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Quantum atmosphere of Reissner-Nordström black holes
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Hawking radiation originates from a “quantum atmosphere” around black holes, not necessarily from the
vicinity of the horizon. We examine and discuss the properties of quantum atmospheres of asymptotically flat
Reissner-Nordström black holes, which extends further and further away from the black hole as extremality is
approached, though arguably it becomes indistinguishable from normal vacuum fluctuation at spatial infinity. In
addition, following our previous findings on rewriting the Hawking temperature of a Kerr black hole in terms
of a “spring constant,” we generalize the same notion to the Reissner-Nordström case, which allows us to put a
minimum size on the location where Hawking particles can be emitted near a black hole, which agrees with the
stretched horizon.
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I. INTRODUCTION: WHERE DOES HAWKING
RADIATION ORIGINATE FROM?

A popular cartoon picture of Hawking radiation often
depicts the Hawking particle pairs as always being produced
near the vicinity of the black hole horizon. Unfortunately,
this misunderstanding is widespread even in the literature.
The correct picture is that the uncertainty in the position
where Hawking particles are created is rather huge. As shown
by Giddings in Ref. [1], for a Schwarzschild black hole in
(3 + 1) dimensions, the Hawking radiation originates from a
“quantum atmosphere” that extends some O (rh) away from
the horizon at rh.

There are at least two ways to see why the quantum
atmosphere extends some distance away from the black hole.
Giddings calculated the wavelength of a typical Hawking
quantum (in Planck units G = h̄ = c = kB = 1):

λTH = 2π

TH
= 16π2M ≈ 79rh, (1)

where TH denotes the Hawking temperature. He remarked that
“thus the horizon size is smaller than the thermal wavelength,
in contrast to typical discussions of black body radiation.”
(Indeed, for a ball of radiation, which is close to forming a
black hole, one finds that λ will scale like

√
M instead of M,

see Appendix A.)
Heuristically we can interpret this wavelength as the de

Broglie wavelength of the photon λdB = 2π/E . That is to
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say, a Hawking particle has some probability to be cre-
ated in a sphere with radius λTH , which is about 80 times
the Schwarzschild radius. This crude—but straightforward—
method allows us to appreciate why a typical Hawking parti-
cle should not be thought of as coming from the vicinity of
the horizon. (One might wonder if looking at the wavelength
that corresponds to TH is the right thing to do, since TH is
the temperature at infinity. However, for the purpose of this
discussion, the distinction between TH and the local Tolman
temperature is surprisingly rather small, see Appendix B.)

The second method, also pointed out by Giddings, is to
consider the geometric optics approximation, in which one
finds that the black hole emits radiation with effective area
larger than its event horizon. The effective radius that goes
into the Stefan-Boltzmann Law is ra = 3

√
3M = (3

√
3/2)rh,

which corresponds to the maximum impact parameter for
an infalling massless particle to fall onto the photon orbit
at rph = 3M (hence also associated with the potential that
an escaping massless particle needs to overcome in order to
actually escape to null infinity). Therefore we can say that
the quantum atmosphere has radius ra ∼ O (rh). (See also
Refs. [2,3].) The interpretation here is somewhat different
however: the effective potential essentially screens the escap-
ing particles so that only sufficiently energetic ones can escape
to infinity (and so the emitted radiation is suppressed by a
greybody factor that is determined by species of the particles),
it does not say anything about where the particle was first
created, though as far as exterior observers are concerned, the
effective emitting surface is therefore larger than the size of
the horizon. Nevertheless, if only sufficiently energetic ones
escape, we can use this idea to carry out a crude statistical
estimate of the field solutions for entropy, as we will discuss
below.

We note that λTH and ra is not the same, the former is
of order O (80rh) but the latter is only of O (rh). (Note that
these are of course, coordinate distances, not physical dis-
tances.) That is, the two definitions of the size of the quantum
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atmosphere do not agree quantitatively. However, qualita-
tively, the main message is the same: the quantum atmosphere
of a Schwarzschild black hole extends some distance away
from the black hole. Since both methods are rather crudely
defined anyway, they should be seen as only approximating
the “true” extend of the quantum atmosphere (if one has an
improved, more precise definition for it).

