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The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.
Selecting a suitable mining system for such ore bodies is difficult. This paper proposes a diamond layout
sublevel open stoping system using fan blastholes with backfilling to mine such orebodies. To evaluate
the performance of system the relationships between ore recovery and stope footwall dip angle, footwall
surface roughness, drawpoint spacing and production blast ring burden were investigated. An ore recov-
ery data set from 81 laboratory physical model experiments was established from combinations of the
listed factors. Various modules in a back propagation neural network structure were compared, and an
optimal network structure identified. An ore recovery backpropagation neural network (BPNN) forecast
model was developed. Using the model and sensitivity analysis of the factors affecting the proposed open
stope mining system, the significance of each factor on ore recovery was studied. The study results were
applied to a case study at the Shandong Gold Group Jiaojia Gold Mine. The results showed that the appli-
cation of a BPNN and sensitivity analysis models for ore recovery prediction in the proposed mining sys-
tem and field experimental results confirm that the suggested mining method is feasible.
� 2021 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

An orebody that has a dip angle of 20�–50� and a thickness of 5–
15 m is characterized as a moderately dipping medium-thick ore-
body [1]. The dip classification and thickness classification of the
orebody is shown in Tables 1 and 2, respectively. Suorineni [2]
acknowledged that these classifications may differ depending on
the author, nationality, and preference. For example, the orebody
of dip between 20� and 45� and a thickness of 1.8–4.6 m may be
classified as moderately dipping medium-thick orebody [3]. The
classification used in this paper depends on the University of Bri-
tish Columbia (UBC) mining method selection algorithm [4,5].

Moderately dipping medium-thick orebodies constitute a sig-
nificant proportion of proven orebodies worldwide. According to
mineral statistics, 70% of phosphate ore, 30% of gold ore, 18% of
iron ore, and 5%–9% of other non-ferrous metal orebodies may be
classified as moderately dipping medium-thick orebodies [6].
When the orebody dip is <50� (typical angle of sliding of the broken
muck is between 35� and 45�), the blasted muck cannot flow by
itself under the influence of gravity during the mining process,
and an external force is required for muck movement. When the
orebody dip is greater than 20�, trackless equipment, such as
load-haul-dumps (LHDs), cannot enter the stope due to traction
limitations. Ore transport in moderately dipping orebody mining
relies mainly on the electric scraper or an auxiliary recovery
method such as the construction of an inclined orepass in the foot-
wall rock [7] or slusher methods. These methods place limitations
on automation and production efficiency, and result in high work-
loads and cost. In addition, during the mining process of moder-
ately dipping medium-thick orebodies, the excavated void is
large with a low floor to roof height that is a hazard. Thus, moder-
ately dipping medium-thick orebodies are globally considered dif-
ficult orebodies for safe and efficient mining.

Among the currently used methods for moderately dipping
medium-thick orebody mining, the room and pillar mining method
accounts for 55% of cases, whereas the inclined drawpoint in foot-
wall method of block caving [8], and the cut and fill method,
account for approximately 18% and 24% of the cases [9,10], respec-
tively. Issues of low production capacity and relatively poor safety
appear in all these methods. This is because all the methods men-
tioned (classified as entry mining methods) except block caving
require workers to enter and conduct operational activities (e.g.
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Table 1
Orebody dip classification [4].

Classification/description Dip angle (�)

Flat <20
Intermediate/moderate 20–55
Steep >55

Table 2
Orebody thickness classification [4].

Classification/description Thickness (m)

Narrow <10
Intermediate/moderate 10–30
Thick 30–100
Very thick >100
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drilling, blasting, mucking, and ground support installation) in the
stopes and have long exposure times to hazards compared to non-
entry mining methods such as open stoping where workers do not
enter the stopes. In the proposed diamond layout sublevel open
stoping (DLSOS) mining system, the workers drill from a supported
drift outside the stope and the operation is relatively safer than
that of the drift-and-fill mining system which requires workers
to work inside the stope.
2. Drift-and-fill mining system

The mine under study currently employs the overhand drift-
and-fill mining system. At this mine, the orebody is extracted from
bottom-up, with cut heights of 3–4 m and drift widths of 3–4 m.
Fig. 1 shows a schematic of the drift-and-fill method and backfill
placement practice and sequence as used in the case study mine
in China. In this method, headings are driven along the hanging-
wall contact for access to the stopes. In Fig. 1 the orebody is divided
into horizontal cuts with 3 m heights and 3–4 m widths. The drifts
in each horizon are mined as primary and secondary drifts labelled
1 and 2 respectively in Fig. 1. After the primary drifts being mined,
they are backfilled with 10% cement content to a height of 2.5 m
and the top 0.5-m void is then filled with 20% cement content
backfill. The secondary drifts after extraction are backfilled with
uncemented tailings to heights of 2.5 m from the floor and the
remaining 0.5-m void is filled with 20% cement contend backfill.
The use of higher strength backfill in the primary drifts allows min-
ing of the secondary drifts safely with less dilution from backfill
damage in these stopes.

In the drift-and-fill method (see Fig. 1), the volume of backfills
with 20%, 10%, and 0% cement content account for 16.7%, 41.65%,
and 41.65% of the total backfill volume, respectively. It is estimated
Fig. 1. Schematic of the drift-and-fill method in the case study mine showing the
backfill types and sequence of placement.
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that the total mine fill cost is about 8.93 $/m3, and from this total
amount, 16.5% is the fill cost with 20% cement content.

The 10% and 20% cement content backfill used at the mine may
be considered expensive at a glance. However, 5%–15% and 3%–10%
cement contents backfill are respectively used at Macassa Mine
and Red Lake Campbell Mine, both located in Canada [11]. Consid-
ering that labour cost is relatively higher in Canada than that in
China, one would agree that the cement ratios of 5%–20% backfill
are not out of the ordinary in China economically.
3. The proposed adapted mining method for moderately
dipping medium-thick orebodies

To address problems of low productivity, operational efficiency,
and relative longer hazard exposure for workers in the drift-and-
fill mining, a DLSOS (Fig. 2) using fan blastholes with backfilling
is adapted in this paper for the mining of moderately dipping
medium-thick orebodies such as in the case study mine. Fig. 2 is
a 3D view of the proposed method and the sectional views are
shown in Fig. 3.

In the proposed mining system, the orebody is divided into sub-
levels, and the sublevels are extracted from bottom-up. The sub-
level rectangular prism blocks are divided into diamond shaped
stoping blocks in a sectional view (Fig. 3), which are mined in
two steps. The first step involves mining and backfilling the lower
stope (LS). In the second step, the upper stope (US) is then mined.

The mining involves the construction of a haulage drift in the
footwall host rock from a lower sublevel. From the haulage drift
(Fig. 3) crosscuts are developed to the orebody diamond-shaped
stoping blocks. A diagonal slot raise (Fig. 3) is developed at the
boundary of the two diamond-shaped stoping blocks. The slot raise
serves as free space for the production blasting. The blasted muck
is transported from both ends of the stope to the sublevel orepass
by LHD. Following the development of the slot raise, fan layout
blastholes are drilled from a production access drift. When the
lower stoping block is completely mined and muck drawn, filling
pipes are installed via the upper sublevel filling drift (Fig. 3). The
upper stope in the inter-sublevel rectangular stoping block is
extracted after mining and backfilling the lower stope.

