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Topological scattering resonances at ultralow frequencies
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At frequencies much lower than the plasma frequency, individual subwavelength plasmonic scatterers are
typically far from any scattering resonance, with the exception of some extreme geometries. Contrary to this
conventional behavior, in this paper, we theoretically demonstrate that the application of a weak magnetic bias to
a portion of the plasmonic scatterer leads to the emergence of scattering resonances that exist, in principle, for an
arbitrarily low frequency. We show that this class of plasmonic resonances originates from ultralow-frequency
unidirectional and topological surface modes that emerge at internal interfaces. These topological properties
endow the scattering resonances with high robustness against geometrical modifications. Our findings may open
new uncharted directions towards the design of robust, shape-independent, subwavelength resonant structures
with extreme scattering response.
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I. INTRODUCTION

Scattering resonances in individual subwavelength objects
are of fundamental importance to enhance the interaction of
electromagnetic fields with matter, and to realize artificial
metastructures with exotic effective properties. At optical
frequencies, particular attention has been devoted to metallic
scatterers, which resonate at frequencies close to the plasma
frequency ωp of their constituent materials. These resonances
are, in principle, independent of the object size, which can
therefore be deeply subwavelength [1,2]. However, at frequen-
cies much lower than ωp, an individual subwavelength plas-
monic element, e.g., a sphere or a wire/cylinder, is typically
far from any scattering resonances, with a couple of relevant
exceptions.

There are indeed two conventional strategies for making
an individual plasmonic element resonate at extremely low
frequencies; however, both involve a singular geometry with
vanishing thickness. For example, spheroidal or ellipsoidal
particles exhibit resonances for values much lower than the
plasma frequency. The resonant frequency scales as ωp

√
L,

where L is a shape parameter called the depolarization factor
[3]. For the case of a prolate spheroid, for instance, the depo-
larization factor can reach zero asymptotically, corresponding
to an extremely sharp and thin needle of vanishing thickness
[3]. Another strategy to lower the plasma frequency is to
consider a core-shell sphere, with a plasmonic shell and a
dielectric core. A particle of this type exhibits two resonances,
a symmetric (bonding) and an antisymmetric (antibonding)
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resonance, due to the coupling between surface plasmon
modes on the two spherical interfaces. In particular, the
symmetric resonance shifts towards lower frequencies as the
thickness of the shell approaches zero, i.e., for extremely thin
shells [4]. Interestingly, the same shifting phenomenon is valid
for any core-shell geometry with a plasmonic shell of vanish-
ing thickness. Thus, while it is possible to arbitrarily lower the
resonant frequency of individual plasmonic elements, these
strategies require a geometry with vanishing features, that is,
infinitesimally thin needles or infinitesimally thin shells. In
this paper, we propose a very different approach to realize a
scattering resonance at extremely low frequencies.

Metals and plasmas are opaque below ωp: the allowed
bulk modes are evanescent waves, whereas surface modes
(surface plasmon polaritons), at an interface with, e.g., free
space, exist at arbitrarily low frequencies, but they are highly
confined only at frequencies close to ωp/

√
2. This behavior

is significantly modified if an external static magnetic field is
introduced. Indeed, it has been known for decades that the ap-
plication of a magnetic bias to a plasma may open new propa-
gation channels at ultralow frequencies [5]. This is especially
important in atmospheric physics, where it takes the name
of “whistler effect”: the Earth’s magnetic field opens prop-
agation channels (whistler modes) in the ionosphere plasma
at audio frequencies. Without the magnetic bias, the plasma
would be completely opaque at these frequencies (relative
permittivity ε ≈ −105). Inspired by the opportunities offered
by applying a suitable magnetic bias to a plasmalike material,
in this paper we theoretically demonstrate the possibility of
realizing scattering resonances in individual subwavelength
plasmonic objects at frequencies arbitrarily lower than the
plasma frequency.

