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A new Coupler Critical Dimensions (CCD) approach to define mobility criteria (crank, rocker conditions, 
or existence) for linkage mechanisms has been presented in this paper. The concept is critical to design 
and analyze the extreme lengths of a mechanism coupler link when the mechanism is at the extreme of 
its existence or changing its mobility condition. The method leads a set of expressions of the constant 
mechanism parameters that can define the mechanism's coupler link's exact dimensional limits. These 
expressions present sufficient and necessary dimensional conditions for the mechanism's existence and 
become a turning point to change mobility from a crank to a rocker and vice versa. The mechanism 
reaches its change-point configuration at the boundaries of the coupler dimensions. The mechanism may 
switch from one work function to another or from existence to non-existence. The method has been 
successfully applied to the planar 4R, spatial RSSR, and planar multiloop linkage mechanisms. The ob-
tained results prove the effectiveness and accuracy of the method in defining the limits of the mechanism 
rotatability conditions or existence in general. The crank condition is essential to couple it with the motor 
or engine. If the mechanism input link is not a crank (i.e., it has a possibility of full rotation), the motor 
may crash the entire mechanism. Rotatabilty of the input link is a fundamental concept in machines and 
mechanisms. 
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 Introduction 

Mobility analysis of four-bar linkages is a well-es-
tablished field. For many years, the Grashof criterion 
has been applied to predict planar four-bar linkage 
mechanisms' mobility. Chang et al. [1] justified Gra-
shof's theorem in terms of the occurrence of statio-
nary configurations and uncertainty configurations of 
four-link chains. They examined the link length relati-
ons at stationary configurations and uncertainty con-
figurations based on the triangle inequality. Five-bar 
Grashof's criteria were transformed into an extended 
version, namely law for N-bar kinematic chains, by 
Ting et al. [2]. They provided proof of the theorems 
concerning the mobility of planar N-bar linkages 
based on the assemblability condition of N-bar lin-
kages and the angle's revolvability condition. Ting and 
Wang [3] presented a detailed analysis for the full ro-
tatability of 6-bar and geared 5-bar linkages, irre-
spective of the selection from the reference links or 
input joints. They have presented a generic method to 
detect the dead center positions and the relevant bran-
ches. Gogate [4] presented a rotatability analysis of 
Watt 6-link mechanisms using an evolutionary opti-

mization algorithm. Midha et al. [5] have used the tri-
angle inequality concept in formulating the mobility 
conditions for a planar 4-bar linkage. More signifi-
cantly, a manifest graphical interpretation was offered, 
enabling an expeditious mobility determination. Ange-
les et al. [6] have reduced the mobility analysis of 4-bar 
linkages to find the global extrema from a quadratic 
function of a cylinder, leading to the geometric pro-
blem of finding the intersections of a circle and a hy-
perbola. Li et al. [7] have investigated planar parallel 
mechanisms' rotatability by highlighting the crank 
conditions concerning link parameters. Their research 
has led to the classification of three types of crank 
existing conditions, including 3-crank's, 6-crank's, and 
9-crank's of 3-RRR planar parallel mechanisms. Bai 
[8], [9] has recently revisited planar four-bar linkages' 
mobility problem. The mobility has analyzed the range 
of rotation of the coupler link for a special case of its 
full rotatability when the coupler link drives the lin-
kage. They have formulated a new concept of couple 
curve rotation by the constraint triangle. The mobility 
is analyzed in terms of the coupler angle range by a 
geometric approach. 

Many attempts have been made to derive direct ro-
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tatability criteria for the RSSR and other types of spa-
tial linkages. Most of them, such as Bottema [10], 
Cheng et al. [11], Nolle et al. [12], Pamidi et al.[13], 
Ting et al.[14] are mainly based on the analysis of 
discriminant function, and some used geometrical 
concepts [15]. However, compared to the Grashof cri-
terion, the resulting mobility criteria appeared to be 
quite complicated and are based on lengthy mathema-
tical treatment. Gupter et al. [16] attempted to derive 
a direct rotatability criterion for spherical four-bar lin-
kages. They have achieved a solution to some values 
of constant twist angles. However, the solutions do 
not provide sufficient conditions for the mechanism 
to exist and work either as a crank-rocker, a drag-link 
(double crank), or a double-rocker mechanism.  Kaze-
rounian and Solecki [17] have introduced equation Z 
= (cos2μ) − 1 = 0, where μ is the transmission angle 
of an R-S-S-R four-bar linkage. They have defined the 
linkage's mobility by the number of real roots of this 
equation. Furthermore, it is believed that there were 
no serious attempts to solve a similar problem for the 
multiloop linkage mechanisms. Another work aimed 
to design support and a tension mechanism for a 
wheel-tracked chassis of a mine-clearing machine [18]. 
In separate research, dynamic analysis of the crank 
mechanism is designed, and a connecting rod is mo-
delled with three different manners.  In the first case, 
the connecting rod is modelled as a rigid body; in the 
second case, it is modelled with two mass points, and 
in the third case, the rod is modelled with three mass 
points [19]. 