Mining of the upper stope requires mining through backfill in
the lower stope in the proposed DLSOS mining system. To do this
safely, the mining is done in two mining steps. In the first step,
the bottom stope is mined first and filled with 20% cement content
to a height of 5 m from the floor, and the upper part is filled with
10% cement content fill. In the second step the upper stope is
mined by drifting through the 20% cement content backfill. After
mining the upper stope, it is backfilled with 5% cement content fill
Fig. 2. 3D model of the DLSOS mining system.



Fig. 3. Sectional views of the DLSOS mining system with backfilling.
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material. Because the operational efficiency is increased in the pro-
posed DLSOS mining system, the overall cost of filling is reduced.
The 20% cement content backfill costs 11.43 $/m3, 10% cement con-
tent fill cost is 7.86 $/m3, 5% cement content cost is 5.86 $/m3, and
uncemented tailings (not used in the DLSOS) cost is 4.71 $/m3. The
overall cost of backfill in the DLSOS mining system is 7.25 $/m3.
Fig. 4 shows the backfill application in the DLSOS mining system.
In Fig. 4 the backfill proportions by volume of stope filled with each
type of backfill are 20% cement content 12.8% and 10% cement con-
tent fill material is 34.1% for the lower stope; and the proportion of
5% cement fill material is 53.1%. Table 3 compares the cemented
backfill types proportions by volume and cost used in the drift-
and-fill mining system at the case study mine and in the proposed
DLSOS mining system.

Alternative to the drift development through the higher
strength backfill, one could install an Armco culvert (https://obo-
bettermann.com/armco/market-construction.php) to serve the
same purpose. However, this option implies installing the culvert
through the void after blasting, which has a safety risk. Based on
Fig. 4. Backfill application in the proposed DLSOS mining system.
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this consideration, the installation of Armco culvert and filling
the void with low strength cement backfill was rejected. The load-
ing crosscut is extended towards the upper stope, and the upper
stope production drilling drift is constructed. The same procedure
is then used to recover the upper stope as for the lower stope. After
mining the upper stope, the low strength backfill material with 5%
cement is used for filling.

The sublevel open stoping using fan blastholes with backfilling
changes the temporal and spatial sequence of traditional mining of
moderately dipping medium-thick orebodies. This new mining
systemmakes the use of gravity transport and trackless equipment
for possible transportation, and solves the problem of inefficient
blasted muck transportation in these orebodies. The application
of sublevel open stoping using fan blastholes with backfilling
improves the efficiency of mining moderately dipping orebodies
by increasing production capacity, saving labour, and thereby
reducing cost. In addition, operations in the drilling access drift
greatly improve the safety of workers and equipment.

Based on the filling cost in Table 3, the DLSOS method is seen to
be relatively cheaper (2.69 $/t) than that of the original drift-and-
fill mining system at the case study mine (Fig. 5) which required
the use of higher strength backfill at an overall cost of 3.31 $/t.

After application of the DLSOS mining method, the mining
height was 20 m and only the lower 5 m stope height is filled with
a 20% cement-tailing ratio, and the upper part is filled with a 10%
cement-tailing ratio in the case of the lower stopes. The upper
stopes are filled with 5% cement content fill.

The DLSOS system improved the filling efficiency and elimi-
nated complexity of the filling process. Hence, the mining cost of
the new system is relatively less than that of the previous drift
and fill approach. Although the DLSOS mining system overcame
the problems of transportation inefficiency, and safe recovery at
a relatively lower cost in traditionally moderately dipping
medium-thick orebodies, the method has some drawbacks such
as retention of residual muck on the footwall surface during the
production process. The volume of residual muck retained is con-
strained by the footwall dip angle and roughness of the stope foot-
wall surface labelled A as shown in Fig. 3. First, the muck cannot be
fully recovered, which leads to some ore loss. Second, when using
trackless equipment to remove the muck, the muck recovery is
influenced by the drawpoint interval and the ring burden, which
results in residual ore at the access drilling drift brow labelled B
as shown in Fig. 3, and at the end of the upper portion of the drift
labelled C as shown in Fig. 3. These factors impact the ore recovery
when using the proposed method.

Methods for studying muck recovery include physical simula-
tions (i.e. small-scale laboratory experiments) [7,12–15], numeri-
cal simulation [16,17], and full-scale on-site experiments [18–
21]. Physical simulation experiments are conducted on the princi-
ple of similar materials through the construction of scaled experi-
mental models, simulations of the actual ore drawing process, and
quantifying the ore recovery of different mining processes to
obtain a comparison of different mining plans. Physical simulation
experiments have become the most widely used method in the
studies of ore recovery in mining [12–14]. For example, the particle
flow ellipsoid theory proposed by Janelid and Kvapil [13] was the
result of physical simulation experiments. Subsequently, many
researchers have studied the effects of the form of extraction of
blasted muck under different boundary conditions, structural
parameters in particle flow processes, blasting parameters, and
fragment size distribution on ore recovery [12]. However, when
there are many factors involved in the simulation process, it
requires the use of several factor configurations that can result in
the number of physical experiments becoming increasingly high,
and generally approaching an exponential function. In such a case,
the experimental workload becomes time-consuming. Typically,
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Table 3
Comparison of drift-and-fill and DLSOS mining systems backfill economics material.

Method Item 20% cement content 10% cement content 5% cement content Full tailings Overall cost ($/t)

Drift-and-fill Cost ($/m3) 14.29 10.00 7.14 5.71 3.31
Ratio (%) 16.70 41.65 – 41.65

DLSOS Cost ($/m3) 11.43 7.86 5.86 4.71 2.69
Ratio (%) 12.80 34.10 53.10 –

Fig. 5. Section and plan views of the drift-and-fill mining system as used at the case
study mine.
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therefore, physical experiments are only applied to the study of a
small number of influencing factor scenarios.

This paper studied the quantitative relationship between ore
recovery in the DLSOS mining system and parameters, including
the lower stope footwall dip angle, lower stope footwall surface
roughness, drawpoint spacing, and blast ring burden using physical
laboratory experiments. A backpropagation neural network
(BPNN) data analysis procedure was then developed based on the
physical laboratory experiments.

The BPNN is a multi-layer feedforward neural network trained
according to the error back propagation algorithm [22]. BPNN is
an artificial neural network (ANN)-based powerful technique
which is used for detection of the intrusion activity. The basic com-
ponent of BPNN is the neuron which stores and processes informa-
tion. The BPNN is a supervised learning algorithm. The main idea of
BPNN is to input training samples and use the back-propagation
algorithm to repeatedly adjust and train the weights and devia-
tions of the network to make the output vector as close as possible
to the expected vector. When the sum of root mean square errors
of the output layer of the network is less than the specified error,
the training is completed, and the weights and deviations of the
network are saved. BPNN has strong nonlinear mapping ability
and flexible network structure and is the most widely used neural
network. The BPNN has been used in mining research in the liter-
atures [23–26] and discussed further in Section 5.

