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Abstract

Accurate prediction of solar photovoltaic plant energy generation is essential for optimal
planning and operation of modern power systems, and incorporating such plants into the
energy sector. In this study, an adaptive Gaussian mixture method (AGM) and a devel-
oped variational Bayesian model (VBM) inference through multikernel regression (MkR)
are utilized to assist desirable precise prediction. In this model, the MkR processes the mul-
tiresolution solar energy signal, and then the AGM models the complex signals forecasting
error. Finally, the proposed model can be optimized, and the concurrent output of the
solar energy signal in both probabilistic and deterministic status can be attained through
the introduction of the VBM. The solar energy output of an actual plant, including four
measurement sites provided the data for the study. The results confirmed that the pro-
posed model delivers higher prediction accuracy for both probabilistic and deterministic
forecasts when compared with other well-known models.

1 INTRODUCTION

While renewable energy generation sources continue to con-
tribute an ever-higher percentage in the energy sector, the con-
sumption continues to rise dramatically. The reason is that the
electrification of transportation and the heating sectors have
been making progress and their demand increased significantly.

However, the unpredictability of renewable energy genera-
tion plants and most notably solar energy power plants cre-
ates challenges for both power system operation and planning
activities. Accurate prediction models for different time frames,
namely, a day ahead, an hour ahead, within minutes and also
seconds are required for different system functionalities and
purposes, such as planning, control, and market pre-dispatch
[1–10].

In [3], a correlation of the sun’s radiation variabilities in near
sites as a function of their distances was investigated. In [4],
a sub-hourly variability of photovoltaic (PV) energy based on
hourly satellite-derived insolation data was forecasted. In [5], to
increase the cloud tracking model, a neural-network-based fore-
casting engine was presented to predict 15 min ahead.

All the prediction methods should assure suitable level of sta-
bility, accuracy and should be able to operate on different time
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horizons. Various deterministic methods have been proposed
by researchers for solar PV power. However, the enhancement
of probabilistic methods can play a crucial role in the prediction
process since they can be a suitable model for PV uncertainties
and also can reduce some risks in market participation [5]. In [6],
the authors proposed quartile regression models to address the
abovementioned problem. A Bayesian model was presented in
[7], and a hybrid model based on the k-nearest neighbours and
the kernel density function was introduced in [8]. Stochastic dif-
ferential equations were suggested in [9]. Additionally, a proba-
bilistic spatial method was presented in [10]. Applying a series
of multiple forecasters rather than a single forecaster to present
such models is significant for obtaining improved results. Hypo-
thetically, the single forecasters can be either probabilistic or
deterministic [2, 4, 6]. The deterministic models are based on
machine learning models such as gradient boosting. It would be
better to have a linear collection of various probabilistic fore-
casters to perform aggregate forecasting, as presented in [11].
This model can be combined with a Bayesian framework that
is based on a logarithmic collective [11]. A review on some
prediction methods for solar signal is presented in Table 1.
Also, Figure 1 shows that among the previous research works
between 2010 and 2019, 55% are based on multi-layer model,
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FIGURE 1 Solar energy prediction models (a), Time scale horizons (b),
and involved countries for solar energy forecasting

and 36% are based on hybrid methods while 90% are studied in
short term domain, in different countries.

The hybrid solar forecasting models can be considered for
this problem as they are able to provide speed convergence
and accurate forecasting outcomes. Moreover, the single/simple
approaches can fail in desired solution finding which proofs the
importance of application of hybridization methods. Addition-
ally, it can be mentioned that all the hybrid approaches provide
high performance in comparison to the stand-alone methods
with various inputs/outputs, in all test cases.

The main goals of a probabilistic forecasting model are to
deliver fast prediction along with proper reliability that are at
the centre and considered as a core in a forecasting model. The
speed can concentrate on the probabilities, and the reliability
can focus on the accuracy of the probabilistic predictions. The
probabilistic prediction model should be accompanied by suffi-
cient standards to achieve quick and reliable forecasting. Some
data and hence, information may be lost during the data trans-
formation. The high-resolution solar energy data recording is
the model input to prevent data and information losses.

Benefits of Gaussian mixture method (GMM) can be sum-
marized in easy implementation and requires a small number
of parameters. Furthermore, the log-likelihood function is basi-
cally simple which is employed to predict the variables. More-
over, the Bayesian model is used in this work. It corresponds
to the minimum variational free energy and a lower bound of
the Bayesian evidence, which is in turn a vital factor for choos-
ing the model. The Bayesian model can be also effective in
approximation method since the variational stochastic complex-
ity displays the distance from the variational posterior distri-
bution to the true Bayesian posterior distribution in terms of
Kullback information. Additionally, this model can affect hyper-
parameters on the learning process while, the VBM minimizes
the variational free energy, the derived bounds specify how
the hyperparameters impact the learning procedure. Hence, the
advantages of proposed model can solve the proposed forecast-
ing problem as complex signals can be incorporated, adaptive
spatial or other regularizing priors can be used in this model,
and it can be also extended to hierarchical models. In this study,
we incorporate the proposed model based on adaptive Gaussian
mixture method (AGM) and a developed variational Bayesian
model (VBM) inference through multikernel regression (MkR).

Moreover, a mean-max discrepancy method is considered
that addresses the kernel function to obtain the appropriate fea-
tures in Hilbert space. In the next step, the proposed improved
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mean-max discrepancy (IMD) function maps the features to
the Hilbert space. The kernel function could also map the pro-
cessed data into the Hilbert space within the required time-
frame. The construction of the MkR must use this technique,
which employs multiresolution information. The MkR pro-
cesses the multiresolution solar energy signal and then the AGM
will model the complex signal’s forecasting error. Finally, the
proposed model can be optimized, and the concurrent output
of the solar energy signal in probabilistic and deterministic sta-
tus can be attained by utilizing variational Bayesian methods that
cause each forecast to possess a continuous probability density
function (PDF).

The key considerations and contributions of this paper can
be summarized as follows:

▪ Applying an improved version of a mean-max discrepancy
model based on allocating a weight for the samples’ func-
tions.

▪ Utilizing the AGM method to model the complex signals of
the forecasting error.

▪ Integrating the VBM model to optimize the proposed model.
▪ Deriving concurrently, the deterministic and probabilistic

forecasts from the forecast distributions.
▪ Applying the AGMs as posterior distributions of the solar

energy forecasts.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the proposed forecasting model. Section 3
presents the estimation criteria for the prediction process. The
case study is presented in Section 4. Section 5 presents the
numerical results and analysis, and finally Section 6 summarizes
the conclusions of the paper.