The method of critical coupler dimensions intro-
duced in this work yields much more straightforward 
and readable closed-form expressions for the crank 
criteria used for the bimodal or multiloop mecha-
nisms.  The method is based on deriving an explicit 

expression of coupler link length as a function of all 
other constant and variable parameters of a linkage 
mechanism using any appropriate kinematic analysis 
method. Theoretically, the mechanism existence (pos-
sibility to assemble) and possible mobility can be de-
fined in between the limits (maximum and minimum 
critical values) of the coupler lengths identified for all 
possible values of mechanism variable parameters. 
Therefore, the coupler explicit expression becomes a 
multivariable function of all variables and the mecha-
nism's constant parameters. By defining stationary 
points, i.e., points where partial derivatives of the 
function with respect to variable parameters become 
zero, it is possible to calculate maxima and minima of 
the coupler function, namely coupler lengths. These 
points will define the mechanism existence or chan-
gepoint configurations' extremes when linkage swit-
ches from one type of mobility to another (for 
example, from double-crank to crank-rocker. The 
following analysis of various linkage mechanisms pro-
ves the proposed theory's validity.  

 Materials and Methods 

2.1 Mobility Analysis of Four-bar Planar Linkage 
Mechanism 

Figure 1 shows a four-bar planar linkage mecha-
nism, where OC is predefined as a ground link. In Fig. 
1, i, j, e1, e2, and e3 are the unit vectors associated with 
the axes of the reference frame and mechanism links, 

respectively; j1, j2, j3 are the angles that links 1, 2, 
and 3 make with X-axis of the frame. Using a vector 
method, one can easily derive the multivariable target 
function for the couple-link AB length (dotted line).   

 

 AB2 = OA2 +BC2 +OC2 +2× OC×BC×cos ( j3) – 2× OC×OA×cos ( j1) - 

 - 2× BC×OA×cos ( j1) × cos ( j3) - 2× BC×OA×sin ( j1) × sin ( j3)  (1) 
 

 

Fig. 1 Schematic diagram of the four-bar planar linkage me-
chanism. 

 
From Eq. (1), it is obvious that AB is a function of 

lengths of constant parameters BC, OC, OA, and two 

variable angles j1, j3. Following the proposed met-
hod, the partial derivatives of Eq. (1) with respect to 

variables j1, j3 can be derived and equated to zero. 
Subsequent analysis shows that Eq. (1) reaches its sta-
tionary points if the following is satisfied:  

 sin ( j3) = sin ( j1) = 0 (2) 

This will define the four-bar linkage's change point 
configuration when OA aligns with BC. Equation (2) 

holds true for combinations of angles, such as a) j1= 

0°, j3 = 0°; b) j1= 180°, j3 = 0°; or c) j1= 0°, j3 

= 180°; and d) j1= 180°, j3 =180°. Substituting them 
into (1), we can get analytical expressions for the four 
possible critical dimensions of coupler link AB. They 
are as follows: 

 ABa
2 = (OC + BC – OA)2  (3) 

 ABb
2 = (OA + BC + OC)2  (4) 
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 Bc
2 = (BC + OA – OC)2  (5) 

 ABd
2 = (OC + OA – BC)2  (6) 

 
The coupler critical dimension ABb2 in Eq. (4) is 

the largest among Eqs. (3), (4), (5), and (6). This di-
mension of coupler ABb2 in Eq. (14) corresponds to 
the machine's configuration when it has reached the 
verge of its existence and will not be considered for 
possible crank mobility conditions. The remaining ex-
pressions in Eqs. (3), (5) and (6) are sufficient to derive 
crank criteria for the four-bar planar linkage mecha-
nism. The requirements are obtained by comparing 
the lengths of AB from Eqs. (3) (5) and (6) with each 
other for all possible pair combinations (six possible 
combinations) and testing the crank condition nume-
rically with a computer. The obtained criteria are as 
follows:  
i) Double-crank mechanism occurs when link OC 

is the smallest one (OC<OA, OC<BC) and AB 
is within the range 

 