The physical model for the laboratory experiment was designed
to mimic the field scale mine using the material similarity concept.
A forecast model with regards to the ore recovery, and the above-
mentioned factors was developed using the BPNN. Based on the
developed model and applied single-factor sensitivity analysis,
the significance of each factor affecting the ore recovery is pre-
sented and discussed. Finally, the results of the study were applied
to an actual field experimental stope to provide practical support
for the structural parameter optimization from theoretical experi-
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ments, for ore recovery prediction, and for causal analysis of ore
loss as basis for suggested ore recovery improvement planning.
4. Evaluation of the proposed adapted mining method

4.1. Construction of the laboratory physical simulation model

The goal of the laboratory physical experiment was to establish
a quantitative relationship between ore recovery and lower stope
footwall dip angle, footwall surface roughness, drawpoint spacing,
and production blast ring burden. Based on the basic assumptions
of material similarity, the similarity conditions of this physical
simulation experiment were identified as follows: (1) the model
geometric similarity, including the model dimension, structure,
and fragmentation size composition were established based on
the similitude theory; (2) the model backfill material density was
the same as the actual backfill loose density; (3) the time scale
was in correspondence with the length scale; (4) the stress scale
was in correspondence with the length scale; (5) the same residual
friction angle as for the blasted ore was used; and (6) the blasted
ore friction angle was the same as the loose material internal fric-
tion angle [12,14].

To guarantee that the results of a physical model can be directly
scaled up, the model must be fully similar to the mine scale [14].
Physical models and full-scale models cannot meet the similarity
in all aspects. Geometric similarity is the most important and the
easiest to implement in a physical ore drawing simulation model.

In this research, the following scaling measures were taken.
For the length scale CL,

Lmodel ¼ kLmine

CL ¼ Lmodel=Lmine

�
ð1Þ

where Lmodel is the length of the physical model; Lmine the length of
the mine; and CL and k the length scales.

For the mass scale Cm,

mmodel ¼ k3mmine

Cm ¼ mmodel=mmine

(
ð2Þ

where mmodel is the mass of the physical model; mmine the mass of
the mine; and Cm and k3 the mass scales. Therefore, the ratio of
model ore mass to mine ore mass is k3.

For the time scale Ct, by controlling the drawing rate, it is pos-
sible to ensure the similarity of granular particle movement pro-
cess. In the process of drawing, the movement distance of
particles in the model is l in unit time. The particle motion process
is the same, and the acceleration should be the same. Thus

amine ¼ amodel

Lmodel ¼ kLmine

tmodel ¼
ffiffiffi
k

p
tmine

Ct ¼ tmodel=tmine

8>>><
>>>:

ð3Þ

where amodel is the acceleration of the physical model; amine the
acceleration of the mine; tmodel the time of the draw process for
the physical model; tmine the time of the draw process for the mine;



Fig. 7. 3D photograph of the laboratory physical experimental model showing the
similitude dimensions. The scale is 1:50 relative to prototype.
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and Ct and
ffiffiffi
k

p
the time scales. The tmine satisfies the similarity coef-

ficient
ffiffiffi
k

p
.

For the stress scale Cr, according to the similitude experimental
conditions, the relationships between stress scale Cr, length scale
CL, and density scale Cq are given in Eq. (4).

Cr ¼ CqCL ð4Þ
In Eq. (4), because the ore from the mine was used in the labo-

ratory physical model experiment, Cq = 1 and Eq. (4) simplifies to
Cr = CL.

The DLSOS stoping method is an adapted sublevel open stoping
method with backfill. In this method, the stoping sequence is from
bottom-up, and therefore, the blasted ore is mucked under the pro-
tection of the upper stope pillar. The muck is not affected by the
weight of overlying strata, and the stress is not transferred. There-
fore, it is not necessary to apply the corresponding load to the
upper part of the physical model. For operational convenience of
the experiment, the similarity ratio of the physical simulation
experiment was set to 1:50. To establish this ratio, the ore was
retrieved from the mine site and crushed, and the mixture of the
crushed material was prepared with reference to the survey results
of blasted ore fragment size distribution at the mine site. The par-
ticle size distribution of the field surveyed fragmentation which
was the same as that used in the laboratory experiments is shown
in Fig. 6.

The laboratory physical model was constructed to ensure that
the simulations in the experimental model design, structure and
scheme were consistent with the field practice at the mine site.
The bulk material packing density in the laboratory experiment
was the same as the loose density of blasted muck at the mine site.
Finally, to simulate the scraper used at the mine, a scaled shovel
was made for the laboratory experiment. The approach adopted
ensured the laboratory physical experiment was like the field oper-
ations as observed.

The base of the laboratory physical model was constructed with
iron materials except for the rock and ore veins, and the other parts
were made of transparent acrylic plates to allow external observa-
tion of the movement of the muck in the process of ore drawing.
Screws and grooves were used to assemble the various parts of
the model to obtain the full 3D physical model shown in Fig. 7.
In summary, the model consisted of the floor, and lower and upper
stopes. According to the foregoing discussion, the similarity ratio
was 1:50, the length of the experimental stope was 30 m, the hor-
izontal thickness was 30 m, and the sectional height was 20 m. The
cross section of the drift in the experimental mined stope was 3.
5 m � 3.3 m. Accordingly, the size of the model was 62 cm in
length, 60 cm in width, and 42 cm in height. The drift section
was 7 cm wide and 6.6 cm in height in the physical model.
Fig. 6. Particle size distribution curve of the mine ore muck that was used in the
laboratory physical experiments.
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4.2. Experimental data collection process

Each configuration was repeated twice to give a total of 162
experiments. The average outcome of each two identical experi-
mental configurations was taken as the final result.

After assembling the physical model, a plate (referred to burden
plate) is used to divide the inner space of the model into sections
representing the burdens. In the experiment, burden plates were
taken out to simulate the blasting operation. When the burden
plate was withdrawn, the loose particles between the burden
plates flow into the drilling drift and were drawn out. Therefore,
the presence of the burden plate simulated different blasts.

The simulated ore was weighed and evenly loaded into the bur-
dens. During the experiment, the ore-burden plates were drawn in
sequence to simulate blasting in accordance with the steps set up
in the simulation program. In the loading drift, small rakes with a
grip length of 400 mm and a width of 50 mm were inserted 3 cm
into the ore muck, and the ore was extracted evenly at full-face
along the loading drift. The haulage was terminated when muck
could no longer be extracted from the drawpoints.

During the experiment, fine sandpaper, coarse sandpaper, and
mineral ore fragments were pasted on the model stope footwall
surface to reflect different footwall surface roughness. For each
case of simulated roughness, ore fragments were placed on top
to simulate ore recovery under different footwall surface rough-
ness conditions. The friction coefficients of the fine and coarse
sandpapers, and ore fragments were determined by the inclined
sliding experiments [27]. The sandpaper to be tested was fixed
on an inclined plane with an inclination angle of h and the plane
rotated on an axis until the paper started to slide. For friction coef-
ficient of the ore fragments, standard cubes of 10 cm edge length
with smooth surfaces and 1 kg in weight were placed on the
inclined plane. The angle of the inclined plane was gradually
increased and the angle at which sliding began was recorded.
The maximum static friction force F of the sliding cube satisfies
Eq. (5).

