
 

APCOM 2021 
Online via Zoom, 30 August – 1 September 2021 
The Southern African Institute of Mining and Metallurgy 

449 

Mineral resource modelling of variables with inequality 
constraints: a case study of an iron ore deposit 

 
 

S. Abulkhair and N. Madani 
 

Nazarbayev University, Kazakhstan 
 
 

In multivariate geostatistics, it is common to have different types of complexities between 
variables of interest. In this context, an inequality constraint is an example of complex 
bivariate relationships. Unfortunately, traditional co-kriging and co-simulation algorithms 
cannot reproduce this type of bivariate complexity, leading to the overestimation of 
disturbing elements. This paper proposes a new algorithm based on a hierarchical 
sequential Gaussian co-simulation framework, integrated with inverse transform 
sampling, to model inequality constraints between variables. First, the proposed 
methodology's validity was evaluated by applying it to a real case study from an iron 
deposit, with an inequality constraint between iron and aluminum oxide. Then the 
simulated results were compared with a conventional hierarchical co-simulation algorithm 
to investigate the effect of inverse transform sampling on the quality of the co-simulation. 
The results showed that the proposed algorithm can reproduce an inequality constraint 
between variables. 
 
 

INTRODUCTION 
 
Geostatistics aims to produce unbiased resource models using information from exploration boreholes 
and geophysical data (Goovaerts, 1997; Pyrcz and Deutsch, 2014). The accuracy of the produced models 
is usually investigated through histogram and variogram validation. However, the reproduction of 
spatial correlations between co-regionalised variables is another crucial aspect addressed by 
multivariate geostatistics (Wackernagel, 2003). Among others, Gaussian-based co-simulation 
algorithms, such as sequential Gaussian co-simulation (SGCOSIM) (Verly, 1993) and turning bands co-
simulation (TBCOSIM) (Emery, 2008), are widely-used techniques. Moreover, various factorisation-
based methods have been designed to avoid the tedious fitting of cross variograms (Davis and Greenes, 
1983; Desbarats and Dimitrakopoulos, 2000; Leuangthong and Deutsch, 2003; Emery and Ortiz, 2012; 
Barnett et al., 2014). However, one of the limitations of many co-simulation and factorisation algorithms 
is the reproduction of an inequality constraint. This is a type of bivariate complexity, which is 
characterised by linear inequation. Several authors have tried to incorporate factorisation-based 
approaches in the modelling of multivariate datasets, with inequality constraints between variables. For 
example, Emery (2012) proposed transforming variables into Gaussian random fields using stepwise 
conditional transformation (Leuangthong and Deutsch, 2003), followed by co-simulation of 
transformed variables. Alternatively, projection pursuit multivariate transform (Barnett et al., 2014) can 
be applied to variables changed into ratios (Arcari Bassani et al., 2018). Another method involves 
changing data into variables free of inequality constraints using minimum/maximum autocorrelation 
factors (Desbarats and Dimitrakopoulos, 2000), and then simulating them independently (Abildin, 
2019). Nevertheless, factorisation-based methods have their limitations, including poor performance in 
the case of heterotopic sampling, and unidentical marginal distributions (Madani and Abulkhair, 2020).
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A new geostatistical algorithm is proposed in this paper, which was inspired by hierarchical 
cosimulation with an acceptance–rejection method (Madani and Abulkhair, 2020). Considering that the 
acceptance–rejection technique can be time-consuming depending on the dataset, the method was 
replaced with inverse transform sampling. As a result, the simulation speed was considerably faster, 
because inverse transform sampling resimulates rejected values in one iteration. Furthermore, this 
algorithm can potentially work with partially heterotopic datasets. For example, Abulkhair and Madani 
(2021) integrated heterotopic moving neighbourhood configurations, namely single and multiple 
searching strategies, in the proposed algorithm to replace collocated and multicollocated co-kriging. 
The objectives of this paper are as follows: 1) Provide a methodology of conventional hierarchical 
cosimulation (Almeida and Journel, 1994), and integrate inverse transform sampling into the second 
simulation. 2) Present a real case study from an iron deposit with an inequality constraint between iron 
and aluminum oxide. 3) Compare the proposed and conventional hierarchical co-simulations based on 
the reproduction of histograms, variograms, and bivariate relationships 
 
METHODOLOGY 
 
The proposed algorithm is based on hierarchical sequential Gaussian co-simulation (Almeida and 
Journel, 1994), which simulates the primary variable first, and then simulates each of the remaining 
variables, conditional on the previous simulations using simple collocated co-kriging. In this study, this 
algorithm was adapted for bivariate datasets with an inequality constraint between variables. To do so, 
the secondary variable could be resimulated in multiple iterations using an acceptance–rejection 
method (Madani and Abulkhair, 2020), or in one iteration using inverse transform sampling (Abulkhair 
and Madani, 2021). However, it is important to note that these algorithms resimulate only those values 
that lie outside an inequality constraint. The steps of the proposed hierarchical co-simulation integrated 
with inverse transform sampling are as follows: 
 
1. The transformation of primary 𝑌" and secondary 𝑌#  variables into their respective normal scores 𝑍" 

and 𝑍#. The primary variable should be the most prominent in the deposit, and comes first in the 
hierarchical order. 