In Ref. [4], Dey, Liberati, and Pranzetti examined the
(semiclassical) stress energy tensor and found that indeed
the energy density and fluxes of particles peaked at some
radius O (rh) from the horizon (Giddings also considered
stress energy tensor in Ref. [1] as yet another argument to
support the existence of a quantum atmosphere). They also
supplemented the argument with a heuristic one in which
the Hawking pairs are separated due to gravitational analog
of Schwinger process (production of charged particle from
vacuum, due to strong external electric field [5]), which can
be considered as an improved version of the usual cartoon
picture. More recently, together with Mirzaiyan, they have
also re-examined the issue from the point of view of a freely
falling observer [6] and found similar results continue to hold.

In this work, we wish to study the quantum atmosphere for
asymptotical flat Reissner-Nordström black holes. (We will
work in the units such that the vacuum permittivity satisfies
4πε0 = 1.) Unlike the Schwarzschild case, the temperature of
a Reissner-Nordström black hole tends to zero in the extremal
limit, which means the wavelength λTH = 2π/TH will diverge
in this limit. On the other hand, the impact parameter ra, which
in Reissner-Nordström case takes the form

ra = 1

2
√

2

(3M +
√

9M2 − 8Q2)2√
3M2 − 2Q2 + M

√
9M2 − 8Q2

, (2)

tends to 4M in the extremal limit M → Q. This means that the
difference between λ and ra can be very large, so these two
quantities do not generally agree even qualitatively. Therefore
the study of the quantum atmosphere of Reissner-Nordström
black holes is well motivated.

We shall see in Sec. II that the heuristic “gravitational
Schwinger effect” argument of Ref. [4] does support the idea
that the quantum atmosphere scales as the wavelength of the
typical Hawking quanta, instead of the impact parameter of
the photon orbit. We shall give further argument for this in
the Discussion, by considering asymptotically locally anti-de
Sitter (AdS) black holes. In addition, in Sec. IV, we shall
study, in the asymptotically flat case, just how close can
Hawking quanta emerge from the vicinity of a black hole, by
taking into account the entropy content in the spherical shell
around the black hole within its photon orbit, as performed
in Sec. III. Part of the calculations is facilitated by writing
the Hawking temperature in terms of the “spring constant,”
first introduced in the context of asymptotically flat Kerr black
holes [7].

II. HEURISTIC ARGUMENT FOR THE QUANTUM
ATMOSPHERE OF

REISSNER-NORDSTRÖM BLACK HOLES

Following Ref. [4], we first calculate the tidal acceleration
at some coordinate distance r = r∗ from the black hole (in

the usual Schwarzschild coordinates). For a general spherical
symmetric black hole with metric function gtt = − f ′(r) =
−g−1(r), the radial tidal acceleration is given by Ref. [8], in
the notation of Ref. [4],

ar |r∗ = − f ′′

2
nr, (3)

where nr is the separation between two radially infalling
geodesics followed by a pair of particles (we have in mind
the Hawking pair). Therefore, for Reissner-Nordström black
hole, we obtained

ar |r∗ =
(

2M

r3∗
− 3Q2

r4∗

)
nr . (4)

We have, again following Ref. [4], the approximation nr ∼
λc = h̄/mc = 1/m in our units.

The radial component of the free fall velocity of the outgo-
ing particle is obtained by differentiating r with respect to the
proper time τ :

ur = dr

dτ
=

√
E2 − 1 + 2M

r∗
− Q2

r2∗
, (5)

where E is the energy of the particle at infinity. We can choose
it to be unity (in the notation of Ref. [4], this is equivalent to
setting r0 = 0 therein), so that

ur = dr

dτ
=

√
2M

r∗
− Q2

r2∗
. (6)

In the static observer’s frame, we have, upon Lorentz
transformation,

ar
st = ar cosh(ζ ) = ar

(
1 − 2M

r∗
+ Q2

r2∗

)− 1
2

, (7)

where ζ = tanh−1(ur ).
The radial component of the force under this transforma-

tion is given by the relativistic Newton’s second law F =
cosh(ξ )3ma. Thus

F r
tidal-st = mar

st√
1 − 2M

r + Q2

r2

3

∣∣∣∣∣∣∣
r∗

= mar(
1 − 2M

r + Q2

r2

)2

∣∣∣∣∣
r∗

, (8)

which yields

F r
tidal-st = m(

1 − 2M
r∗

+ Q2

r2∗

)2

(
2M

r+3
− 3Q2

r4∗

)
λc, (9)

at which point m cancels with λ ∼ 1/m.
The magnitude of the radial tidal force is thus∥∥F r

tidal-st

∥∥ = √
grrF r

tidal-stF
r

tidal-st

=
(

2M

r∗3
− 3Q2

r∗4

)(
1 − 2M

r∗
+ Q2

r∗2

)− 5
2

. (10)