G ¼ mg

F ¼ Gsinh ¼ lGcosh
l ¼ tanh

8><
>: ð5Þ

where G is the weight of mineral for the physical experiment; g the
gravitational acceleration; m the mass of the mineral for the phys-
ical experiment; F the component of weight (i.e. static friction
force); h the incidence of the physical model; and l the surface
roughness of the physical model.

The frictional coefficients of the fine and coarse sandpapers, and
ore particles were determined in this manner to be 0.45, 0.70, and
0.95, respectively. The physical model experiment factors and val-
ues used are summarized in Table 4. Based on Table 4 we have four



Table 4
Physical model experiment factors and values used.

Factor Value
range

Experimental values used

Lower stope footwall
dip angle, h’ (�)

30–55 30, 40, and 50

Footwall surface
roughness, f

0–1 f = 0.95 for ore, f = 0.45 for fine sandpaper,
and f = 0.70 for coarse sandpaper

Drawpoint spacing, d
(cm)

4–8 10, 12, and 15

Production ring
burden size, w
(cm)

2–8 2, 4, and 8
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factors and each at three levels. Using factorial experimental
design [28], we obtained 81 (3 � 3 � 3 � 3) combinations (config-
urations) of experiments (Table 5).

The factorial experimental design approach was used so as to
obtain sufficient data for the BPNN analysis.

4.3. Results of the laboratory physical model experiment

The physical model experiment results from the 81 experimen-
tal configurations are presented in Table 5. As shown in Fig. 8a, ore
draw increased to nearly 83.6% as the lower stope footwall dip
angle increased to a maximum of 40�. As the footwall dip angle
increased, the gravitational pull on the fragments increased to
overcome the frictional resistance to the muck flow thereby
increasing ore recovery.

The ore draw results for different footwall surface roughness
represented by the footwall surface friction coefficient are shown
in Fig. 8b. As the footwall surface roughness friction coefficient
increased from 0.45 to 0.95, the ore draw decreased from 90.21%
to 83.61%. In the ore-drawing process, when the footwall surface
was smooth with a friction coefficient of 0.45, the ore recovery
was 8%–10% higher than when it was rough with a friction coeffi-
cient of 0.95.

The ore-drawing results for three different production blast ring
burdens are shown in Fig. 8c. With increase of the ring burden from
2 to 8 cm, corresponding to the true size of 1–4 cm in the mine, the
ore draw decreased from 85.21% to 81.85%. Ore draw for 2 and
4 cmburdenswas typically 3%–5% higher than that for 8 cm burden.
Production blast ring burden determines the quality of fragmenta-
tion efficiency. Small burdens result in better fragmentations than
larger burdens, and hence in better ore recovery in the former.

The relationship between drawpoint intervals and ore-draw as
simulated for drawpoint spacings of 10, 12, and 15 cm is shown
in Fig. 8d. The results indicated that the ore-draw (%) at the
10 cm drawpoint interval was higher than those at the 12 and
15 cm intervals. The remnant muck in the stope at the 10 cm draw-
point interval was less than those at the 12 and 15 cm intervals
with the ore-draw (%) at the 10 cm interval being about 5% higher
than that at the 12 cm interval.

5. Development of backpropagation neural network for ore
recovery forecasting

5.1. Backpropagation neural network technique

An artificial neural network (ANN) is an information processing
system that simulates human thought processes based on under-
standing the structure and function of the nervous system of the
human brain [29]. An ANN uses layered interconnections of a large
number of simple neuron nodes to form a complex network
through the study of a certain number of input samples to establish
multi-parameter mapping relationships between the input sample
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and output target that have overall nonlinearity, a high degree of
parallelism, good error tolerance, and strong adaptability. A back
propagation neural network (BPNN) is the most mature and cur-
rently most widely applied network technique [30,31].

The core of BPNN is the backpropagation algorithm, which con-
sists of forward information transmission and backward error
transmission components. Input information is transmitted from
the input layer to the output layer through hidden layers, and
the state of a neuron node only influences the nodes in the next
layer. If the output from the output layer fails to reach the expected
value, the output layer error will be transmitted backwards.
Through network connections, the error signal is backpropagated
along the same connection path to modify the weight of each neu-
ron node until the expected target is reached.

A BPNN has a strong generalization capability, and the con-
structed model can be expanded to learn and forecast new knowl-
edge [32]. For this reason, in the mining industry, BPNNs have been
widely applied to mining method selection [33,34], rock mass
parameter calculations [35], mining loss and degradation statistics
[36], and blasting analysis in mines [37–39].
5.2. Neural network model

The neural network algorithm learning should use 90% of the
samples to train the neural network model and 10% of the samples
to test it [40]. The data set used for the BPNN training and predic-
tion (Table 5) was obtained from the laboratory physical ore flow
simulation experiment. Based on Mladenov’s theory, out of the
81 items in the data set, 72 were used for network training, among
which 70% were for learning and 30% were for verification. The
other nine items were used to verify the reliability of the trained
BPNN predictive accuracy.

A three-layer BPNN structure was selected. The input layer con-
tained four factors that were analyzed, and the output layer had
only one element, the ore recovery percent in %. Thus, the neural
network was denoted as 4-N-1. The structure of the neural net-
work is shown in Fig. 9.

The determination of the number (N) of hidden layer nodes in
neural network training is a complex problem [41]. It is generally
believed that if the number of hidden layer nodes is too small,
the network may not train at all or the network performance will
be poor. If the number of hidden layer nodes is too large and the
system error is reduced, the network training time will be pro-
longed. On the other hand, a small number of hidden layer nodes
results in short training times but with large errors.

There are four methods for determining the number of hidden
layer nodes.

Case 1: The relationship between the number of hidden layer
nodes N and the number of input layer nodes I is

N ¼ log2I ð6Þ
Case 2: Kolmogorov’s theorem shows that the number of hid-

den layer nodes N is

N ¼ 2I þ 1 ð7Þ
Case 3: The relationship between the number of hidden layer

nodes N, the number of modes I, and output layer number a (a con-
stant between 1 and 10) is

N ¼
ffiffiffiffiffiffiffiffiffiffiffi
I þ 0

p
þ a ð8Þ

Case 4: The number of hidden layer nodes N (Eq. (9)) should be
less than (S � 1) (where S is the number of training samples).
Otherwise, the systematic error of the network model is indepen-



Table 5
Physical model experiment results.