2 PROPOSED FORECASTING MODEL

2.1 Proposed IMD model

In this section, the proposed method is introduced. The mecha-
nism of mean-max discrepancy starting with mapping of xi and
xj (as samples) according to the ϕ (x) function based on a ran-
dom variable x ∈ Rd. Then, the kernel function K (x i, x j) =
〈ϕ (x i), ϕ (x j)〉 assesses two samples’ similarity, where the inside
creation of the candidates is determined by 〈⋅, ⋅〉. The Gaussian
kernel that is the most common form of the kernel function is
computed as follows:

K (xi , x j ) = exp

⎛⎜⎜⎜⎝
‖‖‖xi − x j

‖‖‖2

−2𝜎2

⎞⎟⎟⎟⎠ . (1)

Based on (1), the Euclidean distance between xi and xj

is the criterion for computing the similarity between them.
However, according to the accidental parameters of X and Y
by the p(X) and p(Y) PDF, respectively, it is not appropriate to
use the Euclidean distance. The distance between distributions
p(X) and p(Y) is measured by mean-max dependency utilization.

FIGURE 2 Concept of the mean-max discrepancy strategy

The description is provided in Figure 2 and the calculation is
provided in [26].

MMD(p(X), p(Y)) = ‖𝜇X − 𝜇Y ‖2
H . (2)

In (2), the μX introduces the kernel embedding in RKHS for
the p (X) distribution and can be obtained as;

𝜇X ∶= EX [𝜙(X)] = EX [K (X, .)] = ∫ 𝜙(x )dp(x ). (3)

The practical application of p(X) is indirect. In other words, a
set of samples of {X1, X2… XN}, which are prolated by p (X),
are used instead of p(X). Then, the computation of the empirical
kernel embedding can be obtained through:

𝜇X =
1
N

N∑
i=1

K (Xi , .). (4)

Accordingly, the unbiased evaluator of the mean-max depen-
dency can be calculated as shown in [26].

M̄MD(p(X), p(Y)) =
1

NX (NX − 1)

NX∑
i=1

NX∑
j≠i

K (Xi ,Xj )

+
1

NY (NY − 1)

NY∑
i=1

NY∑
j≠i

K (Yi ,Yj )

−
2

NX NY

NX∑
i=1

NY∑
j=i

K (Xi ,Yj ). (5)

Finally, the resemblance among two accidental parameters
can be presented as:

K (𝜇X , 𝜇Y ) = exp

(
−

M̄MD

2𝜎2
𝜇

)
. (6)

2.1.1 Enhanced MMD

Due to non-existence bias between distributions, Equation (5)
will be evaluated. It is the estimator calculation that can cause
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unbiased samples from the solar signal candidates’ distribution.
In other words, if the samples are biased in our target distribu-
tion, that is, the solar signal, this evaluation can guess the vari-
ance among the simulations and the biased empirical distribu-
tion. Thus, our model will internally recalculate the biases. To
address this problem, an enhanced version of this model is pre-
sented while if the normalized constant of Z is assumed, the
unbiased estimator can be calculated among the P(y) and P(x)
by allocating a weight for the functions of the samples based on
λ(x)P(x) and the likelihood ratio of P(x)/λ(x)P(x) = 1/ λ(x), as
follows:

M̄MDw =
1

NX (NX − 1)

NX∑
i=1

NX∑
j≠i

1
𝜆(Xi )𝜆(Xj )

K (Xi ,Xj )

+
1

NY (NY − 1)

NY∑
i=1

NY∑
j≠i

K (Yi ,Yj )−
2

NX NY

×

NX∑
i=1

NY∑
j=i

1
𝜆(Xj )

K (Xi ,Yj ). (7)

However, as the exact value of λ(x) is not known, (7) must
change to (8) based on the self-normalized weights:

I Mw =

NX∑
i=1

NX∑
j≠i

𝜔(Xi )𝜔(Xj )K (Xi ,Xj )

+
1

NY (NY − 1)

NY∑
i=1

NY∑
j≠i

K (Yi ,Yj )

−
2

NY

NX∑
i=1

NY∑
j=i

𝜔(Xi )K (Xi ,Yj ), (8)

where, 𝜔(Xi ) =
1∕�̇�(Xi )∑NX

j=1 1∕�̇�(Xj )
. "

2.2 The classic model of the Gaussian
mixture

The classic version of the Gaussian mixture (GM) is composed
of K Gaussian members [27]. Therefore, to obtain the probabil-
ity density (PD), those Gaussian constituents should be added
as obtained by:

p(x ) =
K∑

n=1

p(n)p(x |n ) =
K∑

n=1

𝜋nN

(
x
|||||𝜇n,

∑
n

)
(9)

Taking the logarithmic function was necessary due to the
small result of the multiplication of multiple probabilities. The

maximum likelihood function is expressed as follows:

max
N∑

i=1

log

(
K∑

n=1

𝜋nN (xi |𝜇n, 𝜎n )

)
. (10)

Phase one: The primary GM variable or the variables from the
prior iterative evaluation based on the PD for each K-GC gen-
erated signal are used [27].

𝛾(i, n) =
𝜋nN (xi |𝜇n, Σn )∑K

j=1 𝜋 j N (xi
|||𝜇 j , Σ j ))

. (11)

Phase two: The results from the first step by estimating the
parameters of the Gaussian model are used.

𝜇n =
1
N

K∑
i=1

𝛾(i, n)xi , (12)

Σn =
1

Nn

N∑
i=1

𝛾(i, n)(xi − 𝜇n )(xi − 𝜇n )T , (13)

Nn =

N∑
i=1

𝛾(i, n). (14)

Phase three: The first two phases are repeated until the likeli-
hood function value is less than the assumed threshold. In other
words, the first two phases are repeated to obtain a stable value
for the likelihood function.

2.2.1 Adaptive GM strategy

The classic GM method possesses a fixed mixing degree. The
main idea of the developed algorithm comprises three aspects.
Firstly, for a Gaussian component to be useful, it should not
have a light weight, and the related space, as well as the other
Gaussian component (GC) should not be less than a specific
value. Secondly, both GCs must avoid weight values being too
large and thirdly, both GCs must avoid distance values being
too small due to the merged GC. Additionally, if a GC’s weight
is large and its variance value is very large, the GC that shows
multiple fragments of the signal specification distribution will
be scattered.

The result of this division of the GC should be two compo-
nents. The process can be presented as follows:

1) the GC’s weight is defined as 𝜋i , which should be smaller
than the threshold 𝜃i . Furthermore, the space between the GCs
should be greater than D1. After omitting the defined compo-
nent, that is, 𝜋i , its Gaussian component weight was allocated
to the other components. Accordingly, the related degree of
GM can be −1. In this manner, if the multiple components are
removed, the lowest GC weights should be removed. Specif-
ically, the space of the ith and jth GCs are computed via the
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following formula:

Di j =
‖‖‖𝜇i − 𝜇 j

‖‖‖ =

√√√√ N∑
l=1

(𝜇l
i
− 𝜇l

j
)
2
. (15)

In (15), the dimension of mean GC is introduced by 1 = 1,
2,…, N.