The work required by the tidal force to split the particle
pair apart is thus

Wtidal ∼ ∥∥F r
tidal-st

∥∥d (r∗), (11)
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FIG. 1. The plot of γ as a function of areal radius. We set M =
1. The right most curve (black) corresponds to the Schwarzschild
(Q = 0) case, the other curve that diverges to +∞ as r → rh

(red) corresponds to the special value Q/M = 2
√

2/3 beyond which
the curve would develop a global maximum and turns around: an
example is provided with the remaining curve (blue), with Q = 0.99.
Dotted lines indicate the event horizons for each case. The blue curve
eventually tends to the horizon as well, but not shown at this scale.

where d (r∗) is the proper distance given by

d (r∗) :=
∫ r∗

r+

√
gr′r′dr′, (12)

and r+ = M +
√

M2 − Q2 is the outer (event) horizon of the
black hole.

The frequency of a typical Hawking particle at infinity is
(we momentarily restore kB and h̄ for clarity):

ω∞ = γ

h̄
kBTH = γ kB

h̄

[
h̄

2π

√
M2 − Q2

(M +
√

M2 − Q2)2

]
, (13)

where γ is a numerical factor that spans the energy range of
the quanta giving rise to the radiation thermal spectrum [4].
Indeed, γ ≈ 2.82 at the peak of the spectrum (see below).

Therefore, at some specific distance r = r∗, we have ωr∗ =
ω∞/

√
g00. We can now solve for γ = γ (r∗) via Wtidal = 2ωr∗ ,

i.e., we equate the work to the total energy of the two Hawking
quanta being created. Thus we obtain

γ (r∗) = π

(
2M

r3∗
− 3Q2

r4∗

)(
1 − 2M

r∗
+ Q2

r2∗

)−2

· (M +
√

M2 − Q2)2√
M2 − Q2

d (r∗). (14)

This can be plotted numerically, see Fig. 1.
It can be shown that for charge-to-mass ratio Q/M �

2
√

2/3, the curve is monotonically increasing as we decrease
the radius, and would in fact diverge as r∗ → rh. However,
if Q/M > 2

√
2/3, then the curve would initially increase as

we decrease r∗, however, it eventually turns around and goes
to zero at some point, so that the function γ is negative
near the horizon (in fact diverges to −∞ as one tends to
the horizon). To see this, one simplify verifies that γ has a
zero at r∗ = (3/2)(Q2/M ), which is only real if r∗ > rh, i.e.,

FIG. 2. The plot of ε as function of areal radius, plotted in
the domain r ∈ [rh, 5]. We set M = 1. The black curve, which is
monotonically increasing in r, corresponds to the Q = 0 case, is
negative near the horizon. For Q = 2

√
2/3, which corresponds to

the red curve, ε tends to zero as r → rh = 4/3. For Q larger than
2
√

2/3, for example, Q = 0.99, which is depicted as the blue curve, ε
becomes positive around the horizon. Dotted lines indicate the event
horizons for each case.

Q/M > 2
√

2/3. Increasing the charge further would raise the
value of the global maximum of the curve.

According to Ref. [4], solving the equation γ (r∗) = 2.82
would then yields the location for the quantum atmosphere,
where 3 + W (−3e−3) ≈ 2.82 being the famous number that
appears in the Wien’s displacement law for thermal radiation
hνmax = 2.82 kT . However, there are some complications here
for the charged case. Clearly, for Q/M > 2

√
2/3, there are

two solutions for the equation γ (r∗) = 2.82, one of which is
near horizon and the other one becomes further and further
away as r∗ → ∞. We have explicitly (with M = 1), r∗(Q =
0) = 5.2592, r∗(Q = 2

√
2/3) = 5.3979, whereas Q = 0.99

gives r∗ = 6.7737 or 1.4710. Naively, this means that there
are two locations r∗1,2 where most of the radiation is created:
one of them, r∗1, remains close to the horizon while the other
one, r∗2, is moving outward as charge-to-mass ratio increases,
eventually diverges to infinity in the extremal limit. Thus
r∗1 is qualitatively the same as the behavior for the effective
emission radius ra, while r∗2 behaves like the wavelength λTH

(though here r∗2 corresponds to the radius of a spherical shell
which has the peak in the emission, whereas the wavelength
does not really tell us where the peak is, it only gives the
natural scale involved).