II. ULTRALOW-FREQUENCY
SCATTERING RESONANCES

Consider an infinitely long plasmonic cylinder com-
posed of a metallic material following a standard lossless
Drude model, with relative permittivity ε = 1 − ω2

p/ω
2. The
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structure is illuminated by a transverse-magnetic (TM) plane
wave with magnetic field parallel to the cylinder axis. In the
quasistatic regime, namely, if the free-space wavelength λ at
the frequency of interest ω is much larger than the diameter 2b
of the cylinder, the first multipolar scattering contribution that
can exhibit a resonance is the electric dipolar one [6]. By ap-
plying the quasistatic approximation, and neglecting radiation
loss for simplicity, the corresponding scattering coefficient
can be written as [6]

S±1 ≈ ∓π3

(
b

λp

)2 (ω/ωp)2

1 − 2(ω/ωp)2
, (1)

where λp is the free-space wavelength at ωp. The m = ±1
subscript refers to dipolar terms of equal and opposite angular
momentum (related to the azimuthal angular dependence eimφ

of the scattered wave, where φ is the cylindrical coordinate
angle measured from the +x axis). Written in this way, Eq. (1)
reveals that the dipolar scattering response is determined by
two independent ratios: the geometrical ratio b/λp and the
frequency ratio ω/ωp. This formula expresses the well-known
fact that, in the lossless quasistatic limit, a subwavelength
plasmonic cylinder resonates at a frequency ω = ωp/

√
2, i.e.,

the localized surface-plasmon resonance, regardless of the
object’s size. Indeed, the ratio b/λp can be arbitrarily small at
resonance, meaning that, for example, a nanometer-scale plas-
monic object can resonate under wavelengths in the microme-
ter range. Instead, the resonance frequency is only moderately
smaller than ωp, implying that a subwavelength plasmonic
cylinder with plasma frequency at optical frequencies cannot
resonate at microwaves, as expected. Although this is a widely
accepted fact, here we show that a simple approach allows
lowering the frequency of this scattering resonance by orders
of magnitude (in principle, for ω/ωp → 0).

Incidentally, we note that one of the first breakthroughs
of the field of metamaterials was indeed the possibility of
obtaining ultralow-frequency plasmonic effects, drastically
lowering the effective plasma frequency of the material by
structuring it in the form of wire meshes or analogous struc-
tures [7,8]. This is completely different from our approach,
in which the plasma frequency remains unchanged, but we
obtain plasmonic resonances extremely far from it.

Equation (1) also shows that the scattering coefficients
for dipolar terms of equal and opposite angular momentum,
m = ±1, differ only by an opposite sign, and resonate at
exactly the same frequency. Hence, this scattering resonance
is doubly degenerate. Such a degeneracy ultimately originates
from the fact that the surface plasmon polariton supported
by the surface of the scatterer exhibits perfectly symmetric
propagation properties clockwise or counterclockwise, which
is a direct consequence of the time-reversal symmetry of
this electromagnetic configuration (equivalent to Lorentz reci-
procity in the lossless case). It is therefore natural to expect
that such a scattering resonance degeneracy can be lifted by
breaking time-reversal symmetry and reciprocity. The sim-
plest way to do so is by biasing the system with a static
magnetic field along the cylinder axis (or, alternatively, by
spinning the cylinder). The application of the static magnetic
bias along the z axis makes the plasmonic material anisotropic
and gyrotropic, characterized by a nonsymmetric tensor of the

form ε1 = (εt It + εaẑẑ + iεgẑ×I), where (It = I − ẑẑ) and I
is a 3×3 identity matrix. The elements of this tensor follow
the standard dispersion model of a magnetized Drude plasma
[5] (a time-harmonic dependence e+iωt is assumed for all
field quantities and suppressed). Plane-wave scattering from
an infinite gyrotropic cylinder can be solved exactly using a
generalized Mie theory [6,9,10]. Since we are interested in
deeply subwavelength scatterers, we consider b/λ � 1 and
perform a quasistatic analysis (see Appendix A for further
details on the validity of this analysis). Under this assumption,
the dominant scattering coefficients are the dipolar terms m =
±1, corresponding again to two circularly polarized dipoles
with opposite handedness; however, their degeneracy is now
lifted. The dipolar scattering coefficients S±1, in the long-
wavelength regime, are given by [10]