2) A smaller space among the GCs when compared to D2
as the threshold and lower weights of the two GCs when com-
pared to 𝜃2 showed that the piece of information conveyed by
the two GCs was identical. Thus, the variables can be changed
as follows: {

𝜋T = 𝜋i + 𝜋 j , ai =
𝜋i

𝜋T

, a j =
𝜋 j

𝜋T

𝜇T = ai𝜇i + a j𝜇 j ,ΣT = aiΣi + aiΣ j

. (16)

The ith and the jth Gaussian components were substituted
with the new Gaussian component. Therefore, the related
degree of the GM can be −1. If the merging conditions were
met for multiple GCs, then those Gaussian components with
the nearest distance would be the target of merging.

3) The Gaussian component conveyed too much information
when the GC’s weight was larger than the defined threshold 𝜃3,
while the 𝛿 was larger as the variance. It needed to be separated
and its parameters changed as follows:

𝜋T =
1
2
𝜋i +

1
2n

, 𝜋T +1 =
1
2
𝜋i −

1
2n

𝜇T = 𝜇i + aE , 𝜇T +1 = 𝜇i − aE

ΣT = ΣT +1 = (1 + 𝛽)−1Σi . (17)

As is evident in the formula, the diagonal of Σi was a =
Σ∗

i

2n
, Σ∗

i with the maximum value. The dimension and all ele-
ments of the matrix E = [1,…,N] were N and 1, respec-
tively. The original Gaussian component was replaced by the
most recent two Gaussian components {𝜋T , 𝜇T , ΣT } and
{𝜋T +1, 𝜇T +1, ΣT +1}. Hence, the related degree can be set to
+1. In this manner, if an appropriate condition is prepared for
multiple GCs, then the largest GC weight can be selected.

The first parameter should go through the updating process;
then, the expectation maximization (EM) algorithm should be
used for training. The number of training iterations should reach
the preset value; thus, the aforementioned two steps should be
repeated continuously until the value is reached.

2.3 Developed variational Bayesian model

Independent observations (n) should be denoted by x = (x1,
…, xn). In our context, the Dirichlet distribution is possible by
allowing p (θ) be the past dispersal of a Bayesian model [28]. In
the following one can see the formula θ ∼ D (α1,…, αK). In this
case, the hyperparameters are defined by αk > 0, k = 1, …, K.

Moreover, the marginal likelihood is introduced as:

m(x) ∶= ∫
ΘK

p(x |𝜃 )p(𝜃)d𝜃 =∫
ΘK

∑
Z∈ℑ

p(x |z )p(z |𝜃 )p(𝜃)d𝜃.

(18)

It is very important to estimate this quantity because it is used
for model selection. In general settings, although Markov Chain
Monte Carlo (MCMC) estimation of m(x) is probable, it is com-
plicated [28–30].

2.3.1 Classic variational estimator model

The lower-bound (L) of log m(x) is used to compose the varia-
tional Bayesian (VB) methods. Therefore, an approximate distri-
bution q should be diverged from the true posterior distribution
p. The divergence should be in a free-form minimization of the
Kullback–Leibler (KL) divergence, summarized as KL(q||p).

log m(x) = L + KL(q||p). (19)

Since KL is positive, it is obvious that the KL’s divergence
minimization is matched by the lower constraint’s maximization.
The optimization should be done within a restricted range of
distributions to manage the problem as follows:

ℑ =

{
g(𝜽, z) = g(𝜽 )g(z) ∶ g(z) =

n∏
i=1

∏
k=1K

𝜙
zik

iK

}
. (20)

The varied parameters are𝜙: = (𝜙
iK

: i = 1,…, n, k = 1, …, K).
In (18), z and θ are independent because the mixture models are
based on the VB methodology. Additionally, parameterizing is
performed only for the distribution of z, while the explicit ana-
lytical evaluation of the boundary is used for the approximate
distribution of θ as a byproduct.

By considering the distributions in (18), [29] imitates a con-
straint to the logarithm of (18) in the following manner:

log p(x |𝜽 ) = log
∑
Z∈ℑ

p(x, z |𝜃 ) = log
∑
Z∈ℑ

p(x, z |𝜃 )q(z)
q(z)

= log iq(z )
p(x, z |𝜃 )

q(z)
≥ iq(z )

{
p(x, z |𝜃 )

q(z)

}
=

n∑
i=1

K∑
k=1

𝜙ik{log fk(xi ) + log 𝜃k − log𝜙ik}. (21)

Considering (18) for all q (z) ∈ℑ, θ ∈ ΘK , we can write the
following:

m(x) ≥ ∫
ΘK

exp

(
n∑

i=1

K∑
k=1

𝜙ik{log fk(xi ) + log 𝜃k − log𝜙ik}

)
× p(𝜽 )d𝜽. (22)
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FIGURE 3 The kernel density of θk|x; MCMC (Yellow line), normal VB
(black dashed dotted line), Dirichlet (black dashed line), generalized Dirichlet
(black solid line), predicted MCMC (red dashed line) and VB means (red dotted
line)

In the above equation, the analytical assessment can be pre-
sented as follows:

log m(x) ≥ ℘1(𝜙) ∶= c +

K∑
k=1

logΓ

(
ak +

n∑
i=1

𝜙ik

)

+

n∑
i=1

𝜙ik{log fk(xi ) − log𝜙ik}. (23)

C and Γ (.) denote a known constant (not dependent on𝜙)
and the gamma function, respectively. Moreover, according to
the significance of the analytical integration of (22), θ is approx-
imately distributed, as follows:

q(𝜽 ) = D(𝛾k; k = 1, … ,K ). (24)

In the above formula, γk = αk +
∑n

i=1 𝜙ik. Then, the ele-
ment in ℘1(𝜙) could be maximized by using an EM-revised 𝜙.
The maximization of Equation (23) occurs using the proposed
algorithm in the slope. Therefore,

p
(𝜃k|x) indicates an estimate

of the density of future bordering in k = 1,…,K rising from
extended MCMC executions that are assumed to be the truth
[30].

An evaluation of
p
(𝜃k|x) against the VB estimate in Equa-

tion (24) is illustrated by the red lines in Figure 3. The pri-
mary downside of this technique is that it leads to variance
inaccuracy, although this approach displays favourable perfor-
mance in terms of the means of posterior (the black and red
dashed perpendicular lines). In Equation (24), the KL conver-
gence between the combined posterior p(𝜃, z|x) and the circu-
lations measured in Equation (21) is increased. Therefore, the
circulation would be improved. Nonetheless, it does not serve
as the “superlative” Dirichlet estimate of the posteriorp(𝜃|x),
considering the grey curves. The next section presents methods
for achieving an improved estimate.

2.3.2 Estimating a non-increased posterior

Based on varied inferential points of view, the hidden vari-
ables’ (z) independency and the mixture model weights (θ) are
assumed for convenience; however, this could be perceived as
an oversimplified approach.

