tumourigenic potential and metastatic capacity. Hybrid
(especially late hybrid) EMT cells are phenotypically less stable than fully differentiated
epithelial or mesenchymal tumour cells. This can be explained by the fact that epithelial or
mesenchymal endpoints are stabilized by self-enforcing double-negative feedbacks formed
between EMT-TFs and certain miRNA species (SNAIL1-miR-34 or ZEB1/2-miR-200) [85].

Figure 2. AXL pathway promotes drug resistance and metastasis in carcinoma. (A) Reversible EMT
states of tumour cells in carcinomas. Transient activation of AXL signaling shifts the balance towards
the mesenchymal end of the spectrum. (B) Therapeutic intervention results in apoptosis in a bulk of
a tumour leading to PtdSer externalization and activation of AXL pathway in a proportion of tumour
cells. By activating cell survival and EMT pathways, AXL stimulates the formation of invasive
and drug resistant cells (drug tolerant persisters, DTPs). DTPs represent the source for the genetic
evolution of cancer, cancer relapse, and spread.

7.2. AXL Belongs to the Mesenchymal Gene Expression Signatures Characterizing Aggressive Cancers

The association between AXL signaling and EMT has been reported in different cancer
types. The expression and function of AXL are regulated at the transcriptional level by
proteins implicated in epithelial-mesenchymal plasticity. ∆Np63α, HIF1α, YAP1/TEAD
and FRA1/cJUN transcription factor complexes, and EMT-TF ZEB1 control AXL gene tran-
scription directly [88–92]. At the post-transcriptional level, AXL expression is co-regulated
with EMT-TFs of SNAIL family by miR-34, a p53-induced SNAIL repressor [93–95]. Tran-
scription factors up-regulating AXL transcription are parts of gene regulatory networks
operating in mesenchymal and hybrid states. Whereas, miR-34 favours MET in cells with
wild-type p53. Thus, AXL seems to belong to gene expression patterns favouring EMT and
invasion, whose activation is promoted by mutations in TP53. In line with these consid-
erations, AXL expression was detected in the most aggressive subtypes of bladder and
ovarian cancers characterized by EMT and mutant TP53 signatures [2,26,96–98]. In breast
cancer, AXL was identified as a component of the ∆Np63α-driven hybrid EMT program.
The resulting cells retained some epithelial traits, but were highly invasive [90]. In several
reports, a driver rather than a passenger role of AXL in EMT has been demonstrated. AXL
inhibition by small molecule compounds or RNA interference led to a partial MET in breast,
lung, ovarian, or pancreatic carcinoma cells [1,26,99,100].

Interestingly, while AXL is expressed in mouse embryos, it is implicated in cancer EMT
and EMT drives critical stages of embryonic development. AXL expression is dispensable



Cancers 2021, 13, 4864 10 of 17

for embryogenesis. This peculiarity distinguishes AXL from many other RTKs, as well as
most EMT inducers and effectors whose genetic ablations have more severe phenotypes
and often cause embryonic lethality. The lack of embryonic abnormalities in AXL−/− mice
resembles normal development of mouse embryos with depleted vimentin, a canonical
EMT marker [101].

7.3. AXL Is Implicated in Metastasis in Experimental In Vivo Models

Consistent with the role of AXL in promoting EMT in cancer, targeting AXL by
selective inhibitors, germline knockout, RNAi, and inactivating mAbs prevented etastasis
of various epithelial tumours, including but not limited to, breast, lung, ovarian, and
colorectal cancers. The analysis has been carried out in genetic mouse models, cell line-
derived xenografts (CDX), patients-derived xenografts (PDX), and in various experimental
metastasis assays (summarized in Table 2).

Table 2. In vivo models demonstrate essential role of AXL in cancer metastasis.