S±1 ≈ ∓π3

(
b

λp

)2 (ω/ωp)2

1 − 2(ω/ωp)2 ∓ 2 ωc
ω

(ω/ωp)2
. (2)

The bias-induced resonance splitting (Zeeman effect) is de-
termined by the additional term in the denominator, which
depends linearly on the cyclotron frequency ωc [10]. Clearly,
while this effect provides a mechanism to change and tune the
plasmonic resonance, only large bias intensities allow moving
the resonance to frequencies much lower than ωp.

Another popular strategy to tune plasmonic resonances is
to consider core-shell geometries, which introduce new inter-
faces supporting surface plasmon-polaritons and allow real-
izing multiple resonances [11]. Inspired by this strategy, we
analyzed the scattering response of a column of plasma that
is only partially magnetized, realizing a cylindrical core-shell
structure, as schematically shown in the inset of Fig. 1(a). The
gyrotropic (magnetized) core, with radius a, is surrounded
by an isotropic nonmagnetized layer with the same plasma
frequency ωp and outer radius b. In Appendix B we discuss
potential materials for the practical implementation of this
scatterer, and we comment on the feasibility of this bias
configuration. At this point, we should also stress that, while
the assumption of an identical plasma frequency for the core
and shell allows greatly simplifying the analysis, it is not a
requirement to observe the effects discussed below, which
remain qualitatively similar even if the shell material has a
different plasma frequency (as long as it remains an opaque
medium at the frequency of interest).

The dipolar scattering coefficients S±1 of the considered
core-shell structure, in the long-wavelength regime, are now
given by a more complicated expression provided in Ap-
pendix A. By comparing this expression with Eq. (2), we
note that the scattering coefficient admits an additional pole,
indicating the presence of an additional dipolar scattering res-
onance. Rather strikingly, this resonance exists at arbitrarily
low frequencies. Indeed, under the assumption ω/ωp � 1, we
can write this new resonance condition in closed form as

ω

ωp
= |ωc|

2ωp

[
1 −

(
a

b

)2
]
, (3)

which corresponds to the S−1 coefficient if the bias is along
the +z-axis. The resonance condition for the scattering coef-
ficient S+1 is located symmetrically at a negative frequency.
Equation (3) reveals that the scattering resonance can be
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FIG. 1. Ultralow-frequency scattering resonance in a partially
biased plasmonic cylinder. (a) Dipolar scattering coefficient, |S−1|,
obtained by exact Mie-theory calculations, for the core-shell cylinder
in the inset, as a function of normalized frequency, ω/ωp, and
cyclotron frequency, ωc/ωp, for an aspect ratio a/b = 0.5. (b) Same
as panel (a), but varying frequency, ω/ωp, and aspect ratio, a/b, with
a fixed cyclotron frequency ωc/ωp = 0.05. Core and shell have the
same plasma frequency, ωp, but only the core is biased (along the
+z axis). The outer radius is fixed to b/λp = 0.2. (c), (d) Scattering
efficiency, σ2D/(2b), for (c) a/b = 0.85 and (d) a/b = 0.6.

lowered arbitrarily, asymptotically approaching zero fre-
quency, by either increasing the aspect ratio a/b → 1 (de-
creasing the shell thickness) or by decreasing the cyclotron
frequency ωc → 0. We also note that, as the resonance ap-
proaches zero frequency, for ωc → 0 or a → b, the scat-
tering pole (resonance) is canceled by a scattering zero as
ω → 0, and the scattering coefficient vanishes in this limit, i.e.,
S−1 → 0. At exactly zero frequency the scattering coefficient
is zero for any choice of parameters.