This approach could be moderated by amalgamating the hid-
den variables from the estimation. First, if the standard differ-
ential bound (L1) is compared with a novel bound (L2) from
the relegation of the same estimated circulation over the hidden
space, it is found to be inferior. This is confirmed in the subse-
quent scheme [31].

Scheme 2.3.2.1 q (θ) is designated and

℘2 ∶= ∫
ΘK

{log p(x |𝜽 ) + log p(𝜽 ) − log q(𝜽 )}q(𝜽 )d𝜽, (25)

log m(x ) ≥ ℘2 ≥ ℘1. (26)

The equality holds only under the condition that q(θ,z) = p(θ,z|x),
∀θ,z.

Proof. Showing that Equation (25) is a lower bound (LB) of
log m(x) is simple. Certainly, the LB between q and p is signified
as follows:

L = log m(x)KL(q(𝜽 ) ‖‖p(𝜽 |x ))

= log m(x) − ∫ {log q(𝜽 ) − log p(x |𝜽 )

− log p(𝜽 ) + log m(x)}q(𝜽 )d𝜽

= ∫
ΘK

{log p(x |𝜽 ) + log p(𝜽 ) − log q(𝜽 )}q(𝜽 )d𝜽 =∶ ℘2.

(27)

Next, the second inequality of Equation (26) is proved by the
log-sum variation ∀θ ∈ Θ, as follows:

q(𝜽 ) log
q(𝜽 )

p(𝜽 |x )
=

(∑
z

q(𝜽, z )

)
log

∑
z

q(𝜽, z )∑
z

p(𝜽, z |x )

≤ ∑
z

q(𝜽, z ) log
q(𝜽, z )

p(𝜽, z |x )
.

If both sides of the previous discrimination are integrated, we
conclude the following:

∫ q(𝜽 ) log
q(𝜽 )

p(𝜽 |x )
d𝜽 ≤ ∫

∑
z

q(𝜽, z ) log
q(𝜽, z )

p(𝜽, z |x )
d𝜽

⇔ KL(q(𝜽 ) ‖‖p(𝜽 ||x )) ≤ KL(q(𝜽, z ) ‖‖log p(𝜽, z ||x) .

(28)
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Provided that Equation (28) is replaced by Equation (27), it
could be concluded that ℘2 ≥ ℘1. Note that if and only if q

(θ,z) = p(θ, z|x) is ∀θ,z the log-sum inequality perceived as
equality; this could accomplish the proof [31].

Considering the same estimation of θ|x, ℘2 as an LB could
be a more accurate approximate calculation. Marginalizing over
z and neglecting the factorization presumption make it different
than the initial bound. A more accurate estimate is not a remedy
for this problem; however, an estimated circulation inside a dis-
tinct category of circulations should be determined to improve
this lower bound. A discussion of it is provided in the follow-
ing. f signifies every subcategory of circulations with q(θ) ∈ f.
Equation (26) suggests the following:

min
f∈ f

KL( f (𝜽 ) ‖‖p(𝜽 |x )) ≤ KL(q(𝜽, z) ‖‖p(𝜽, z |x )) . (29)

Therefore, first, a fixed f that comprises q (θ) must be spec-
ified. Then, optimization to find the best approximating circu-
lations to construct an improved border of the bordering prob-
ability is performed. The parameter space of “f” is represented
through ∆f and adopts δ∈∆f. The boundary in the calculation
is converted to the following formula by knowing that the esti-
mation “f” is changing in the set f:

℘2(𝛿) = ∫
Θk

{log p(x |𝜽 ) + log p(𝜽 ) − log f(𝜽; 𝛿)} f (𝜽; 𝛿)d𝜽.

(30)

Logging m(x) for all δ∈∆f is performed by Equation (30).
There is an emphasis on the inability to compute Equation
(30) with a static δ. Nevertheless, Equation (30) can be esti-
mated through a suppositional estimate because it represents
the random variable mean g(θ): = log p(x|θ)+log p(θ)–log
f(θ;δ),θ∼f(⋅;δ). Consequently, the unbiased drive could be writ-
ten as follows:

max
𝛿∈Δ f

℘2(𝛿) = max
𝛿∈Δ f

E𝛿g(𝜽 ), 𝜽 ∼ f(.; 𝛿) ∈ f . (31)

2.3.3 Structure of “f”

Remaining with the Dirichlet function to have the best differ-
ential estimation, especially in the case of the joint posterior,
should be considered. The subclass of the Dirichlet circulations
family should be searched to find an obvious choice for f. Fur-
thermore, it would be useful to consider a family with an even
wider series, that is, a Dirichlet group of circulations that is rep-
resentative of the whole [29]. A generalized Dirichlet circulation
could be expressed via the VB solution as follows

q(𝜽 ) = D(𝛾1, … , 𝛾K ) ≡ ℑD(𝛾1, … , 𝛾K−1; 𝛾
+
1 , … , 𝛾+

K−1),

(32)

in which 𝛾+
l
∶=

∑K

j=l+1 𝛾l , l = 1, … ,K − 1. Subsequently, two
different parameters of f are elaborated in Equation (31),

signified via fD and fℑD with fD ⊂ fℑD . Consider that parame-

ters (γ, γ+) → (
∼
𝛾,

∼
𝛾 +) must be changed to perform this calcula-

tion. The same mean value is retained as the original VB circu-
lation to simplify the optimization. This is sensible by assuming
replication of the study; this circulation is fairly precise in valu-
ing the posterior means.

The first alteration is based on only one variable δ ∈ R, as
follows:

(𝛾k, … , 𝛾+
k

) = (e𝛿𝛾k, … , e𝛿𝛾+
k

), k = 1, … ,K − 1. (33)

Considering that this alteration suggests the following:

𝛾k+1 + 𝛾+
k
= e𝛿𝛾k+1 + e𝛿𝛾+

k+1 = e𝛿 (𝛾k+1 + 𝛾+
k+1) = e𝛿𝛾+

k

= 𝛾+
k
, ∀k = 1, … ,K − 1.

As a result, with respect to every δ, the consequential circu-
lation affiliates to the subsection of the Dirichlet group, as fol-
lows:

fD ∶= {D(e𝛿𝛾1, … , e𝛿𝛾
k

) ∶ 𝛿 ∈ R}. (34)

The additional alteration reduces the limit of the residual
inside the Dirichlet family; currently, δ = (δ1… δK–1).