Experiment No. h’ (�) f d (cm) w (cm) H (%)

1 30 0.95 12 2 70.89
2 40 0.95 12 2 83.61
3 50 0.95 12 2 82.00
4 30 0.95 12 4 70.27
5 40 0.95 12 4 81.85
6 50 0.95 12 4 81.43
7 30 0.45 12 4 75.79
8 40 0.45 12 4 88.04
9 50 0.45 12 4 84.83
10 30 0.45 12 2 77.62
11 40 0.45 12 2 88.59
12 50 0.45 12 2 84.55
13 30 0.45 15 2 81.31
14 40 0.45 15 2 84.93
15 50 0.45 15 2 83.87
16 30 0.45 15 4 81.31
17 40 0.45 15 4 85.55
18 50 0.45 15 4 83.87
19 30 0.95 15 2 70.06
20 40 0.95 15 2 80.20
21 50 0.95 15 2 79.47
22 30 0.95 15 4 70.01
23 40 0.95 15 4 74.58
24 50 0.95 15 4 74.03
25 30 0.45 10 2 75.24
26 40 0.45 10 2 90.67
27 50 0.45 10 2 85.67
28 30 0.45 10 4 73.43
29 40 0.45 10 4 89.71
30 50 0.45 10 4 85.64
31 30 0.95 10 2 70.91
32 40 0.95 10 2 85.78
33 50 0.95 10 2 84.78
34 30 0.95 10 4 70.56
35 40 0.95 10 4 85.32
36 50 0.95 10 4 85.30
37 30 0.70 15 4 75.89
38 40 0.70 15 4 79.67
39 50 0.70 15 4 79.89
40 30 0.70 15 2 75.97
41 40 0.70 15 2 82.31
42 50 0.70 15 2 81.87
43 30 0.70 12 4 72.56
44 40 0.70 12 4 85.23
45 50 0.70 12 4 82.96
46 30 0.70 12 2 74.35
47 40 0.70 12 2 85.89
48 50 0.70 12 2 83.67
49 30 0.70 10 4 71.98
50 40 0.70 10 4 87.65
51 50 0.70 10 4 85.56
52 30 0.70 10 2 73.12
53 40 0.70 10 2 88.01
54 50 0.70 10 2 85.12
55 30 0.45 15 6 81.35
56 40 0.45 15 8 86.01
57 50 0.45 15 8 83.67
58 30 0.45 12 8 73.88
59 40 0.45 12 8 87.89
60 50 0.45 12 8 84.97
61 30 0.45 10 8 71.63
62 40 0.45 10 8 89.21
63 50 0.45 10 8 85.58
64 30 0.70 15 8 75.76
65 40 0.70 15 8 76.89
66 50 0.70 15 8 77.67
67 30 0.70 12 8 70.45
68 40 0.70 12 8 85.21
69 50 0.70 12 8 81.54
70 30 0.70 10 8 70.03
71 40 0.70 10 8 86.90
72 50 0.70 10 8 85.67
73 30 0.95 15 8 70.12
74 40 0.95 15 8 70.03

(continued on next page)
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Table 5 (continued)

Experiment No. h’ (�) f d (cm) w (cm) H (%)

75 50 0.95 15 8 70.04
76 30 0.95 12 8 70.08
77 40 0.95 12 4 79.78
78 50 0.95 12 4 81.09
79 30 0.95 10 4 70.45
80 40 0.95 10 4 85.12
81 50 0.45 10 4 86.10

Notes: Each experiment number was conducted twice and the average taken. If the difference between the two experiments was greater than 5%, more experiments were
conducted until this condition was satisfied and the average of those results was taken.

Fig. 8. Relationship between ore recovery and the lower stope footwall dip angle, footwall surface roughness friction coefficient, rings burden, and drawpoint spacing.

Fig. 9. Neural network structure diagram.
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dent of the characteristics of the training samples and tends to be
zero, that is, the established network model has no generalization
ability.

N 6 S� 1 ð9Þ
N 6 S=kð Þ I þ Oð Þ ð10Þ

where O is the number of output layer nodes; and k a constant value
between 5 and 10.

In this research the number of input layer nodes I = 4, the num-
ber of output layer nodes O = 1, the total number of samples was 81
based on the factorial experimental design results in Table 5. Out of
81 results: 50 were used in training the BPNN giving S = 50; the
number result used for process verification was 22; and the num-
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ber of forecasting test samples was 9. Therefore, combined with
the above five methods (cases 1–5), the lower limit of the number
of hidden layer nodes was 9, the upper limit of the hidden layers
was 50 when k takes the minimum value of 5; hence, the neuron
nodes in the hidden layer were selected to be 10, 15, 20, 25, 30,
35, 40, 45, and 50.

The transfer function may use TRANSIG, LOGSIG, or PURLIN
[31], and the training function used TRAINLM, TRAINDX, or
TRAINNDA [42]. The learning function may use LEARNGDM or
LEARNGD. The training parameters were as follows:
epochs = 10000, max fail = 10000, Min grad = 1e�10,
mu = 0.001, and mu dec = 0.01.

The network was trained based on Matlab R2016b and its accu-
racy was assessed with respect to average absolute error (Eq. (11)),
average relative error (Eq. (12)), and root mean square error (Eq.
(13)) [43,44].

Ea ¼
XS
i¼1

Ti � Oij j=S ð11Þ

Er ¼
XS
i¼1

Ti � Oij j= nSð Þ ð12Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS
i¼1

Ti � Oið Þ2=S
vuut ð13Þ

where Ea is the mean absolute error; Er the mean relative error;
RMSE the root mean squared error; Ti the true value of the sample
i; Oi the predicted value of the sample i; and n the number of
samples.

The number of hidden layers, transfer function, learning func-
tion and training function affect the accuracy of BPNNs. The neuron



S. Xu, R. Liang, F.T. Suorineni et al. International Journal of Mining Science and Technology 31 (2021) 333–346
nodes in the hidden layer were selected to be 10, 15, 20, 25, 30, 35,
40, 45, and 50. The training function used TRAINLM, TRAINDX, or
TRAINNDA. The learning function may use LEARNGDM or
LEARNGD and the transfer function may use TANSIG, LOGSIG,
and PURELIN for training. Therefore, in the design of the neural
network structure, the variable factors and possible values are
shown in Table 6. Table 6 shows the factors to be considered, their
levels, and number of levels. SPSS orthogonal experimental design
tool was used to determine the optimal number of neural network
structure combinations and resulted in 27 experimental schemes
as shown in Table 7. Based on Eqs. (11)–(13), the associated accu-
racies of each experimental scheme in predicting the ore recovery
are calculated and included in Table 7. Table 7 shows that when
the number of hidden layer nodes was 40, the absolute error of
the network calculation was the lowest at 0.40, with a relative
error of only 0.48, and a RMSE of 0.45.
5.3. Analysis of the neural network forecasting results

For the ore flow simulation experiment, the 40-node neural net-
work (4-40-1) with the TRANINDX-LEARNGDM-TANSIG combina-
tion accuracy assessment results are better than those of the
other node sizes as shown in Table 7. Hence, the 4-40-1 neural net-
work model was used to forecast values for the selected 9 labora-
tory experimental configurations results. The forecasted and
laboratory experimental results for the 9 cases are shown in
Fig. 10. The results of the physical simulation experiment and the
BPNN forecast (Fig. 10) are remarkably similar. The forecast results
of different laboratory physical modelling experimental configura-
tions fitted a linear regression correlation coefficient of 0.99, indi-
cating a good match between the BP modelling and experimental
results.

Fig. 11 compares the forecasted and laboratory physical exper-
iment results in terms of ore recovery percent and the errors in the
predicted results. The error analysis results using different config-
urations (Fig. 11) indicate that the forecasted values are very sim-
ilar to the experimental values with the highest relative error being
only 0.87. Thus, the BPNN model 4-40-1 can reliably predict the
physical laboratory experiment results. This is significant as it
shows that future productivity at the mine can be predicted and
monitored using the BPNN rather than the physical model which
is laborious and more time consuming.
6. Ore recovery sensitivity analysis

6.1. Principles of sensitivity analysis

In the study of an engineering problem, assuming a dependent
variable Y, and n the influencing factors (independent variables),
and Xi satisfy the relationship Y = f(Xi), where i = 1, 2, . . ., n. This
analysis of the degree of variation of the dependent variable
induced by changes in the independent variable Xi within a certain
range is referred to as sensitivity analysis [45–47].
Table 6
Factors and their levels used in Synergetic Prover Augmenting Superposition with
Sorts (SPASS) for determining number of experimental schemes.