OC + ½OA - BC½£  AB£  OA + BC – OC  (7) 
 

ii) Crank-rocker mechanism occurs when link OA 

is the smallest one (OA<OC, OA<BC) and AB is 
within the range 

  

OA + ½OC - BC½£  AB£  OC + BC – OA  (8) 
 
iii) Double-rocker mechanism occurs when condi-

tions (i) and (ii) do not satisfy and AB is within 
the range smallest  

 

(AB1, AB3, AB4) £  AB £  OA + OC + BC  (9) 
 
The equal sign in Eq. (7) to (9) means the linkage 

has reached its change-point configuration. In this 
configuration, coupler AB's dimension corresponds to 

its boundary value when it changes its work function 
from one to another in Eqs. (7), (8), or has reached the 
verge of its existence in Eq. (9). The obtained results 
are consistent with the Grashof criteria of rotatability. 
However, criteria in Eqs. (7) to (9) are more suitable 
and takes less computation to synthesize four-bar lin-
kages than Grashof criteria because it requires only 
one inequality expression instead of several conditions 
defined by the Grashof method.  

2.2 Mobility Analysis of Four-Bar Spatial Linkage 
Mechanism 

The results are compared to available experimental 
wind tunnel data to ensure the calculations' validity 
and accuracy. Normal force coefficient and base drag 
coefficient are compared as a function of Mach num-
ber and angle of attack. Two typical projectile confi-
gurations (as shown in Figs. 2 and 3) are selected for 
this purpose. The specifications of the models and test 
conditions are explained below. 

The schematic diagram of the RSSR linkage me-
chanism is shown in Fig. 2. In Fig. 2, i, j, k, e1, e2, e3, 
e4, and e5 are the unit vectors associated with the co-
ordinate axes and mechanism links, respectively. For 
simplicity, link OC (vector e2) is predefined as a 
ground link located on the X-Y plane, and axes of the 
input joint O (vector i) and output joint C (vector e3) 
are also located on the X-Y plane but not parallel to 

each other. Fig. 2 shows that (j2, i + j3,2) is the angle 
between input and output joints on the X-Y plane. In 

this configuration, j1,j is mechanism variable input 
angle associated with link OA (measured between j 

and e1), and j4,5  is mechanism variable output angle 
associated with link BC  (estimated between e4 and 
e5). e3 is perpendicular to e4. 

The vector method can carry the kinematic analysis 
of the spatial RSSR linkage mechanism. That analysis 
eventually leads to the target multivariable function 
for the length of couple-link AB (dotted line): 

 

 AB2=OA2 + OC2 + BC2 - 2×OC×BC×sin (j3,2)×cos (j4,5) - 2×OC×OA×sin(j2,i) ×cos(j1,j)- 

 -2×BC×OA×cos (j2,i +j3,2)× cos (j4,5) ×cos(j1,j) - 2×BC×OA ×sin(j4,5)×sin(j1,j)  (10) 
 

From Eq. (10), it is obvious that AB is a function 
of lengths of constant parameters OA, BC, OC, and 

two variable angles j1,j and j4,5. Partial derivatives 

of function in Eq. (10) with respect to variables j1,j 

and j4,5 can be derived and equated to zero. Sub-
sequent analysis shows that function in Eq. (10) rea-
ches its stationary points if the following satisfy  

 sin (j1,j) = sin (j4,5) = 0  (11) 
 

Equation (11) defines the change point configura-
tion of four-bar RSSR linkage. The condition in Eq. 
(11) holds true for combinations of two angles, such 

as a) j1,j= 0°, j4,5 = 180°; b) j1,j= 180°, j4,5 =0°; 
or c) j1,j= 0°, j4,5 = 0°; and d) j1= 180°, j3 =180°. 
Substituting them into Eq. (1) we can get analytical ex-
pressions for the four possible critical dimensions of 
coupler link AB. They are as follows: 

 