As mentioned in the Introduction, such a resonance shift
towards zero frequency is similar to the behavior of a recip-
rocal core-shell scatterer, with nonbiased plasmonic shell and
dielectric core, as the thickness of the shell vanishes. There
are, however, some relevant differences. Through a quasistatic
analysis of a conventional core-shell cylindrical scatterer, a
resonance condition similar to Eq. (3) can be found in the limit
of very small frequency:

ω

ωp
=

√
1 − (

a
b

)2√
3 + (

a
b

)2
(ε − 1) + ε

, (4)

where the shell follows a lossless Drude model with plasma
frequency ωp and the core has permittivity ε. A comparison of
Eqs. (3) and (4) reveals that, in both cases, the scattering reso-
nance indeed approaches zero frequency if a → b, but such a
resonance shift is faster for the proposed gyrotropic scatterer.
Most importantly, Eq. (3) also shows that, even if the shell has
nonzero thickness, the resonance can be lowered arbitrarily by
lowering the cyclotron frequency. This is very different from
the behavior of conventional plasmonic scatterers, for which
a scattering resonance can approach zero frequency only if
the geometry has some vanishing features, as in the case of
infinitesimally thin plasmonic needles or infinitesimally thin
plasmonic shells.

To further confirm this behavior, we show in Fig. 1(a)
the scattering coefficient magnitude |S−1| for the considered
gyrotropic core-shell cylinder, as a function of frequency
ω/ωp and cyclotron frequency ωc/ωp, for a fixed shell diam-
eter b/λp = 0.2 and core-shell ratio a/b = 0.5. In addition,
Fig. 1(b) shows the scattering coefficient magnitude |S−1| for
the same scatterer, varying frequency ω/ωp and core-shell
ratio a/b, for a fixed weak magnetic bias ωc/ωp = 0.05 along
the +z axis. The ultralow-frequency resonance predicted by
Eq. (3) is visible in the figure as an ultrasharp asymmetric
resonant feature standing out against a broad scattering back-
ground. Panels (c) and (d) show the total scattering efficiency
σ2D/(2b) for two different values of aspect ratio, revealing the
narrow asymmetric line shape of these resonances, similar to
the response of sharp Fano resonances and quasiembedded
eigenstates in other scattering systems [12–15]. As expected
for a scatterer in the lossless limit, the resonance peak value
equals the maximum achievable dipolar scattering efficiency
for a two-dimensional object, i.e., λ/(πb) [16,17].

In contrast with any reciprocal plasmonic scatterer, these
results theoretically demonstrate that a weakly magnetized
plasmonic object with nonsingular geometry can be made to
resonate at arbitrarily low frequencies, independently of the
plasma frequency of the constituent materials.

A. Relation to topological surface plasmon polaritons

The physical origin of this “hidden” scattering resonance
supported by gyrotropic core-shell structures can be better
understood by analyzing the corresponding planar structure,
shown in the inset of Fig. 2(c), as usually done to gain
physical insight into the resonance mechanism (e.g., [17]).
The planar analog consists of a biased plasma half space,
covered by a layer of nonbiased plasma of thickness (b − a).
This planar configuration belongs to a broad class of stratified
gyrotropic-isotropic structures that have been recently the
subject of extensive investigations in the context of nonre-
ciprocal and topological electromagnetics [18–30]. Several
works have shown that nonreciprocal systems of this type
may support unidirectional modes, robust against defects and
discontinuities, associated with certain nontrivial topological
properties [18–22,31]. Specifically, the bulk modes of a homo-
geneous material can be characterized by a topological integer
number known as Chern number C , which can be intuitively
interpreted as a sort of winding number for the modal evo-
lution in momentum space [32–36]. For the structure under
consideration, a nonzero Chern number C �= 0 is associated
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FIG. 2. Modal analysis of a planar analog of the cylindrical scat-
terer in Fig. 1. (a) Bulk-mode band diagram for a gyrotropic (mag-
netized) plasmonic material (solid blue) and an isotropic (unmagne-
tized) plasma (dashed black) with the same plasma frequency ωp, and
ωc/ωp = 0.05. (b) Bulk-mode band diagram of the interpolated ma-
terial model (see explanation in the text), with τ = 0.001. The Chern
number for each band is indicated. (c) Lowest-frequency bulk band
(solid blue) and unidirectional, topologically protected surface mode
(dashed red), for the planar structure under consideration (inset to
the right) with isotropic-layer thickness b − a = 0.03λp. Green lines
indicate the light cone in air. All dispersion diagrams are calculated
for transverse-magnetic propagation in the plane orthogonal to the
bias.