(𝛾k, 𝛾
+
k

) = (e𝛿k𝛾k, e𝛿k𝛾+
k

), k= 1, … ,K − 1. (35)

This leads to the subsequent subsection of the Dirichlet fam-
ily that is representative of the whole, as follows:

fℑD ∶ = {ℑD(e𝛿1𝛾1, … , e𝛿K−1𝛾
K−1; e𝛿1𝛾+1 , … , e𝛿K−1𝛾+

K−1)∶

𝛿k ∈ i, k = 1, , , .K }. (36)

Considering that the number of parameters in Equation (34)
is one and the number of parameters in Equation (36) is then K

− 1. Furthermore, every f ∈ fℑD maintains the following:

E𝜃k =
𝛾

k

𝛾
k
+ 𝛾+

k

k−1∏
j=1

𝛾 j

𝛾 j + 𝛾+j
=

e𝛿k𝛾
k

e𝛿k𝛾
k
+ e𝛿k𝛾+

k

×

k−1∏
j=1

e𝛿 j 𝛾 j

e𝛿 j 𝛾 j + e𝛿 j 𝛾+j

=
𝛾

k

𝛾1 + 𝛾+1
=

𝛾
k∑K

j=1 𝛾 j

, (37)

where ∀k = 1, …, K; because fD ⊂ fℑD , it also conforms to
f ∈ fD. Therefore, the circulation of q(θ) is associated with
both families’ circulations in Equations (34) and (36). Finally,
noticing that both parameterizations are the same when K = 2,
and a Dirichlet circulation that has the potential to be rep-
resentative of the whole converts to a Dirichlet that is not
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generalizable. To make the best use of Equation (31), the subse-
quent suppositional estimation algorithm was applied.

2.3.4 Suppositional estimation model

Considering that the unbiased function in Equation (32) can be
assessed for any assumed assessment of δ. Assuming that θm,

m = 1, …, M is an unselective instance of f(⋅,δ). Consequently:

L M
(𝜽, 𝜹 ) ∶ =

1
M

M∑
m=1

(log p(x |𝜽m ) + log p(𝜽m )

− log f (𝜽m; 𝜹 )). (38)

1. Equation (38) is an unbiased estimator of L(δ). The suppo-
sitional estimation algorithms in [30] serve as a remedy to
the problem of improving a function that could be perceived
under the mere existence of noise. Assuming that both 1 and
K − 1 conform to the number of parameters, that is, signified
by d: = card (δ).

2. Setting t = 0 and providing particular original standards δ(t).
3. In terms of t = 1,2, …

a. Determining a slope estimation
𝜆
=

𝜆
(𝜽, 𝜹 (t−1) ) of ∆L as

follows:

(i) Feature b = (b1,…,bd), b j ∼ DU{−1,1} autonomously for
j = 1,…,d.

(ii) Feature 𝜽m ∶ f (.; 𝜹 (t−1) ),m = 1, … ,M and calculating

L+ ∶=
L M

(𝜽, 𝜹 (t−1)
+ ct−1b)

(iii) Feature 𝜽m ∼ f (.; 𝜹 (t−1) ),m = 1, … ,M and calculating

L− ∶=
L M

(𝜽, 𝜹 (t−1)
− ct−1b)

(iv) Setting
𝜆

(𝜽, 𝜹 (t−1) ) =
L+−L−

2ct−1b

b. Renewing the parameters 𝜹 (t )
= 𝜹

(t−1)
+ at−1

𝜆
The Spall conditions [30-–32] certify that a difficult combi-

nation of δ(t) and the best value is t→∞. The conditions are
satisfied with the addition of orders {at}, {ct}, t = 1, 2. In the
following, the Spall [32] set is provided:

at =
a

(t + A)a , andct=
c

t 𝛾
, t = 1, 2, … . (39)

To calculate the slope ∇L by using a Monte Carlo-type esti-
mation for specific a, A, c, γ > 0, Phases of 2(a).i and 2(a).iv
suggest the “concurrent disagreement” method of [32]. By uti-
lizing this technique in comparison with a standard finite differ-
ence approach (2 vs 2d), the entire fundamentals of the parame-
ter course δ change concurrently. Additionally, in each iteration,

the number of objective function evaluations decrease remark-
ably. “DU” denotes the distinct unchanging circulations in the
range {−1,1}. The fraction in phase 2(a).iv is representative of
the nominator being divided by each element of the vector with
a slight change in values.

Based on [33], limited sample training of suppositional esti-
mation algorithms cannot be done simply by establishing simple
stopping criteria. During our presentation, a favourable achieve-
ment was possible by using the following discovery process.
The moving average of the parameter standards is calculated for
every s repetitions, as follows:

𝛿
(𝜏)

=
1
S

𝜏∑
t=𝜏−s+1

𝜹
(t )
,where𝜏=s, 2s, 3s, 4s, … . (40)

Then, by considering a predetermined progressive digit v, it
could be denoted as follows:

L
(𝜏) ∶=

L q
(𝜽, 𝜹

(𝜏)
), for𝜏= vs, (v + 1)s, (v + 2)s, … . (41)

The approximation of the unbiased function assessed at 𝜹
(𝜏)

is as follows:

V (𝜏) ∶=
L

(𝜏−V + j ), j = 1, … , v},

for𝜏 = vs, (v + 1)s, (v + 2)s, … . (42)

Finally, representing the group of the previous v assessments
as follows:

R(𝜏) ∶=
{

sign V
(𝜏)

j+1 −V
(𝜏)

j

)
, j = 2, .., v. (43)

To terminate the algorithm, the number of executions at sign
vector R(τ) should be equal to v − 1 at iteration τ ∈ {vs,(v+1)s,
(v+2)s…}.

2.4 The proposed adjustable MkR method

The risk of losing information during data transformation could
be avoided by adding an input into the solar power fore-
casts within a specified time. This is feasible by adding high-
resolution (i.e. captured every 5 s) solar power data, which
reproduces certain variation data. From Section 2.1, to repair
high-resolution solar power information, it should be processed
via a maximum mean discrepancy (MMD) based kernel func-
tion. Hence, the consideration of progressed data within a spec-
ified time can be performed by the use of a kernel function
that is based on radiance. The recent summarized information
loss could be moderated by establishing a multikernel regression
model.

Nevertheless, modelling the observed complex solar power
prediction error is not feasible via the Gaussian error circu-
lations assumption (a counterpart of least-squares loss). To
address this problem, it is assumed that the error term of the
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suggested MkR model is handled by a GMM for which the
quantity of constituents is mechanically designated using the
stick breaking structure method.

Consequently, the recommended adjustable rough MkR
model, in addition to avoiding information loss, has the advan-
tage of addressing the discrepancy between the assumption of
error circulation used in the prediction models and the error cir-
culation of the real solar power prediction. In addition, a differ-
ential Bayesian method is a method by which adaptive robust
multikernel regression could be optimized and deterministic
and probabilistic forecasts could be generated concurrently.

3 ASSESSMENT BENCHMARKS FOR
PREDICTION PERFORMANCE

This section introduces the assessment benchmarks for both
deterministic and probabilistic predictions.

3.1 Assessment benchmarks for
deterministic predictions

The deterministic prediction performance of various models is
based on three benchmarks including standardized mean total
error (SMTE), standardized root mean square error (SRMSE),
and an improved version of the mean total percentage error
(IMTPE) [34,35].