The fact that γ (r∗) becomes negative near the horizon for
Q/M > 2

√
2/3 mirrors the behavior of the expectation of

time-time component of the stress energy tensor 〈T t
t 〉. Fol-

lowing Loranz and Hiscock [9], we define “energy density”

ε := −〈
T t

t (r)
〉 = f ′′(r)

24π
− [ f ′(r)]2

96π f (r)
+ πT 2

H

6 f (r)
, (15)

which becomes positive near the horizon under the exact same
condition that Q/M > 2

√
2/3, see Fig. 2.

Thus, despite the heuristic treatment above, the change
of the behavior of particle production near extremality thus
discovered agrees with that obtained from quantum field
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theoretic calculation of ε. If we define the “quantum atmo-
sphere” as the largest areal radius at which the energy density
becomes positive (such a choice of r∗2 over r∗1 is preferred
by continuity; also see later discussion), then the quantum
atmosphere of a near extremal black hole can be very large
indeed. (Though recall that, even for Q/M = 0.99, the value
of the areal radius is still reasonably small: r∗ = 6.7737).

Of course r∗ eventually diverges when Q → M in the
extremal limit. Nevertheless, in that case the temperature of
the black hole is approaching zero, so the actually probability
of a Hawking particle emerging out of the vacuum far away
from the black hole is negligibly small and arguably cannot be
distinguished from vacuum pair production in the absence of a
black hole anyway. That is, although the quantum atmosphere
tells us where we can expect Hawking particle to be emitted
from, it does not tell us how frequent such emission is to be
expected.

We mentioned that the reason to prefer r∗2 over r∗1 as the
definition for quantum atmosphere is due to continuity, that
is to say, because r∗1 only appears once the charge is high
enough: Q/M > 2

√
2/3. This is when the curve γ develops

a global maximum and turns around, and also when the
energy density ε becomes positive near the horizon. In ad-
dition, remarkably, as shown by Brynjolfsson and Thorlacius,
Q/M > 2

√
2/3 is also when freely falling observer would not

detect any radiation near the black hole [10]. Specifically, said
observer would not detect radiation if [10]

r <
2Q2

(M2 − Q2)
1
4 [(M2 − Q2)

1
4 +

√
4M − 3

√
M2 − Q2]

.

(16)
One can verify numerically that this encompasses r∗1. Indeed,
the right-hand side expression in the inequality above is
increasing with Q (for fixed M), so that as one increases
the charge from Q > (2

√
2/3)M to M, the radius within

which a freely falling observer does not see radiation will
increase outward from r = (4/3)M to infinity, whereas r∗1 is
decreasing towards the horizon.

III. ENTROPY BY STATE COUNTING
INSIDE PHOTON SPHERE

Let us make a slight detour to discuss the entropy of a
Schwarzschild black hole, which we will estimate from using
a scalar atmosphere. The result will be useful in the next
section in which we discuss the minimum distance from a
black hole a Hawking particle can be emitted.

First of all, the modes inside a large scalar atmosphere
can be counted. This number can then be used to intuitively
think about the entropy of a black hole. The area result
then originates from an underlying statistical argument. This
avenue is similar to that of ’t Hooft’s suggestion [11] that
counting the number of energy levels a particle can occupy
in the vicinity of a black hole will result in the entropy.

In a (3 + 1)-dimensional space-time, the number of micro-
scopic states of a massless scalar field living in the background
of a Schwarzschild black hole must scale as the frequency
cubed, ω3; of the field

N (ω) ∼ ω3. (17)

It scales according to the number of spatial dimensions ac-
cessible to the field. For clarity, we re-instate dimensionful
constants to ensure correct units. Note that [h̄G] = L5T −3. We
can then write Eq. (17) as

N (ω) ∼ ω3λ5

h̄G
, (18)

where we have introduced λ as the scalar atmosphere diame-
ter, i.e., the bigger the atmosphere, the more modes, and ulti-
mately the more entropy. This atmosphere surrounds the black
hole, equal to twice the well-known photon sphere radius,
λ = 2rp. The number of states scale to the fifth power of the
diameter based on dimensional analysis alone, N ∼ ω3λ5. The
numerical prefactor in Eq. (18) turns out to be within order
magnitude one, which we do not attempt to derive.