Factor Level Number of factor
levels

Number of hidden
layers

10, 15, 20, 25, 30, 35, 40, 45,
and 50

8

Training function TRAINLM, TRAINDX, and
TRAINNDA

3

Learning function LEARNGDM and LEARNGD 2
Transfer function TANSIG, LOGSIG, and PURELIN 3
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The essence of sensitivity analysis is to individually change the
numerical values of the independent variables within a certain
range, to determine the degree of influence of the independent
variables on the dependent variable. Among these variables, the
factors for which a small change induces a large variation in the
dependent variable are called the sensitive factors; otherwise, they
are called insensitive factors.

Sensitivity analysis is widely applied in engineering practice.
For example, Yu et al. conducted sensitivity analysis on slope sta-
bility factors based on roughness set theory, a neural network algo-
rithm [48]. A sensitivity entropy weight-based integrated attribute
recognition assessment model that provided a new method for
rockmass parameter sensitivity analysis was proposed by Huang
et al. [49]. Orthogonal experiment methods to analyse the compre-
hensive sensitivity of various factors in the studies of a drift col-
lapse in an underground mine ore drawing system and for pillar
stability were respectively proposed [50,51].

Sensitivity analysis based on reference value perturbation anal-
ysis has been widely applied due to its advantages of simplicity
with practical results. The sensitivity calculation method used for
this study is presented in Eq. (14).

ZðXÞ ¼
Xn
i¼1

8ðXiÞ � f ðXi þ DiÞ2
 !

=C ð14Þ

where Z(X) is the sensitivity value corresponding to factor X; C the
number of samples in the test sample set; Xi the i-th sample in the
test sample set of factor X;Di the perturbation value of the i-th sam-
ple; and " the selected neural network prediction model.

The sensitivity of the following factors on ore recovery was
investigated: lower stope footwall dip angle, footwall surface
roughness, drawpoint spacing, and production ring burden as
listed in Table 8. The sensitivity of each of the four factors on ore
recovery was evaluated at eight different levels.
6.2. Lower stope footwall geometry sensitivity analysis

In this study, the perturbation value method was selected for
analysis of the data. According to a pre-set order, each factor was
separately selected and assigned one of its eight levels values, with
all other factors unaltered and its impact on the ore recovery eval-
uated. The procedure is continued for each of the eight values of
the factor considered and for all the four factors. The four factors
and the eight values for each of them were listed in Table 5.

According to the sensitivity analysis of the four factors, the
lower stope footwall dip angle was first assessed, and the results
are shown in Table 9. The sensitivity analysis cases for the other
factors were remarkably similar to those in Table 9 and are not
listed here. The eight results in Table 9 were used as input samples
into the 4-40-1 neural network and the sensitivity analysis con-
ducted. The resulting sensitivity of ore recovery to the four factors
investigated are presented in Table 10.

As shown in Table 10, in a moderately dipping medium-thick
orebody, sublevel stoping with fan blastholes in the physical sim-
ulation experiment, the dip of the footwall had the greatest impact
on the ore recovery with a sensitivity of 3.736 and of the first order,
followed by the drawpoint spacing with a sensitivity of 3.534 and
of second order, then the footwall surface roughness with a sensi-
tivity of 1.427 and the production ring burden having the least
influence on ore recovery with a sensitivity of only 0.634. There-
fore, when designing sublevel open stoping in moderately dipping
medium-thick orebodies, a drawpoint spacing of 5.5 m, footwall
surface roughness friction coefficient of 0.5, and a production ring
burden of 2 m are suggested for optimum ore recovery.



Table 7
Neural network experimental configurations and training results.

Model Training function-learning function-transfer function Ea (�102) Er (%) RMSE (�102)

4-10-1 TRAINDA-LEARNGDM-TANSIG 1.57 1.84 1.87
4-10-1 TRANINDX-LEARNGD-PURELIN 3.53 4.30 4.23
4-10-1 TRAINLM-LEARNGDM-LOGSIG 1.42 1.68 2.01
4-15-1 TRAINLM-LEARNGD-TANSIG 1.61 1.89 1.97
4-15-1 TRAINDX-LEARNGDM-LOGSIG 2.03 2.41 2.53
4-15-1 TRANINDA-LEARNGDM-PURELIN 3.51 4.33 4.03
4-20-1 TRAINDX-LEARNGDM-TANSI 1.77 2.06 2.20
4-20-1 TRAINLM-LEARNGDM-PURELIN 3.99 4.76 4.99
4-20-1 TRANINDA-LEARNGD-LOGSIG 2.70 3.16 4.09
4-25-1 TRAINDA-LEARNGD-PURELIN 3.58 4.32 4.48
4-25-1 TRANINDX-LEARNGDM-LOGSIG 3.17 3.82 3.94
4-25-1 TRAINLM-LEARNGDM-TANSIG 1.19 1.40 1.74
4-30-1 TRAINLM-LEARNGDM-PURELIN 3.60 4.46 4.27
4-30-1 TRANINDA-LEARNGDM-LOGSIG 1.10 1.33 1.34
4-30-1 TRAINDX-LEARNGD-TANSIG 3.53 4.20 4.04
4-35-1 TRAINDX-LEARNGDM-PURELIN 7.20 8.38 9.20
4-35-1 TRANINDA-LEARNGDM-TANSIG 2.32 2.72 3.90
4-35-1 TRAINLM-LEARNGD-LOGSIG 1.80 2.17 2.08
4-40-1 TRAINLM-LEARNGD-PURELIN 3.58 4.44 4.21
4-40-1 TRANINDA-LEARNGDM-LOGSIG 4.11 5.27 6.16
4-40-1 TRANINDX-LEARNGDM-TANSIG 0.40 0.48 0.45
4-45-1 TRAINLM-LEARNGDM-LOGSIG 3.06 3.63 3.86
4-45-1 TRANINDA-LEARNGD-TANSIG 2.67 3.15 4.08
4-45-1 TRANINDX-LEARNGDM-PURELIN 3.69 4.49 4.48
4-50-1 TRAINLM-LEARNGDM-TANSIG 2.97 3.51 5.05
4-50-1 TRANINDA-LEARNGDM-PURELIN 3.42 4.16 4.10
4-50-1 TRANINDX-LEARNGD-LOGSIG 1.95 2.31 2.37

Fig. 10. Relationships between neural network predicted ore recovery values and
laboratory physical model measured experimental values. Numbers are experi-
mental data set numbers.

Fig. 11. Comparative error analysis of the measured and predicted results.

Table 8
Sensitivity analysis configuration design cases.