3.2 Assessment benchmarks for
probabilistic predictions

Assessing the constructed prediction intervals (PIs) can be
performed by applying the following five criteria to evaluate
various models’ probabilistic forecasts. The most prominent
criterion is PI coverage probability (PICP), which is defined
as:

PICP =
1
L

L∑
l=1

Il ,andIl =

{
1, if Rl

p ∈ [Ll
p,U

l
p ]

0, otherwise
, (44)

where Lp
l represents the lower boundary and Up

l represents
the upper boundary of lth PI. A higher rate of PICP indicates
that existent solar power data are situated in the built PIs. How-
ever, assuming a PI nominal confidence level (PINC), higher
calculated values of PICP may be inferior [36]. The correla-
tional relationship between smaller digressions of the PINC and
PICP and the improved PI structure is positive. This digression
is designated by the middling coverage error (MCE) precisely, as
follows:

ACE = PICP − PINC . (45)

Additionally, PI quality could be assessed based on the
width criterion. For a given PICP, the PI conveys more use-
ful information with a narrower width. Advantageous decisions

cannot be made with broad PIs. The PI normalized average
width (PINAW) is normally applied to the PI breadth [35] as
follows:

PINAW =
1

L(Maxp − Minp)

L∑
l=1

(
U l

p − Ll
p

)
, (46)

where Maxp and Minp denote the extreme and least of the pre-
diction objectives, respectively. Simultaneous consideration of
both the cover probability and the breadth is essential in weigh-
ing the practicality of dissimilar PIs. The cover width-based
yardstick (CWY) is a mixed yardstick that is recommended to
assess the excellence of the built PIs systematically. The CWY is
illustrated as follows:

CWC = PINAW [1 + I (PICP )e−𝜌(PICP−v)]. (47)

Consider that at time l, L is the length of the test set, C sig-
nifies the fixed volume and Rp

l and Fp
l designate the real solar

power and the prognosticated solar power, respectively.
The nominal confidence level is signified via ν. In this study,

ρ is adopted to train inacceptable PIs, and it is set to 50 in this
investigation. The I (PICP) is presented as follows:

I (PICP ) =

{
1, if PICP<𝜈

0, otherwise
. (48)

The quality of the solar energy PIs in terms of sharpness is
evaluated by the Winkler score and it can be calculated as fol-
lows:

WS =
1
L

L∑
l=1

Sl . (49)

In which

Si =

⎧⎪⎨⎪⎩
−2(1 − PINC )W l

p − 4(Ll
p − Rl

p), ifRl
p < Ll

p

−2(1 − PINC )W l
p , ifRl

p ∈ W l
p

−2(1 − PINC )W l
p − 4(Rl

p −U l
p ), ifRl

p > U l
p

, (50)

where Wp
l = Up

l - L p
l signifies the breadth of the ith built PI

and Rp
l designates the existing solar power at time l. Larger WS

values designate comparatively higher values in the built PIs.

4 CASE STUDIES

This section confirms the predominance of the recommended
approach for prediction of hourly global horizontal radiation
through studying four locations in China’s Tibet zone. The com-
parison of the prediction accuracy of the global horizontal radi-
ation contains three models.

As mentioned in Section 2, the parameters of the proposed
model (i.e. a0, b0, c0, d0, e0 and f0) should be adjusted optimally
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FIGURE 4 Optimal values of the proposed MkR parameters for the
MMAPE error

to obtain the best output from the prediction process. In this
work, the partial autocorrelation function (PACF) is used to find
the potential inputs of the proposed MkR model. Because the
optimal order of the solar signal is three, we can use the pro-
posed model to forecast the previous half hour’s documented
five-second solar power output. The optimal values of the pro-
posed MkR parameters for the MMAPE error criteria are pre-
sented in Figure 4. The optimal values for the parameters of the
proposed model are tuned based on the minimum value of the
forecasting error by considering the validation set (Figure 4). In
other words, the kernel parameters are optimized by the valida-
tion set based forecasting process of the recommended model.
The proposed model is formed after determining the input. The
proposed model attaches high-resolution information to fore-
cast solar energy. The values of the MMAPE that are being
applied to the offered validation set based model are shown in
Figure 4. The smallest number of errors in the validation set
based prediction by the recommended model achieves optimal
parameters.

4.1 Data collection

The four selected locations in China under the labels of Place 1,
Place 2, Place 3 and Place 4 are situated in a Tibet self-governing
district [37]. Figure 5 indicates the details (i.e. parallels, meridi-
ans, and time region). Additionally, it could be inferred from
this figure that Tibet is a region in China with richer global hori-
zontal radiation. Therefore, studying the four designated places
with diverse parallels (i.e. 4326.99 m, 4737.80 m, 4603.35 m and
4849.95 m) is a substantial effort. Eight groups of mean hourly
data files are devoted to each site. These groups are comprised
of global horizontal irradiance (W/m2), pressure (mbar), rain
(cm), hotness (degree centigrade), comparative moisture per-
cent %), solar peak angle (degree), wind acceleration m/s) and
wind direction (unit of measurement: degree). These data are
obtained from the National Solar Radiation Database (NSRDB)
[38]. The study lasted for 365 days (from 1 January to 31 Decem-
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FIGURE 5 Tibet self-governing district test cases in China

ber, 2014) and a 24-h period was considered each day for the
solar elevation above 0. The global horizontal radiation hours
ranged from approximately 10 to 14 per day because the dura-
tion of sunshine varies between seasons. Prediction of global
horizontal radiation by using these seven relative meteorolog-
ical factors is the central goal of this study. By regarding the
last seven days of each month as the test data file, the remain-
ing days were treated as the training data. Specifically, 84 days
(24-h ahead) were predicted by use of the other 281 days. Each
season, one day was selected at random to be prognosticated
by three randomly selected days (training data). Generally, 12
days were used to predict one day. To show the effectiveness
of the suggested approach in this paper (see Table 2), the last
one week of each month are considered as a test dataset, and
the remaining days are used for training data while, the Dataset
is (x,y) = {(x(t),yt∣t = 1,2,…,281}, Training-set will be {(x(t), yt
∣ t = 1, 2, …, 281}, and Forecasting test = {(x(t),yt∣t = 282,
283,…,365}. For the pre-processing model we used the Maxi-
mum likelihood principal component analysis (PCA) [39] based
data imputation. In this model high variance assigns to the miss-
ing values prior to PCA allowing to fit PCA model by disregard-
ing the missing points which allows PCA in presence of missing
values.