Cancer Type Type of Study Method of AXL Inhibition Reference

Breast cancer Orthotopic model shRNA [102]

Breast cancer Intravenous metastasis assay Anti-AXL mAb YW327.6S2 [60]

Breast cancer Orthotopic model and lung
metastasis assay AXLi R428 [103]

Breast cancer Lung metastasis assay AXLi R428; shRNA [104]

Breast cancer (*) CDX AXLi R428; shRNA [101]

Breast cancer CDX AXLi [105]

Breast cancer CDX AXLi [106]

Breast cancer Orthotopic model CRISPR/Cas9 gene inactivation [107]

Triple-Negative Breast Cancer Orthotopic model shRNAi [99]

Triple-Negative Breast Cancer CDX or (**) PDX Anti-AXL mAb 20G7-D9 [108]

Triple-Negative Breast Cancer CDX pan-TAM kinase inhibitor
BMS-777607 [109]

HER2 + Breast Cancer Genetically modified mice Germline knockout [27]

Breast cancer, cutaneous
melanoma CDX Pan-TAM inhibitor LDC1267 [80]

Ovarian, breast, pancreatic cancer CDX MYD1-72 Fc decoy receptor [110]

Ovarian cancer Peritoneal xenografts shRNA, sAXL (acts as a decoy
receptor) [111]

Ovarian cancer Intraperitoneal injections MYD1 Fc decoy receptor [112]

Ovarian cancer CDX AXL-aptamer [113]

Endometrial cancer Orthotopic shRNA [114]

Uterine cancer CDX siRNA [115]

Pancreatic cancer CDX Anti-AXL mAb 10C9 [100]

Colorectal cancer CDX (effect on dissemination in the
bloodstream) Ectopic expression of AXL [116]

Gastric cancer CDX shRNA [117]

Clear cell renal cell carcinoma Lung metastasis assay shRNA, sAXL-IgG1 fusion [91]

NSCLC Lung metastasis assay shRNA [118]

NSCLC Intracardiac injections shRNA [119]

(*) CDX, cell lines-derived xenografts. (**) PDX, patient-derived xenografts.
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Although AXL inhibition prevents metastases (Table 2), constitutive ectopic expression
of AXL in metastatic breast cancer cells did not promote, but instead reduced the metastatic
traits analysed in intravenous metastasis assay. In later stages of the metastatic process,
the downregulation of AXL signaling was required for the interaction between cancer cells
and the microenvironment in the metastatic niches, and successful metastatic colonization
of the lungs [104]. Therefore, the reversibility of AXL signaling, but not persistent AXL
activation facilitates metastatic dissemination. Two considerations support this conclusion.
Firstly, the AXL gene is rarely amplified or mutated in human cancer, which is in stark
contrast to some other RTKs. Secondly, the expression of AXL is a characteristic of cells
residing in the hybrid state of EMT spectrum [90,120]. This cell state retains the potential
to regenerate fully differentiated AXL-negative cells.

7.4. Hypothetical Role of AXL in the Formation of Drug Tolerant Persister Cancer Cells

A dynamic equilibrium between differentiation states along the EMT/MET axis exists
in most solid tumours (Figure 2A). EMT-TFs are present in cells with hybrid or mes-
enchymal phenotype, and activate mechanisms maintaining genome integrity, multi-drug
resistance, and cell survival [121]. The survival of tumour cells with mesenchymal or hybrid
characteristics upon treatment with conventional chemotherapy drugs has been demon-
strated in vivo using mouse models of breast and pancreatic adenocarcinoma [122,123].
Acute exposure of cancer cells to the drugs in vitro does not lead to the eradication of the
whole cell population. A small pool of viable cells, or DTPs, survive treatment and repre-
sent the source for the genetic evolution of tumours and eventually relapse [124] (Figure 2B).
The presence of DTPs in the bone marrow of cancer patients after therapeutic intervention,
a condition termed the minimal residual disease, indicates a high probability of cancer
relapse. It has been previously hypothesized that DTP cells originate from the tumour cells
residing in hybrid or mesenchymal states along the EMT/MET spectrum [125,126].