The diameter is chosen ad hoc, as essentially a cutoff for
the most relevant wavelengths that comprise the field in vicin-
ity of the black hole. Consider that rp = 1.5rh = 3GM/c2.
From Sec. II, the quantum atmosphere is at r∗ = 5.2592 (M =
1), which is slightly outside of the photon orbit of rp = 3.
Indeed, for the charged case, the difference between the two
radii gets larger with larger value of the charge. Nevertheless,
our purpose in this section is to compute the entropy within
the spherical shell defined by the photon orbit of the neutral
case, which will be useful for our later exploration.

Wavelengths greater than λ are more likely to pass over
the potential barrier at the photon orbit, while wavelengths
smaller than λ stabilize inside. We will assume Hawking’s
temperature and that our Schwarzschild black hole is well-
described by thermodynamics. In thermal equilibrium, the
particle spectrum characterized by a Bose-Einstein distribu-
tion, has a free energy as a function of temperature F (T ) with
the sum over all energies dω in the available states,

F (T ) = −
∫ ∞

0

h̄N (ω)

eh̄ω/kT − 1
dω. (19)

The number of states, Eq. (18), substituted into Eq. (19), gives

F (T ) = −λ5

G

∫ ∞

0

ω3

eh̄ω/kT − 1
dω = −λ5

G

(
π4k4T 4

15h̄4

)
.

(20)
The entropy is found by taking a derivative of Eq. (20), via
S = −∂T F , which gives

S = 4π4λ5k4T 3

15Gh̄4 . (21)

Using the Hawking temperature, T = h̄c3

8πGMk = ch̄
4πkrh

in
Eq. (21), the entropy is then re-expressed in terms of
radius rh,

S = λ5

240r3
h

πkc3

h̄G
. (22)

For a sphere with diameter λ = 3rh, so that λ5 = 243r5
h , one

obtains

S = 243

240

kc3

h̄G
πr2

h . (23)

033322-4



QUANTUM ATMOSPHERE OF REISSNER-NORDSTRÖM … PHYSICAL REVIEW RESEARCH 2, 033322 (2020)

One can expresses Eq. (23) in terms of mass, radius, and area,
respectively,

S = Gk

h̄c
4πM2

(
1 + 1

80

)
, (24)

= kc3

h̄G
πr2

h

(
1 + 1

80

)
, (25)

= k

�2
P

A

4

(
1 + 1

80

)
. (26)

This is S/SH = 1.0125 or 1.3% relative error, where SH =
kA/(4�2

P ).
In other words, the entropy contained in the sphere of

diameter 3rh is a good approximation for the statistical origin
of the entropy of the black hole. As a general heuristic only,
this underscores the inclusion of an atmospheric contribution
to the entropy of the black hole in the form of field mode
solutions, if these degrees of freedom are to be counted. This
result is remarkable given the crude assumptions.

IV. MINIMUM POSITION FOR HAWKING
QUANTA CREATION

Despite the large quantum atmosphere, this is not to
say that Hawking particle cannot be emitted close to the
Schwarzschild black hole. So how close can virtual particle
be created from the vacuum near a black hole? This measure
of closeness can be obtained for the charged black hole by
examining the thickness of the brick wall of ’t Hooft [11].

Here we will make use of the spherical symmetry offered
by the RN metric (and switching back to Planck units),

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d2, (27)

where our f (r) ≡ fq is given by

fq := 1 − rs

r
+ r2

q

r2
. (28)

In our units, there are two length scales, rq = Q (assume
positive for simplicity), and rs = 2M. The outer horizon is
located closer to the coordinate origin than r = rs, and we
denote r+ ≡ rp for positive sign of the square root,

rp = 1
2

(
rs +

√
r2

s − 4r2
q

)
. (29)

We can perform a series approximation of the radial integrand,
of the usual brick wall calculation,

r2

f 2
q

≈ r6
p

(r − rp)2(2rp − rs)2
, (30)

where we have kept only the leading order term around the
horizon r = rp and expressed rq in terms of rp. Integrating
this from the brick wall position outward gives