5 NUMERICAL RESULTS
AND DISCUSSION

5.1 Deterministic solar energy forecasting

Deterministic solar power prediction is achieved by the qual-
ified recommended model using the MkR. The results are
presented in Table 3. In this figure, support vector machine
(SVM), least squares SVM (LSSVM), persistence model, autore-
gressive integrated moving average (ARIMA), quantile regres-
sion (QR), wavelet transform plus SVM (WT+SVM), and
particle swarm optimization plus ANFIS (PSO+ANFIS)
models have been considered to be well-known prediction
strategies to compare with the proposed model. Although the
running time of proposed algorithm may be higher than of
some models, accurate outcome of this model can cover this



2710 ABEDINIA ET AL.

TABLE 2 Training/forecasting sets of proposed test case

Training sets of 281 days Prediction sets of 84 days

One-year data First 24 days (January)
First 21 days (February)
First 24 days (March)
First 23 days (April)
First 24 days (May)
First 23 days (June)
First 24 days (July)
First 24 days (August)
First 23 days (September)
First 24 days (October)
First 23 days (November)
First 24 days (December)
Training sets (12 days)

Last one week (January)
Last one week (February)
Last one week (March)
Last one week (April)
Last one week (May)
Last one week (June)
Last one week (July)
Last one week (August)
Last one week (September)
Last one week (October)
Last one week (November)
Last one week (December)
Forecasting sets (1 days)

Using 281 days to predict 84 days

Different seasons data January: 1, 8, 15
April: 9, 18, 29
August: 1, 14, 27
October: 12, 19, 23

January 22
May 26
August 14
October 25

Using 12 days to predict 1 day

TABLE 3 Result of a deterministic comparison

Site 1 Site 2 Site 3 Site 4

Prediction

Approaches NMAE NRMSE MMAPE NMAE NRMSE MMAPE NMAE NRMSE MMAPE NMAE NRMSE MMAPE

SVM 6.34 9.65 12.65 6.68 9.99 12.99 5.58 9.11 12.11 7.11 10.21 13.42

ARIMA 5.98 9.06 12.16 6.32 9.93 13.03 5.22 8.52 11.62 6.75 10.15 13.9

Persistence 5.65 8.94 11.76 6.3 9.59 12.63 4.99 8.28 10.78 6.73 9.81 13.5

QR 5.24 8.67 11.34 5.89 9.32 12.21 4.58 8.01 10.36 6.32 9.75 13.08

PSO+ANFIS 4.98 8.55 11.02 5.14 9.14 11.98 4.14 7.65 9.54 6.07 9.34 12.47

WT+SVM 4.35 8.12 10.32 4.75 8.97 11.63 3.72 7.23 9.32 5.57 8.93 12.22

LSSVM 4.18 8.07 10.45 4.83 8.72 11.32 3.52 7.41 9.47 4.96 8.85 12.19

Proposed 2.13 4.47 7.24 2.47 4.81 7.58 1.37 3.71 6.26 2.6 4.94 7.71

point in different error criteria and sites. In this comparison,
three well-known error criteria have been considered; the pro-
posed model could provide lower values for all criteria at all
solar sites.

The results of several models’ prediction in terms of the three
error indices, that is, NMAE Equation (51), NRMSE Equation
(52) and MMAPE Equation (53) are as follows:

1
LC

L∑
l=1

|||Rl
p − F l

p
||| × 100%, (51)

√√√√√ 1
L

L∑
l=1

(
Rl

p − F l
p

C

)2

× 100%, (52)

L∑
l=1

⎛⎜⎜⎝
Rl

p − F l
p∑L

l=1 Rl
p

⎞⎟⎟⎠ × 100%. (53)

It could be inferred that among the compared five predic-
tion models, the LSSVM’s achievement was the best and the
SVM’s performance was the worst. However, the proposed
model could provide better results in comparison with LSSVM,
where (4.18 − 2.13)/4.18 = 49% improvement can be consid-
ered for NMAE error at Site 1. The improvement at this site
for NRMSE and MMAPE are (8.07 − 4.47)/8.07 = 47% and
(10.45 − 7.24)/10.45 = 31%, respectively. At the second site,
the values of improvement in comparison with LSSVM (as the
best compared model) are 49%, 45%, and 33% for NMAE,
NRMSE and MMAPE, respectively. Furthermore, these types
of improvement for the third and fourth sites are: 61%, 50%
and 34% for Site 3 and 47%, 44%, and 37% for Site 4. In
the proposed model, the prediction error is directed by AGM,
not an alternative of a lone Gaussian circulation. The predom-
inance of the prediction model over the others is due to the
following reasons. First, the AGM has a much longer tail in
comparison with a lone Gaussian circulation. This causes the
proposed model to be richer than the other standard mod-
els. Second, as the AGMs are outstandingly correct for every
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FIGURE 6 Existent solar energy prediction error and related PDF
evaluated by the proposed MkR

FIGURE 7 Day-ahead prediction in comparison with other models for
May 26

constant circulation, the solar power prediction error of the
AGM models was estimated more accurately. Figure 6 is rep-
resentative of the real solar power prediction error and the con-
forming PDF values from the MkR model. Furthermore, the
deterministic prediction model in comparison with LSSVM and
QR are presented in Figure 7 for all sites on May 26. As shown
in this figure, the proposed method could fit the real solar signal
in comparison with the other models and obtain better accuracy
by following the signal’s volatility.

5.1.1 Step-by-step implementation of proposed
model

In this section, the proposed forecasting approach is applied
step-by-step to show the effects of proposed improvements and
novelties in forecasting approach. For this purpose, the pro-
posed model is applied on site 1, through NMAE, NRMSE and
MMAPE criteria. As shown in Table 4, the suggested model is
tested by classic version of MMD, classic GM and classic VBM.

TABLE 4 Result of a improvements comparison

Site 1

Prediction Approaches NMAE NRMSE MMAPE

Proposed + classic MMD and GM 4.98 6.95 9.07

Proposed + classic GM and VBM 3.77 6.63 8.78

Proposed with classic MMD 3.07 5.72 8.24

Proposed with classic GM 2.76 5.63 7.93

Proposed with classic VBM 2.49 5.38 7.72

Proposed with FR Smirnov 3.12 5.87 8.87

Proposed 2.13 4.47 7.24

As presented in this paper, it is clear that simple MMD and
VBM cannot support suitable and accurate prediction outcome.
In addition, the classic versions trap in local point and provide
big value in different error criteria. Also, to show the efficiency
of proposed approach, the IMD model is compared with multi-
variate Kolmogorov–Smirnov test (FR Smirnov). In this model,
accurate setting of proposed model’s parameter is a critical point
to get best prediction results. Therefore, fine setting of existing
parameters can be the main point of proposed approach.

As shown in this table, the effects of each improvement have
been indicated step-by-step while, the improvement of MMD,
GM and VBM are 44%, 29%, and 17% respectively, in compar-
ison with classic versions for NMAE criteria.

Additionally, the improvement of proposed method in com-
parison with FR Smirnov and improved IMD model is about
46%, 31% and 22% for NMA, NRMSE AND MMAPE, respec-
tively, which proof the validity and superiority of suggested
approach.