 
2. The definition of the simulation path (either regular or random) so that each target location 𝑥& is 

visited only once.  
 
3. The determination of the Gaussian conditional cumulative distribution function (ccdf) at each node 

𝑥& in order to obtain global statistical parameters of the primary variable. Simple co-kriging is used 
as an estimator for the co-simulation of n realisations for each transformed variable: 

 

𝑍"'(𝑥&) = 𝑍"+,-(𝑥&) + /𝜎"
1
+,-(𝑥&) ∙ 𝑈

' [1] 

 
where 𝑍"+,- is a simple co-kriging estimator, 𝜎"1+,- is its estimation variance, and 𝑈' is an 
independent random value. 

 
Step 3 is applied to all grid nodes so that the primary variable will be available in the entire region. 

 
4. Global statistical parameters of the secondary variable are obtained by determining the Gaussian 

ccdf at each node 𝑥&. In this step, the simple collocated co-kriging SCCK is used for co-simulation, 
taking into account simulated results of the primary variable in addition to the hard data: 

 

𝑍#'(𝑥&) = 𝑍#+,,-(𝑥&) + /𝜎#
1
+,,-(𝑥&) ∙ 𝑈

' [2] 

 
where 𝑍#+,,- is a simple collocated co-kriging estimator and 𝜎#1+,,- is its estimation variance. 

 
Step 4 is looped to simulate the secondary variable for all grid nodes. 
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5. After step 4 is looped until all grid nodes are simulated, inverse transform sampling is used to 
generate random numbers within thresholds from an inequation. This step proceeds as follows: 

 
5.1. The back-transformation of simulated values 𝑍"'(𝑥&) (primary variable) to the original scale 

𝑌"'(𝑥&). 
 
5.2. The determination of minimum and maximum thresholds according to the linear inequation 

between primary and secondary variables. Linear inequation can be negative, 𝑌# ≤ 𝑎𝑌" + 𝑏, or 
positive, 𝑌# ≥ 𝑎𝑌" + 𝑏, and thresholds are obtained in the following way: 

 

8
𝑌#'9:' = min(𝑌#) 	𝑎𝑛𝑑	𝑌#'9AB = 𝑎𝑌"'(𝑥&) + 𝑏	𝑖𝑓	𝑖𝑛𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑌#'9:' = 𝑎𝑌"'(𝑥&) + 𝑏	𝑎𝑛𝑑	𝑌#'9AB = max(𝑌#) 𝑖𝑓	𝑖𝑛𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 [3] 

 
where 𝑎 is a slope, 𝑏 is an intercept, min(𝑌#) and max(𝑌#) are the minimum and maximum 
values of the secondary variable in the original dataset. 

 
5.3. The transformation of 𝑌#'9:' and 𝑌#'9AB to normal scores 𝑍#'9:' and 𝑍#'9AB to identify simulated 

values of the secondary variable that lie outside this interval. Store identified values as 𝑚 
realisations. 

 
5.4. The implementation of inverse transform sampling to generate random numbers 𝑉9 within 

truncated thresholds [𝑍#99:',𝑍#
9
9AB], for all values identified in Step 5.3: 

 
𝑉9 = 𝐹VW(𝐹X𝑍#99:'Y + Z𝐹X𝑍#

9
9ABY − 𝐹X𝑍#

9
9:'Y\ ∙ 𝑈

9 [4] 
 

where 𝐹 is the conditioned cumulative distribution function and 𝐹VW is the quantile function. 
 

5.5. The resimulation of the values found in Step 5.3 using random numbers 𝑉9 generated through 
inverse transform sampling: 

 

𝑍#9(𝑥&) = 𝑍#+,,-(𝑥&) + /𝜎#
1
+,,-(𝑥&) ∙ 𝑉

9 [5] 

 
5.6. Loop until all identified values are re-simulated. 

 
6. Back-transformation of normal score simulated values 𝑍"' and 𝑍#' to the original scale of primary 𝑌"' 

and secondary 𝑌#' variables. 
 
Different co-kriging configurations can be implemented in both steps of the hierarchical co-simulation. 
This study focused on simple and collocated co-kriging, as used in the original conventional algorithm.  
 