Factor Values considered

Lower stope footwall dip angle, h’ (�) 20, 25, 30, 35, 40, 45, 50, 55
Footwall surface roughness coefficient, f 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Drawpoint spacing, d (cm) 8, 9, 10, 11,12, 13, 14, 15
Ring burden size, w (cm) 1.6, 2, 3, 4, 5, 6, 7, 8, 10

S. Xu, R. Liang, F.T. Suorineni et al. International Journal of Mining Science and Technology 31 (2021) 333–346

342
6.3. Discussion of the sensitivity analysis results

6.3.1. Sensitivity analysis of the lower stope footwall dip angle
The impact of the lower stope footwall dip angle on the ore

recovery is shown in Fig. 12a. As the footwall dip angle increases,
the ore recovery first increases to a maximum of 86% at 40� dip
angle and generally stabilizes thereafter. The occurrence of this
trend may be attributed to the fact that once the angle of sliding
of the broken muck is exceeded, gravity effect on muck flow due
to increases in the lower stope footwall dip angle is minimum.
When the lower stope footwall dip angle decreases, the blasted
muck movement to drawpoints decreases due to increased resis-
tance to flow. When the lower stope footwall dip angle increases
from 20� to 40�, the resistance to muck flow decreases, resulting
in increased ore recovery.
6.3.2. Sensitivity analysis of the footwall surface roughness
The effect of the footwall surface roughness on ore recovery

after blasting is shown in Fig. 12b. As the footwall surface rough-
ness increases, the ore recovery decreases gradually. The footwall
surface roughness is measured by the friction coefficient of the
post-blast footwall surface. The amount of the friction coefficient
directly influences the frictional resistance experienced by the
flowing ore muck. Due to variations in factors such as drilling accu-
racy between rows and explosive quality, the post-blast footwall
surface may be rough, and thus reduces the rate of ore flow on
the footwall. Therefore, blast design, drilling accuracy, and blast-
hole charging efficiency in production blasting process should be



Table 9
Lower stope footwall dip angle sensitivity analysis results.

Case No. h’ (�) f d (cm) w (cm) H (%)

1 20 0.3 10 4 71.49
2 25 0.3 10 4 72.38
3 30 0.3 10 4 76.67
4 35 0.3 10 4 85.22
5 40 0.3 10 4 86.08
6 45 0.3 10 4 85.51
7 50 0.3 10 4 84.95
8 55 0.3 10 4 84.84

Table 10
Sensitivity of the individual factors with respect to ore recovery.

Parameter h’ (�) f d (cm) w (cm)

Sensitivity 3.736 1.427 3.534 0.634
Order 1 3 2 4
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strictly controlled to reduce footwall roughness in order to
improve the flow of muck on the footwall surface.
6.3.3. Sensitivity analysis of production ring burden
The effect of blast ring burden on ore recovery is shown in

Fig. 12c. In the laboratory physical experiment, the ore draw grad-
ually decreased with increasing blast ring burden determined by
the burden plate placement intervals. In the onsite ore mucking
process, only 30%–40% of the ore is drawn for a given blast to min-
imize the open void exposure time. The ore drawing was stopped
when the swell space required for the next blast was reached. This
practice is similar to shrinkage stoping (entry stoping system in
which workers enter the stope) and vertical crater retreat (VCR,
for non-entry stoping system in which workers do not enter the
stope). VCR is a sublevel stoping system developed from shrinkage
mining system experience for stoping in high stress conditions.
Shrinkage and VCR mining systems are discussed in detail in
[52,53].

At the mine, all ore was recovered from a stope only after stope
blasting was completed and retention of muck in a stope for stabil-
ity purposes was no more necessary. After the final blast in a stope,
ore draw frequency was increased at drawpoints to boost ore
recovery rate. This practice could not be explicitly implemented
in the laboratory physical experiment. Therefore, the following
steps were taken to overcome this deficiency in the laboratory
physical experiment in order to implicitly simulate the actual pro-
cess in the laboratory. First, because of the repeatability of the
physical model experiments, each experiment was repeated until
Fig. 12. Sensitivity results o
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two experiments were within 5% error of each other. Once this
condition was satisfied, the average value of the two results was
taken as the result of physical simulation for that experimental
configuration. Second, physical model experiments can well reflect
the laws of the structure based on the similitude principles used in
their design. Therefore, through the physical model experiments,
we can obtain some rules of parameter adjustment to obtain the
approximate expected actual field values. Based on the simulation
of similar materials, the laboratory scale physical model can be
scaled up to the full scale.

In the actual production process, the ore drawing parameters
influence the timing of the stope production schedule. A large pro-
duction ring spacing will induce a large workload for each blast,
increase the mine production, and shorten the stope exposure time
which is desirable.
6.3.4. Sensitivity analysis of drawpoint spacing
The impact of drawpoint spacing on ore recovery is shown in

Fig. 12d. As the drawpoint spacing increases, the ore recovery
decreases in approximately linear manner. The amount of residual
ore muck in the stope depends mainly on the ore draw method.
When the drawpoint spacing decreases, the number of ore draw-
points increases, and hence results in increased ore recovery. The
close spacing of drawpoints also results in draw ellipsoid interac-
tion resulting in reduced residual ore in the stope. This logic fol-
lows the principles of drawpoint design in block caving mining
as can be seen in [8,54]. On the contrary, as the drawpoint interval
increases, the number of ore removal points decreases, individual
drawpoint ellipsoids cease to interact resulting in decreased ore
recovery and increased ore loss.

During the production process, the choice of a minimum draw-
point spacing must also consider safety requirements and the min-
imum turning radius of the ore removal equipment. Under typical
circumstances, the minimum turning radius of a 2 m3 scraper is
5.5 m, and safe pillar stability requires a pillar width of at least
4 m. Hence, the drawpoint spacing should be at least 5.5 m. From
f the different factors.
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Fig. 12d, it can be seen that a drawpoint spacing of 4 m gives the
maximum ore recovery, which then decreases with increase of
the drawpoint spacing. When the spacing is 5.5 m, the correspond-
ing ore recovery is 76%. Thus, the decision to recommend a draw-
point spacing of 5.5 m is based on economic and technical reasons
[8,15,55,56].

7. Case study

The Jiaojia Gold Mine in Shandong Gold Group is located in Laiz-
hou city, Shandong Province, China. The geographic position is
E120�060 to E120�100 and N37�230 to N37�260. The thickness of
the orebody in Jiaojia Gold Mine is 10–15 m (average 12.5 m), with
a dip angle of 26�–40� (average 30�). Thus, this orebody is a typical
moderately dipping medium-thick orebody. The mine is currently
mined by drift and fill mining system (Fig. 5). At the Jiaojia Gold
Mine was studied, during mining, a haulage drift is developed at
the contact of the ore and host rock in the footwall, and the pro-
duction drifts are placed approximately perpendicular to the haul-
age drift as shown in Fig. 5. The drift dimensions are 3.5 m � 3.3 m.
After completion of ore recovery in a given drift, the mined void is
tightly backfilled with cement to tailing ratio of 20%.

The production capacity of each drift per shift is only 80–100 t/
d. The mine needs a production capacity of 10000 t/d requiring
100–125 working faces to meet this production requirement. Thus,
because several working faces are needed to meet the production
targets, the production scheduling is complicated. Furthermore,
some ore is left close to the hangingwall as support to prevent
the hangingwall from unravelling. This is significant sterilized
ore. Hence, existing problems associated with the current mining
system are numerous and are constraints on productivity.