5.2 Probabilistic solar energy forecasting

In this section, the proposed forecasting method is applied to
the mentioned test case to obtain the probabilistic outcomes.
According to the probability density figure (Figure 7), the pro-
posed AGM approach is better than the other single Gaussian
methods.

Consequently, deriving built PIs from the AGM may result
in more precise data than deriving them from a single Gaus-
sian prediction circulation. The PIs built via the proposed MkR
approach are evaluated against the PIs produced by other well-
known models (i.e. persistence, QR, and ARIMA) to obtain
the proposed MkR efficiency. The outcomes of the other three
prediction approaches in comparison with the proposed model
for different PINCs (90%, 96%, and 99%) are depicted in
Figures 8 and 9. The PIs made by the proposed MkR model
under dissimilar PINCs are shown in Figure 10. As shown in
Figures 8 and 9, the PIs with the highest coverage probability
and smallest gap according to the ACE standards are produced
by the suggested MkR approach under all PINCs. Note that the
applied submission of the built PIs is vitally affected by high
coverage of the PIs. Regarding the values of PINAW, the PIs
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FIGURE 8 Results of probabilistic comparison (Sites 1 and 2)

FIGURE 9 Results of deterministic comparison (Sites 3 and 4)

produced by the proposed MkR are wide, while the PIs pro-
duced by ARIMA are the narrowest among the models. As a
result, being restricted to merely three pointers (i.e. PICP, ACE,
and PINAW) makes determining the best probabilistic predic-
tion approach a challenging task. The CWC index is the best
choice for evaluating the constructed PIs since it taps into both
coverage probability and the PI width, which must be consid-
ered in the evaluation. We can stand by the CWC value infor-
mation in Figures 8 and 9 and the Winkler score criterion to
prove the recommended model outperformed the other mod-
els. In summary, if the problems of the PI size are removed, the
recommended MkR model is the best in terms of performance
among other models.

The recommended model is of large width because AGM has
a longer tail in comparison with the single Gaussian distribution.
As a result, possessing a large PINC leads to the width increas-
ing. If the PINC is low, then there will be a distribution with a
sharp peak, which leads to the PIs having a narrower width.

FIGURE 10 Results of the PIs based on the proposed MkR under
different PINCs

5.3 Diebold–Mariano test

This test model is suggested by Diebold and Mariano [40] which
is described as:

▪ Let {yt} indicates the real data series. And {ŷh
i,t } describes the

ith competing h-step prediction signal.
▪ Assume the prediction errors from the ith competing

approach are, eh
i,t = (i, 1, 2, 3, … ,m)while m shows the num-

ber of prediction methods. So, h-step prediction errors
eh
i,t is:

eh
i,t = yh

t − ŷh
i,t (i = 1, 2, 3, … ,m). (54)

And the accuracy of prediction can be evaluated by:

L
(
yh
t , ŷh

i,t

)
= L

(
eh
i,t

)
. (55)

The value of h is considered as 1 in this work, and the super-
script h is deleted in the following context. In this paper, the
following squared-error loss is considered:

L2(yt , ŷi,t ) = L2(ei,t ) =
T∑

t=1

(ei,t )2. (56)

And absolute-error loss function:

L2(yt , ŷ
i,t ) = L2(e

i,t ) =
T∑

t=1

||ei,t
||. (57)

In these equations, the squared-error loss one penalizes
the larger errors more severely. To compare the better out-
come based prediction errors, that is, A and B models, the
equal accuracy hypothesis is tested based on null hypothesis
as:

H0 ∶ E [L(e1,t )] = E [L(e2,t )]. (58)

While the alternative hypothesis can be defined as:

H1 ∶ E [L(e1,t )] ≠ E [L(e2,t )]. (59)

So, Diebold–Mariano test is described based on the loss dif-
ferentials dt:

dt = L(e1,t )] − L(e2,t ). (60)

Also, if the null hypothesis is defined as H0: E[dt] = 0.
So, the sample mean loss differential can be presented
as:

d =
1
T

T∑
t=1

dt =
1
T

T∑
t=1

[
L(e1,t )] − L(e2,t )

]
. (61)
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The statistic test of DM is:

DM =
d√

2𝜋 f̂d (0)

T

d
⟶ N (0, 1). (62)

In which 2𝜋 f̂d (0)is a consistent predictor of the asymptotic

variance of
√

T d . The variance is considered in the statistic due
to the sample of loss differentials dt are serially correlated for
h > 1. Accordingly, DM statistics converge to a normal distribu-
tion; the null hypothesis can be rejected if |DM| > 1.96 at the
5% level. The mentioned status correlated to the zone A and
zone C in Figure 11. Else, if |DM| ≤ 1.96, the null hypothesis
H◦ cannot be rejected, that is shown in zone B of Figure 11.

5.3.1 DM test evaluation

In this section the proposed forecasting approach is compared
with other two closest models in deterministic and probabilis-
tic models. Obtained results of this comparison are presented
in Table 5. In this comparison, the zero hypothesis means that
the obtained performance differences among the two compared
models is insignificant, and alternative hypothesis indicates sig-
nificant differences in this comparison.

As shown in this table, test results in all comparisons are H1
which means significant differences between proposed method
and other approaches are higher than 1.96. So, by this compari-
son we can claim that the forecasting accuracy of the suggested
model is better than other methods.

6 CONCLUSION

In this paper, a new model for the prediction of solar energy
in both deterministic and probabilistic cases is presented. The
recommended approach is highly capable of fitting an exten-
sive series of unceasing compound circulations. The effec-
tiveness of the proposed model was tested in different solar

TABLE 5 Obtained results of DM test

Deterministic

Comparison Criteriaa Test value Test result

Proposed versus SVM AE −3.1460 H1

SE 3.4214 H1

Proposed versus ARIMA AE −2.9832 H1

SE 3.2658 H1

Proposed versus persistence AE 2.8745 H1

SE −3.1745 H1

Proposed versus QR AE −2.6284 H1

SE −2.9875 H1

Proposed versus PSO+ANFIS AE 2.3485 H1

SE 2.7562 H1

Proposed versus WT+SVM AE −2.1468 H1

SE 2.5627 H1

Proposed versus LSSVM AE −2.0156 H1

SE 2.4750 H1

aAE indicates the absolute-error loss; SE indicates squared-error loss.

photovoltaic power plants at four sites. The proposed approach
was compared with different well-known forecasting models of
both deterministic and probabilistic types. For this problem,
three deterministic error criteria and five probabilistic criteria
have been considered to provide accurate prediction report as
numerical analysis outcome. In all obtained results, the pro-
posed model could outperform other models. Additionally, dif-
ferent PI assessment benchmarks under different PINCs have
been considered in the probabilistic model. All results demon-
strated the superiority and validity of the proposed approach in
comparison with the other models.
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