It can be speculated that AXL pathways play a decisive role in the generation and
survival of DTP pools. Application of cytotoxic drugs induces apoptosis in the epithelial
cells representing the bulk of the tumour, and externalization of PtdSer in the affected cells.
The engagement of PtdSer with GAS6 may lead to the activation of AXL signaling in hybrid
EMT/MET tumour cells (Figure 2). Within TME, GAS6 is broadly available; it is secreted
by some tumour cells, cancer-associated fibroblasts (CAFs), dendritic cells, and tumour
associated macrophages. Production of GAS6 is further stimulated by immunosuppressive
cytokines IL10 and IFNα, whose presence in TME is promoted by externalized PtdSer
in apoptotic cells and bodies [127]. Activation of AXL signaling in hybrid EMT/MET
tumour cells will have several important consequences. First, the signaling contributes
to cell survival via canonical anti-apoptotic pathways leading to the formation of drug-
resistant DTP pools. Secondly, the activation of AXL in hybrid cells moves the EMT/MET
equilibrium towards the mesenchymal end of the EMT/MET spectrum. Activation of
the AXL-ELMO-DOCK180 axis and other EMT-associated signaling pathways lead to the
enhanced migratory and invasive potential of DTP cells, their ability to disseminate and
switch on the immune-escape mechanisms [128]. This hypothetical model explains broadly
documented implication of AXL pathway in drug resistance and cancer metastasis (Table 2).

8. Concluding Remarks

AXL signaling has emerged as an important pathway contributing to tumour pro-
gression, metastasis, and therapy resistance. This critical role of AXL in various types of
solid cancers arises from AXL function in healthy tissue. Mouse modelling and in vitro
experiments demonstrated that AXL, and its relative MER, are essential for the activ-
ity of professional phagocytes in different tissues. The engulfment of dead cells during
efferocytosis involves the activation of PI3K signaling, cytoskeletal reorganization via
ELMO-DOCK180, and other molecular pathways implicated in cancer cell motility. The
efficient clearance of apoptotic cells is an important factor of anti-inflammatory response.
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In addition, the role of AXL in immunosuppression is associated with the down-regulation
of TLR signaling in dendritic cells and suppression of NK activity.

The AXL receptor is expressed both in tumour cells, which experience a complete or
partial EMT, and in TME. It seems that in tumour cells, AXL signaling is activated via a
mechanism similar to that operating during efferocytosis, when GAS6 ligand binds PtdSer
on the membranes of dying cells and apoptotic bodies. Both these factors, GAS6 and PtdSer,
are readily available in TME. GAS6 is produced by CAFs and other cells within tumour
tissue, and externalized PtdSer is abundant due to stress- and cell death-causing conditions,
such as oxygen radicals or hypoxia. Therapeutic interventions induce cell death in bulks of
the tumours, and thereby promote AXL activation in subpopulations of AXL-expressing
cells. This leads to the activation of cell survival via PI3K and EMT pathways and the
formation of pools of DTP cells, which are therapy-resistant and invasive.

Another feature that specifies a broad role of AXL pathway in cancer biology is the
incorporation of AXL in oncogenic signaling pathways operating in various cancers. AXL
physically and functionally interacts with EGFR family members, other RTKs, and SRC
family kinases among others. The consequence of this deep integration of AXL in oncogenic
signaling networks is GAS6-independent activation of AXL in some cases.

Equally important for tumour biology is AXL function in dendritic and NK cells.
By terminating TLR signaling in dendritic cells and suppressing NK, AXL generates an
immunosuppressive environment and helps cancer cells to evade immune surveillance.
The dual role of AXL in tumour and immune cells explains the reason why AXL inhibition
synergizes with such a broad spectrum of therapeutic agents. The targeting of AXL moves
cancer cells toward the epithelial end of EMT/MET spectrum and sensitizes them to chemo-,
radio- or targeted therapies, which efficiently eradicate proliferating epithelial cells. On
the other hand, AXL inactivation blocks the negative regulation of dendritic and NK cells,
stimulates innate immunity, and thereby potentiates the efficacy of immune checkpoint
inhibitors (Table 1). Currently, ongoing clinical trials have been aimed at identifying
combinatorial therapeutic schemes which include AXL inhibition and are optimal for
particular cancer types. Further research is needed to discover biomarkers that will help
identify benefits to patients and evaluate tumour responses to AXL-targeted therapies.
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