 
RESULTS 
 
Case study 
The proposed algorithm was applied to a real case study of an iron deposit, which showed a strong 
inequality constraint between iron and aluminum oxide. The original data consisted of 608 sample 
points from exploration boreholes, and both iron and aluminum oxide grades were used as hard 
conditioning data (see Figure 1). However, there was a particular bias in the sampling strategy, as there 
were zones where boreholes are not available. Therefore, cell-declustering (Deutsch, 1989) was applied 
to resolve this issue using 800 m × 800 m × 80 m cell dimensions. The statistical parameters after 
declustering are presented in Table 1. 
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Figure 1. Location maps of iron and aluminum oxide grades. 
 
Table 1. Declustered statistical parameters of the iron dataset 
 

Parameter Value (%) 
Mean iron grade 63.77 
Mean aluminum oxide grade 1.87 
Standard deviation of iron 7.14 
Standard deviation of aluminum oxide 3.70 
Correlation coefficient –0.81 

 
Figure 2 shows a scatter plot between the primary variable, iron, and the secondary variable, aluminum 
oxide. Each variable's marginal distribution demonstrated that the deposit, in general, has a high iron 
content and low aluminum oxide grade. There was a sharp inequality constraint, which should be 
reproduced to obtain an accurate model of the deposit. The inequality constraint was characterised by 
an inequation with a slope 𝑎 = −0.89 and an intercept 𝑏 = 62: 
 

𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚	𝑜𝑥𝑖𝑑𝑒 = −0.89 ∙ 𝐼𝑟𝑜𝑛 + 62 [6] 
 

 
 

Figure 2. Scatter plot of iron and aluminum oxide, with their corresponding marginal distributions. Blue line: 
inequality constraint; red dashed line: example of obtaining truncated thresholds for inverse transform sampling. 
 
The next step was to model direct and cross-variograms using variables transformed into normal scores. 
After checking the multi-Gaussianity assumption, it was concluded that this dataset was suitable to 
employ a co-simulation algorithm. It was decided to use an omnidirectional variogram, because no 
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anisotropy was detected in the vertical and horizontal directions. As a result, theoretical variograms 
were manually fitted to obtain a two-structured linear model of co-regionalisation (see Figure 3). 
 

Z ghi
gjklmn hi⁄

ghi jklmn⁄
gjklmn

\ = X &.pqV&.rs
V&.rs
&.ps Y𝑆𝑝ℎ(45𝑚, 45𝑚, 45𝑚) + X

&.1x
V&.1y

V&.1y
&.xr Y𝑆𝑝ℎ(225𝑚, 225𝑚, 225𝑚) [7] 

 

 
 

Figure 3. Direct and cross variograms of iron and aluminum oxide normal scores. 
 
Co-simulation results 
The proposed hierarchical co-simulation algorithm was assessed by comparing it to the conventional 
co-simulation algorithm. The fairness of this comparison is justified because the only difference between 
algorithms is the integration of inverse transform sampling. Using the block dimension of 15 m × 15 m 
× 15 m, 100 realisations of iron and aluminum oxide grades were simulated by both the proposed and 
conventional algorithms. E-type and standard deviation maps of aluminum oxide show that the 
proposed algorithm prohibits the overestimation of the secondary variable (see Figure 4). 
 

  
(a) (b) 

 
Figure 4. E-type (a) and standard deviation (b) maps of aluminum oxide over 100 realisations from conventional 

and proposed co-simulation algorithms. 
 
The general statistical parameters of the produced realisations proved that inverse transform sampling 
helps to produce a higher correlation coefficient between variables (see Table 2). However, there was 
also an underestimation of aluminum oxide’s mean and standard deviation values with the proposed 
algorithm. One of the main limitations of the proposed algorithm, as discussed by Madani and 
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Abulkhair (2020), is the reproduction of variance of the secondary variable. The reason for this is still 
unknown at this point. Furthermore, the resimulation of the secondary variable using inverse transform 
sampling always decreases the mean and variance if the inequation is negative. One possible reason for 
this could be the biased sampling pattern in the original dataset, where most of the samples had high 
iron and low aluminum oxide grades. Nevertheless, conventional co-simulation overestimates 
aluminum oxide and produces results way above the inequality constraint, however, the simulated 
mean is still lower than the original.    
 
Table 2. Reproduction of the mean, standard deviation and correlation coefficient by the conventional and 
proposed cosimulation algorithms 
 

Parameter Conventional Proposed Original 
Mean: iron (%) 63.99 63.99 63.77 
Mean: aluminum oxide (%) 1.95 1.50 1.87 
Standard deviation: iron (%) 6.68 6.68 7.14 
Standard deviation: aluminum oxide (%) 3.89 2.75 3.70 
Correlation coefficient –0.61 –0.7 –0.81 

 
Statistical validation 
Validation of geostatistical models is based on two significant factors: histogram and variogram 
reproduction. Histogram validation illustrates how well the model reproduces the marginal 
distribution of the original dataset. At the same time, variogram validation shows the reproduction of 
local statistics or spatial continuity. Figure 5 compares histograms from the first realisation simulated 
by the conventional and proposed algorithms with the original dataset. The histograms of both iron and 
aluminum oxide were well reproduced, and integration of inverse transform sampling did not affect 
the shape of the marginal distribution.  
 