 ABa
2=OA2+OC2+BC2+2×OC×BC×sin (j3,2) -2×OC×OA×sin(j2,i) +2×BC×OA×cos (j2,i +j3,2)  (12) 
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 ABb
2=OA2+OC2+BC2-2×OC×BC×sin(j3,2)+2×OC×OA×sin(j2,i)+2×BC×OA×cos(j2,i+j3,2)  (13) 

 ABc
2=OA2+OC2+BC2-2×OC×BC×sin(j3,2)-2×OC×OA×sin(j2,i)-2×BC×OA×cos(j2,i+j3,2) (14) 

 ABd
2=OA2+OC2+BC2+2×OC×BC×sin(j3,2)+2×OC×OA×sin(j2,i)-×BC×OA×cos(j2,i+j3,2)  (15) 

 

Fig. 2 Schematic diagram of the RSSR spatial linkage me-
chanism. 

 
It can be seen that ABc2 in Eq. (14) is the smallest 

among all the critical dimensions defined by Eqs. (12), 
(13), (14), and (15). This dimension of coupler ABc2 
(14) corresponds to the configuration of the mecha-
nism when it has reached the extreme of its existence 
and will not be considered for a possible crank mobi-
lity condition. The expressions in Eqs.  (12), (13) and 
(15) are sufficient to derive crank criteria for the RSSR 
spatial linkage mechanism. The criteria are derived by 
comparing the critical lengths of AB from Eqs. (12), 
(13), and (15) with each other for all possible pair com-
binations (six possible combinations) and testing the 
crank condition numerically with a computer. The ob-
tained criteria are as follows: 

 

i) double-crank mechanism occurs when link OC×sin(j2,i) < BC×cos (j2,i +j3,2);  

OC×sin (j3,2) < OA×cos (j2,i +j3,2)  and AB is within the range 
 

 ABd
2 (15) £  AB2£  ABa

2 (12)  (if  BC×sin (j3,2) <  OA×sin(j2,i)  (16) 

 ABd
2 (15) £  AB2£  ABb

2 (13)  (if  BC×sin (j3,2) >  OA×sin(j2,i))  (17) 
 

ii) crank-rocker mechanism occurs when link OA×sin(j2,i) < BC×sin (j3,2);  

OA×cos (j2,i +j3,2) < OC×sin (j2,i) and AB is within the range 
 

 ABb
2 (13) £  AB2£  ABa

2 (12)  (if  BC×cos (j2,i +j3,2) <  OC×sin(j2,i))  (18) 

 ABb
2 (13) £  AB2£  ABd

2 (15)  (if  BC×cos (j2,i +j3,2) >  OC×sin(j2,i))  (19) 
 
iii) double-rocker mechanism occurs when conditions (i) and (ii) do not satisfy, and AB is within the range   

 ABc
2 (14) £  AB2 £  largest [ABa

2 (12), ABb
2(13), ABd

2(15)]  (20) 
 

The equal sign in Eqs. (16) to (20) means the lin-
kage has reached its change-point configuration. In 
this configuration, coupler AB's dimension corre-
sponds to its boundary value when the mechanism 
switches its work functions n Eqs.  (16), (17), (18), 
(19), or has reached the verge of its existence in Eq. 
(20).  

2.3 Mobility Analysis of Multi-loop Planar Linkage 
Mechanism 

For simplicity of analysis, all three fixed pivots F, 
O, and C are taken on a single horizontal ground line. 
In Fig. 3, i, j, e1, e2, e3, e4, e5, e6 are the unit vectors 
associated with the axes of the reference frame and 

mechanism links, respectively; j1, j2, j3, j4, j5, and 

j6 are the angles that links 1, 2, 3, 4, 5, and 6 make 

with X-axis of the frame. Angle a is a constant angle 
that permanently exists between e2 and e4. That me-

ans there exists the following expression between j4 

and j2 angles: 

 j4 = j2 + a  (21) 

Figure 3 shows a Stephenson type six-bar planar lin-
kage mechanism below. 

 

Fig. 3 Schematic diagram of the six-bar planar linkage me-
chanism. 