To address these problems and optimize productivity a field
scale experiment was conducted in the mine using the suggested
DLSOS method with fan blasthole drilling and 20% cement to tail-
ing ratio backfill. The experimental stope had a dip angle of 30� and
an average thickness of 25 m.

According to the sensitivity analysis results, the lower stope
footwall dip angle has a dominant effect on the ore recovery. Con-
sidering stope stability and angle of sliding of 35� for the muck, the
lower stope footwall angle was designed to be 40�. The ore draw-
point interval was the second most important factor impacting the
ore recovery but would need to be constrained by the turning
radius of the mining equipment. Careful consideration was given
to minimize the spacing and yet maintaining practical workability.
During the production process, a 2.5 m3 scraper was used for ore
haulage. The minimum turning radius of the scraper was 5.5 m.
Hence, considering all requirements, the ore drawpoint spacing
was chosen to be 5 m.
Fig. 13. Ore loss and dilution in the experim
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Controlled blasting was used in the production process to con-
trol the footwall surface roughness to 0.5 as discussed in Sec-
tion 4.2. For efficient production, the blasthole ring burden was
set at 2 m. This was because in the mining process, blast burden
determined the workload of rock drilling. If the burden interval
is too small, many blastholes will be needed, and the process of
drilling, charging, and detonation will be excessive. As shown in
the physical model simulation results, when the burden increases,
the recovery rate decreases (Fig. 8). Therefore, considering the
actual situation in the field, the minimum burden was set to 2 m.
A lower burden could produce undesirable fragmentation and be
more expensive per blast. The neural network experiment results
are shown in Table 7. In Table 7, the 4–40-1 model gives the opti-
mum results with the least errors. Table 9 presents the lower foot-
wall dip angle sensitivity results, and shows that for a footwall dip
angle of 30�, roughness friction coefficient of 0.3, drawpoint spac-
ing of 5 m (10 cm on model scale) and blast ring burden of 2 m
(4 cm) the ore recovery is 76.67%. Based on the physical model
results, for a footwall dip angle of 30�, surface roughness friction
coefficient of 0.45, drawpoint spacing of 5 m and a burden of
2 m the ore recovery is about 73.43%. It is argued that with a reduc-
tion in footwall surface friction coefficient from 0.45 to 0.3, one
will expect the ore recovery to increase by about 80% if all other
factors remain the same.

The voids created in the field experimental stope after complete
mucking of ore is shown by cavity monitoring system survey
results in Fig. 13a and b. Based on the cavity monitoring results
and the planned stope dimensions, the ore recovery was deter-
mined to be about 81.3%.

Fig. 13b shows the residual muck after the ore haulage process.
The residual muck is from three sources: the footwall surface
residual ore, production drift end residual muck indicated by A in
Fig. 13b, and drawpoint brow residual muck identified by B in
Fig. 13b. The footwall residual muck resulted due to the constraint
of the lower stope footwall dip angle being low. When the lower
stope footwall dip angle was increased, the ore flow increased,
but with increased dilution. With regard to the drift end and brow
residual muck, the use of remote-control scrapers was recom-
mended to allow the equipment to enter the open stope to recover
that portion of the muck (see A and B in Fig. 13b) to improve the
ore recovery.

Table 11 shows the comparison of conventional cut-and-fill
methods (including the drift-and-fill mining system practiced at
the case study mine) with sublevel open stope mining (including
the proposed DLSOS mining system) to show the benefits and effi-
ciency of the proposed DLSOS mining system. Table 11 shows that
although the DLSOS mining system proposed in this paper has
slightly lower ore recovery and a higher dilution than the drift-
ental stope of DLSOS mining method.



Table 11
Comparison of cut-and-fill and sublevel open stoping mining system including existing mining practice at case study mine and the proposed DLSOS mining system.

Mining system Recovery
(%)

Dilution
(%)

Mining cost
(relative)

Mining cost (US
$/ton)

Output
(relative)

Productivity (t/
employee)

Sublevel open stoping (SOS)
mining systems

Conventional [3] 75 15 0.4 7–25 [3] Moderate 20–115
Proposed DLSOS 83 17 0.4 12.87 Moderate to

high
600

Cut-and-fill mining system Conventional [3] 100 0 0.6 20–70 [57] Low 12–48
Drift-and-fill at case
study mine

100 0 0.6 19.72 Low 100
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and-fill mining system used at the mine, its daily production
capacity is about 5–6 times that of the drift-and-fill mining system.
The DLSOS system is also less costly with a mining cost of 12.85 $/t
compared to 19.72 $/t for the drift and-fill mining system, as a
result of improved operational efficiency of the former.
8. Conclusions

A three-layered back propagation neural network (BPNN) was
selected to evaluate and optimize the parameters governing the
mining of moderate dipping medium-thick orebodies with dia-
mond layout sublevel open stoping system (DLSOS) mining
method. By comparing calculations of various configurations of dif-
ferent hidden layer node numbers, an optimal BPNN model with a
4-40-1 network structure was selected. Based on the results of the
BPNN calculations of the ore drawing process with four input fac-
tors, and a single output factor, the relative error and RMSE were
minimum when the number of hidden neural network nodes
was 40. The best results were obtained in the study when the train-
ing function TRAINLM, learning function LEARNGDM, and transfer
function TANSIG were used.

Based on the selected BPNN model and utilizing the results of a
laboratory physical granular flow simulation experiment, an ore
recovery forecast model for DLSOS mining method was con-
structed. The forecast results of different factor configurations fit-
ted a linear relationship with a correlation coefficient of 0.995,
indicating a good match between the BP modelling and physical
experimental results. The error analysis results showed that the
forecasted results were very similar to the experimental results
with a highest relative error of only 0.48%.

Based on the constructed BPNN model, the parameters were
perturbed within a certain range to conduct a sensitivity analysis
of factors affecting the ore recovery. The results indicated that
the lower stope footwall dip angle had the greatest effect on the
moderately dipping orebody recovery, followed by the drawpoint
spacing, footwall roughness and finally production ring burden.

The study results were applied to a field scale experiment at the
Jiaojia Gold Mine. The predicted ore recovery was 80% when the
lower stope footwall angle was 40�, the drawpoint spacing was
5 m, and the production ring burden was 2 m. Control blasting
was used to manage the footwall surface roughness by controlling
the construction accuracy of two adjacent rows of drilling holes
and the results of later cavity monitoring system (CMS) scanning,
the roughness of the lower plate was approximately 0.5 based on
the sliding friction tests. The full-scale experimental results indi-
cated that the recovery was 81.3%. Suggesting that ore recovery
forecasting based on the BPNN and physical simulation experi-
ments were suitable for ore recovery prediction and assessment
of the performance for moderately dipping medium-thick
orebodies.

The field scale experimental results indicate that sublevel open
stoping with fan layout blastholes and tight backfilling is suitable
as a mining method for the condition where an orebody and the
hangingwall can be kept stable during the mining process. The
345
use of manual scrapers was found limited to operations outside
the stope. To improve the ore recovery, remote-controlled scrapers
could be employed to enter the stope and remove any sterilized
ore.
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