∫ ∞

rp+bq

r6
p

(r − rp)2(rs − 2rp)2
dr = r6

p

bq(2rp − rs)2
. (31)

Since the rest of the calculation is the same, we can identify a
new N0, defined by

Nq(ω) ≡ N0ω
3 := 2

3π
ω3

(
r6

p

bq(2rp − rs)2

)
. (32)

The entropy calculation is as before, where

S = N0
4π4

15
T 3, (33)

but now we substitute in the colder Hawking temperature of
the charged black hole,

Tq = 2rp − rs

4πr2
p

= 1

4πrs
− rs

4π

(
1

rp
− 1

rs

)2

. (34)

In the expression on the right, we have separated out the
gravitational contribution due to the electric charge (see
Appendix C), for clarity. This gives our Sq(N0),

Sq = πN0(2rp − rs)3

240r6
p

, (35)

which we know must equal the known answer of Sq = A/4 =
πr2

p. Solving for N0 gives

N0 = 240r8
p

(2rp − rs)3
. (36)

Plugging this into our N (ω) value, Eq. (32), and solving for
bq gives

bq = 2rp − rs

360πr2
p

. (37)

We can see that as rp → rs, then the usual uncharged result
is obtained. It is easy to see that this brick wall is the usual
ratio associated with the new temperature, that is, for spherical
symmetry,

bq = Tq

90
, (38)

which is as it was found in the neutral charge case, bs = Ts/90.
This means,

bq = bs − 1

90

kq

2π
, (39)

where we have underscored the shrinking contribution due to
charge by introducing kq, which is the negative gravitational
charge contribution counterpart to the Schwarzschild surface
gravity. As we have already emphasized, this charged black
hole calculation is restricted to the spherical symmetry that is
left uncorrupted by the addition of charge. The brick wall acts
as a guidepost to just how close particles can be produced at
the horizon before complications due to gravitational interac-
tions with the field require quantum gravity.

Exactly how thick is the brick? We find this by computing
the proper length, which can be calculated in the same way as
the uncharged case. Writing the integral as

bP :=
∫ rp+bq

rp

dr√
f

=
∫ rp+bq

rp

rdr√
(r − rp)(r + rp − rs)

, (40)
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gives, after imposing the conditions that 2rp > rs > rp > 0
and b > 0,

bP = √
bq(bq + 2rp − rs) + rs sinh−1

(√
bq

2rp − rs

)
. (41)

For thin bricks, bq  rp, we have, to leading order,

bP = 2rp
√

bq√
2rp − rs

. (42)

Plugging in our brick wall, we find

bP = 1

3
√

10π

rp

rs
. (43)

This quantity—which is 0.0595 for the uncharged case –
decreases as more charge is added, until the extremal state
is reached: Q → M, where rp → rs/2, and b−1

P → 6
√

10π ,
which gives bP = 0.0297, about two orders of magnitude
smaller than the Planck length. For all “practical” purposes,
one could treat this as the stretched horizon. In fact, we can
treat this minimum size as a property of the horizon. Indeed,
similar calculation can be performed for other black holes as
well.

V. DISCUSSION

In this work, we have investigated the quantum atmosphere
of asymptotically flat Reissner-Nordström black hole. The
heuristic “gravitational Schwinger effect” argument gives a
result that is in exact agreement with the field theoretical cal-
culation of a suitably defined stress energy tensor ε. Namely,
if we define the largest coordinate radius r = r∗ such that
ε(r∗) = 0 and ε(r > r∗) > 0 to be the quantum atmosphere,
at which the Hawking quanta produced will dominate the
spectrum, then this atmosphere becomes larger as Q increases.
In fact, r∗ → ∞ as Q → M in the extremal limit. Neverthe-
less, the temperature is also decreasing to zero in the same
limit, so pair production rate becomes smaller. Thus, even if
the atmosphere goes all the way to spatial infinity, particle
production rate is so small that it is arguably indistinguishable
form having no black hole. This is exactly what one expects,
infinitely far away from the black hole.