  
(a) (b) 

 
Figure 5. Histogram reproduction of iron (a) and aluminum oxide (b) simulated by the conventional and 

proposed co-simulation algorithms. 
 
However, considering the skewness of aluminum oxide’s marginal distribution, histograms from Figure 
5b are difficult to compare. Therefore, distributions of realisations produced by both algorithms were 
compared to the original distribution of aluminum oxide through a quantile-quantile (Q–Q) plot (see 
Figure 6).  The logarithmic scale was used to demonstrate Q–Q plots, because of the scarcity of data in 
higher quantiles and most original aluminum oxide samples having a grade of 0–4 %. As a result, 
realisations fit the diagonal lines up to the grade of 4%, meaning that data distributions were correctly 
reproduced. The difference between algorithms is evident in the upper quantiles, which can be 
explained by the scarcity of data. 
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(a) (b) 

 
Figure 6. Quantile–quantile plots between original and simulated aluminum oxide grades for the conventional 

(a) and proposed (b) algorithms. Green points: realisations; black line: identity line.  
 
The spatial correlation structure can be assessed by modelling direct, and cross variograms of each 
realisation and comparing the results with experimental variograms (see Figure 7). Both algorithms 
showed promising results in terms of local statistics reproduction. The variability was higher in direct 
variograms of aluminum oxide from conventional simulations, which has also been demonstrated in 
global statistics. On the other hand, cross variograms were better reproduced by the proposed 
algorithm.  
 

  
(a) (b) 

 
Figure 7. Reproduction of standardised direct and cross variograms produced by the conventional (a) and 

proposed (b) co-simulation algorithms. 
 
Finally, the validation of the bivariate relationship between iron and aluminum oxide is shown through 
scatter plots (see Figure 8). It can be seen that the conventional co-simulation algorithm failed to 
reproduce the bivariate relationship. While individual statistics of each variable showed promising 
results, only the proposed algorithm was able to reproduce an inequality constraint without significant 
loss in terms of other statistical validations. Inability to reproduce inequality constraints can lead to 
overestimation of disturbing elements, negatively affecting mine planning results.   
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Figure 8. Reproduction of scatter plots between iron and aluminum oxide by the conventional and proposed co-
simulation algorithms. 

 
 
CONCLUSION 
 
An updated geostatistical algorithm based on hierarchical co-simulation is presented in this paper, 
which integrates inverse transform sampling to model bivariate datasets with inequality constraints. 
The benefits of this type of algorithm were demonstrated through comparison with conventional 
hierarchical co-simulation. For this purpose, the conventional and proposed co-simulation algorithms 
were applied to a case study of an iron deposit, with an inequality constraint between iron and 
aluminum oxide. Compared to conventional co-simulation, the proposed algorithm was able to 
reproduce an inequality constraint between iron and aluminum oxide. Nevertheless, one of the many 
concerns before conducting this study was the effect of inverse transform sampling on the marginal 
distribution of the secondary variable. This study showed that the shape of the marginal distribution is 
not significantly affected by the resimulation of the secondary variable within truncated thresholds. 
Furthermore, simulated direct and cross-variograms fit in well with the experimental variogram points.  
 
However, both algorithms considerably underestimated aluminum oxide in terms of mean and 
standard deviation. One possible reason for this is the nature of this dataset, which had quite a biased 
sampling pattern, with the majority of samples coming from zones with high iron and low aluminum 
oxide grades. Moreover, conventional co-simulation methodologies reproduce bivariate relationships 
only, based on the cross-correlation structure. Therefore, highly skewed marginal distributions, and 
moderate correlation coefficients can result in simulated points being spread out even more. 
Alternatively, a similar case study with a high correlation coefficient (–0.95) and more uniform marginal 
distributions showed far better simulation results, without severe underestimation of the secondary 
variable (Madani and Abulkhair, 2020).      
 
The proposed algorithm can be significantly improved in several ways: 1) Multiple and multicollocated 
searching strategies can be implemented as far better options than single, isotopic, and collocated 
searches (Madani and Emery, 2019). 2) The algorithm can be extended to multivariate cases with more 
than two variables, so that each variable can be simulated hierarchically conditional to previous 
simulations. 3) Inverse transform sampling can also be used with non-linear inequations, instead of only 
linear inequality constraints. Nevertheless, the proposed methodology still needs to be further 
researched to improve the reproduction of basic statistical parameters (i.e., mean and variance). 
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