 
By taking link OA as an input link, the kinematic 

analysis of the linkage mechanism (Fig. 3) can be 
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carried out by vector method based on the following 
two loops equations:

 OA×e1 + AB×e2 = OC×i + BC×e3  (22) 

 FO× i + OA×e1 + AD×e4 = FE× e6 + ED× e5  (23) 

 
In a multiloop mechanism (Fig. 3), Eqs. (22) and 

(23) are connected via expression in Eq. (21). The me-
chanism in Fig. 3 can be viewed as an extension of the 
mechanism shown in Fig. 1 by adding a loop OADEF 
to it. The link OA remains an input link for both loops 
of the multiloop mechanism in Fig. 3.  Therefore, the 
mobility conditions derived in Section 2 remain valid 
for the loop OABC in Fig. 3 as well. The change point 

configuration in the loop OABC occurs when sin ( j1) 
= 0, i.e. i = e1 in Eq. (2).  At that configuration, the 
multiloop mechanism takes the position, as shown in 
Fig. 4, and acts as a four-bar linkage with regard to 
loop FEDAO.  

 

Fig. 4 Multiloop mechanism. 
 
The mobility condition of four-bar linkage in Eq. 

(7) can then be applied separately to the loop FEDAO 
(with coupler ED) to achieve full rotatability of links 
FE and AD regardless of rotatability conditions in the 
loop OABC. Full rotatability of links FE and AD can 
be achieved when FA=FO+OA is the smallest one 

(FA<FE, FA<AD) and ED are within the range: 
 

FA + ½FE - AD½£  ED£  FE + AD – FA  (24) 
 
The condition (24) does not depend on a constant 

angle a. Equations (7), (8), (9), and (24) establish si-
multaneous change point configurations for both lo-
ops OABC and FEDAO. In connection to the entire 
multiloop planar mechanism, the following statements 
are true: 

i) triple-crank (OA, FE, BC) mechanism occurs 
when Eqs. (7) and (24) are satisfied 

ii) double-crank (OA, FE) - rockers (BC) occurs 
when Eqs. 8) and (24) are satisfied 

iii) triple-rocker (OA, FE, BC) mechanism occurs 
when Eqs.  (9) and (24) are satisfied 

iv) the mechanism does not exist if none of the 
above conditions are satisfied.  

 Performance evaluation 

Most of the past works on the rotatability criteria 
(mentioned in the introduction) are mainly based on 
discriminant function analysis, and some used geome-
trical concepts. However, the resulting mobility crite-
ria appeared to be quite complicated and are based on 
lengthy mathematical modeling. As an example, 
Gupter et al. [16] attempted to derive a direct rotata-
bility criterion for spherical four-bar linkages. They 
have achieved a solution to some values of constant 
twist angles. However, the solutions do not provide 
sufficient conditions for the mechanism to exist and 
work either as a crank-rocker, a drag-link (double 
crank), or a double-rocker mechanism. The results 
achieved in this research demonstrate a unique met-
hod (coupler critical dimensions) that can easily be ap-
plied to any single or multiloop mechanism (planar 
and spatial) to determine all possible work functions 
and defines precisely change point configurations. For 
example, results achieved for the multiloop planar me-
chanism (Fig. 4), i.e., equation (24), are unique and not 
defined by any other researcher in this field. Similarly, 
results achieved for RSSR spatial mechanism (Fig. 2), 
i.e., work functions equations (16 – 20), were not dis-
covered by the existing works. That means the presen-
ted research outcome (CCD) has a significant contri-
bution to the field of mobility analysis of linkage me-
chanisms and has the potential to be applied to other 
types of spatial and multiloop planar linkage mecha-
nisms.      

 Conclusion 

The present paper introduces a new method of cri-
tical coupler dimensions to analyze the mobility or 
crank condition for single-loop planar and spatial lin-
kage mechanisms and a multiloop planar mechanism. 
This method's advantage is that it can be easily applied 
to any linkage mechanism; it does not require a com-
plete kinematic analysis of the mechanism and analy-
zes its discriminant function. Typically, researchers 
usually did it. The method that works on the input-
output function of the mechanism leads directly to the 
coupler links critical (boundary) dimensions when the 
mechanism abruptly switches its mobility function, for 
example, from double-crank to crank-rocker and vice 
versa. It also shows the limiting values for the coupler 
link in connections to other links when the mechanism 
ceases to exist. This research's vital contribution to the 
mobility of linkages is that the first time introduces a 
complete set of relationships between constant para-
meters of planar and spatial four-bar mechanisms that 
cause them to operate either as a double-crank or 
crank-rocker or double-rocker one. It also introduces 
a complete set of relationships between constant pa-
rameters of a multiloop planar mechanism that causes 
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it to work either as a triple-crank or double-crank-roc-
ker, or triple-rocker mechanism.
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