The quantum atmosphere defined in this way agrees quali-
tatively with the proposal that the quantum atmosphere should
be proportional to the characteristic wavelength of the typical
Hawking quanta, instead of the proposal that it be related to
the impact parameter of the photon orbit (more discussion
later). This definition for the quantum atmosphere is likely
also be helpful in the asymptotically locally AdS cases. As
is well-known, there are topological black holes in AdS
with either hyperbolic or flat (toral or planar) horizon topol-
ogy, in addition to spherical ones. Unlike asymptotically flat
black holes, the Hawking temperature for AdS black holes
is proportional to its size when the black hole is sufficiently
large [12]. That is, the associated wavelength λTH is inversely
proportional to its size, i.e., a sufficiently large black hole
can have λTH that is much smaller than its horizon scale,
much like a conventional hot body, which likely means that
the Hawking quanta are mostly created close to the horizon
(this is consistent with [10], in which it was shown that freely

falling observer only detects radiation from the black hole
when sufficiently close to the horizon). On the other hand, the
effective emitting surface—which in asymptotically flat case
corresponds to the photon orbit impact parameter—has area
proportional to L2 where L denotes the asymptotic curvature
of AdS. For fixed L, a large enough black hole will have
a horizon rh > L, so that it would not make sense to take
L—now entirely inside the black hole—as the definition of
the quantum atmosphere.

For the asymptotically flat case, however, the photon orbit
still plays an important role. The effective potential associated
with the photon orbit traps various modes of the Hawking
quanta so that only some with sufficiently large energy can
escape. In this sense the effective emitting surface in the
geometric optics limit corresponds to the impact parameter
associated with the photon orbit. By computing the number of
field modes inside the photon sphere utilizing a re-expressed
form of the Hawking temperature in terms of the “charge
spring constant” we introduced, we then employ the brick wall
model to compute the smallest distance from the black hole a
Hawking particle can be emitted from. This cannot happen
arbitrarily close to the horizon, for otherwise, counting field
modes is invalid. However, for all “practical” purposes, this
can be treated as the stretched horizon, just barely a Planck
length away from the event horizon.

Finally, let us summarize how the charged black hole
differs from the neutral case. In the Schwarzschild case, we
have seen that there are three different methods to define
the quantum atmosphere—the location where most Hawking
radiation comes from. The wavelength of the typical Hawking
particle gives a crude measure which is larger—about 80
times the horizon size—than both the radius of the effecitive
emission surface (which enters the Stefan-Boltzmann law)
and the position located by the quantum stress tensor (both
of the same order as the horizon). For the charged case, it
is still true that the Hawking wavelength is much larger than
the other two measures. However, in the extremal limit, both
the wavelength and the quantum stress tensor gives a similar
behavior—they indicate that the quantum atmosphere should
expand and tend to infinity (quantitatively they are of course
different, the value of the areal radius given by the quantum
stress tensor is still reasonably small: For M = 1, we have
r∗ = 6.7737 when Q/M = 0.99, but the wavelength is λTH =
365). This is in stark contrast with the effective emission sur-
face radius, which is decreasing towards r = 4 in the extremal
limit. This is consistent with our discussion above—with
support from considering certain AdS black holes—that the
effective emission surface should not be used (in general) as
a proxy of the quantum atmosphere. Consideration of charged
and more general black holes therefore allows us to better
differentiate what measures are more suitable to locate the
quantum atmosphere.
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APPENDIX A: SCALING FOR A THERMAL BALL
OF RADIATION

Black holes have so much more entropy compared to
ordinary matter of the same mass because the scaling is

SBH ∼ M2, (A1)

while a thermal ball of radiation scales as

SR ∼ M3/2. (A2)

For the same reason, the wavelength of the typical emitted
particle will also scale differently. This is because for the ball
of thermal radiation, which could be the source of black hole
formation (such as a star prior to gravitational collapse), the
Stefan-Boltzmann law gives volume times fourth power of
temperature,

M ∼ T 4R3, (A3)

We then know that R ∼ M, is the size of the ball to form a
black hole, so that

M ∼ T 4M3 �⇒ M−2 ∼ T 4, (A4)

or just, rearranging for temperature,

T ∼ M−1/2, (A5)

so when one takes the derivative of the Stefan-Boltzmann law,
one sees that entropy scales as

S ∼ T 3R3, (A6)

which gives, upon plugging in Eq. (A5), and R ∼ M,

S ∼ M3/2, (A7)

which is Eq. (A2), the entropy of a thermal ball of radiation.
Thus the wavelength for a radiation ball will scale as

λ ∼ M1/2, (A8)

rather than

λ ∼ M, (A9)

as for a black hole.

APPENDIX B: A REMARK ON LOCAL TEMPERATURE

One should ask whether λTH is a physically meaningful
scale of the problem. In flat space, for a fixed temperature
the wavelength λ is constant, i.e., the value of λ at infinity
can be directly compared to the size of a body of radius R far
away. However, in curved space, the wavelength undergoes
redshift as it travels up the gravitational well. The Hawking
temperature TH is the temperature measured by asymptotic
observers, why should its associated wavelength be compared
directly to the size of the black hole “infinitely far away,”
as in Eq.(1)? A better “local” question to ask would be: “At

what “distance” r = ζ rh away from the black hole should the
Hawking particle be emitted, so that its wavelength is O (rh)?”

To answer this question, we shall consider the local temper-
ature given by the Tolman’s expression (seen by a stationary
observer at coordinate distance r):

Tlocal = TH√
1 − 2M

r

. (B1)

For explicitness, let its wavelength be λlocal = rh. Then we
want to solve for the multiple ζ in the equation:

λlocal = 2π

Tlocal
= rh. (B2)

With r = ζ rh, we have

8π2rh

(
1 − rh

ζ rh

)1/2

= rh. (B3)

This yields

ζ =
[

1 − 1

(8π2)2

]−1

≈ 1.00016. (B4)

This means that even a Hawking particle emitted “near”
the horizon has wavelength O (rh). Thus this still agrees with
Giddings’ remark that Schwazschild black hole does not be-
have like a typical black body, whose radiation has wavelength
much smaller than the size of the body. So even if we use
the local temperature, the qualitative picture does not change
by much. Of course, in the near horizon limit ζ = 1 + ε, the
wavelength goes like ∼√

εrh, so that for a Hawking particle
that is emitted very close to the horizon, it has very small
wavelength (this is just the “infinite blueshift” that one might
expect).

With the local temperature, its associated wavelength λlocal

satisfies

λTlocal

rh
= 8π2

√
1 − rh

r
, (B5)

cf. Eq. (B2).

APPENDIX C: TEMPERATURE OF
REISSNER-NORDSTRÖM BLACK HOLE RE-EXPRESSED

The usual expression for the temperature of a charged black
hole:

T (Q, M ) = κRN

2π
=

√
M2 − Q2

2π (
√

M2 − Q2 + M )2
, (C1)

in analogy to the Kerr case [7], can be re-expressed by “peel-
ing” off the uncharged surface gravity piece, g ≡ 1/(4M ):

2πT = g − M2, (C2)

where  is the “frequency,”

 ≡ 1

r+
− 1

rs
. (C3)

Here, rs = 2M, the uncharged Schwarzschild radius, and
r+ = M +

√
M2 − Q2, the smaller (rs/2 < r+ < rs) charged
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outer radius. So one can see that the spring analogy intro-
duced in Ref. [7] holds in the charged case: 2πT = g − kQ,
where kQ ≡ M2, suggesting that  holds important physi-
cal status as a characteristic frequency for the RN solution,
in the same way that in the Kerr case, +, holds impor-
tant characterization as the “angular velocity” of the outer
event horizon.

A straightforward way to derive this is to consider that the
first law of black hole mechanics relates the two necessary pa-
rameters (M, Q), the mass and charge of a Reissner Nordström
black hole:

dM = κ

8π
dA + �dQ, (C4)

where A is the outer horizon area, κ is the outer surface
gravity, � is the outer potential, and Q is the charge. The area
is given by

A = 4πr2
+, (C5)

where r+ = M +
√

M2 − Q2. Equivalently, this area is related
to other black hole physical parameters by

M2 = A

16π
+ Q2

2
+ πQ4

A
. (C6)

Therefore we can find the surface gravity via the first law,
holding the charge fixed,

κ = 8π
∂M

∂A

∣∣∣∣
Q

= 1

4M
− M

(
2πQ2

MA

)2

. (C7)

This is the form we are looking for, i.e., “peeling” off the
nonrotating surface gravity. Now since,

� = ∂M

∂Q

∣∣∣∣
A

= Q

2M
+ 2πQ3

MA
, (C8)

we can rearrange and have �/Q − 1/rs = 2πQ2/(MA) where
rs = 2M. Therefore we have κ = g − kQ, where g = 1/(4M )
and kQ = M2 is the Reissner-Nordstöm version of the
“spring constant,” analogous to the Kerr case defined in
Ref. [7] or [13].
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