with each bulk band of the gyrotropic half space, as indicated
in Fig. 2(b). In contrast, the bulk modes of the isotropic
material have C = 0, which means that they are topologically
trivial. The integer Chern number associated with a bulk band
cannot change unless the gap separating it from other bands is
closed [18]. As seen in Figs. 2(a) and 2(b), the two considered
materials (gyrotropic and isotropic plasmas) share a common
bulk-mode band gap at low frequencies, below their plasma
frequency. This implies that it is impossible to continuously
transform one of the materials into the other, changing its
topological properties, without closing the gap. Thus, if the
gyrotropic plasmonic material becomes an isotropic plasma,
as the magnetic bias drops to zero near the interface, the band
gap must close somewhere in the transition region, leading to
the emergence of topologically protected surface waves. Such
a transition from one medium to the other can be analyzed by
considering an interpolated material model with permittivity
tensor ετ = (1 − τ )ε1 + τε2I. Hence, ετ represents a contin-
uous transformation between the gyrotropic (τ = 0) and the
isotropic plasma (τ = 1).

Figure 2(b) shows the bulk bands of the weakly inter-
polated model for τ = 0.001. As seen in the inset, a near-
zero-frequency bulk TM band is present, with Chern number
C = +1, as predicted in Refs. [19,22], separated from the
higher-frequency bands by a wide band gap. Consistent with
our discussion above, a topologically protected surface mode
emerges in this band gap, supported by the interface between

the two topologically distinct media (biased and nonbiased
plasmas), as shown in Fig. 2(c) for a planar structure with the
same parameters of the corresponding core-shell cylindrical
scatterer. Importantly, we note that this ultralow-frequency
surface plasmon-polariton mode is unidirectional. The modal
behavior at such low frequencies is crucial to understand
and interpret the corresponding scattering resonance of the
considered nonreciprocal scatterer. More specifically, if we
“bend” the planar geometry in Fig. 2 into a cylindrical shape,
the surface wave should reconnect after a full round trip in
order to determine a resonance of the cylindrical structure.
In other words, the scatterer supports a resonance when the
surface-wave wave number k obeys the whispering-gallery
mode condition [1],

k(ω)l = 2πn, (5)

where n is the (integer) resonance order and l = 2πa is the
length (perimeter) of the core-shell interface on which the
surface mode is tightly confined [37]. The dispersion relation
of the ultralow-frequency surface mode in Fig. 2 together with
the whispering-gallery mode condition in Eq. (5) allow pre-
dicting the scattering resonance observed in Fig. 1. For exam-
ple, at ω/ωp ≈ 0.006625, where the scattering resonance of
Fig. 1(c) occurs, the surface mode dispersion in Fig. 2(c) gives
k/kp ≈ 0.89, where kp = 2π/λp. According to (5), this mode
produces a resonance of order n = 1 only if a ≈ 0.178λp,
which agrees well with the radius of the considered core-
shell structure in Fig. 1(c). This confirms our interpretation
that the “hidden” ultralow-frequency resonance considered in
this work originates from a unidirectional and topologically
protected surface plasmon polariton, which exists, at very low
frequencies, on a partially magnetized plasmonic object. We
also note that this surface mode has been shown in several
papers (e.g., [18,28]) to exist if a magnetized plasma is
interfaced with a generic opaque material, that is, a perfect or
imperfect conductor, or a plasmonic material below its plasma
frequency. Thus, even if the plasma frequency of the shell
material was changed, the unidirectional surface plasmon-
polariton mode would still exist, with a slightly different
dispersion, which would result in a scattering resonance with
slightly different frequency, but otherwise mostly unaltered.

Figure 3(a) shows the total magnetic field distribution
and the Poynting vector streamlines around the magnetized
plasma cylinder in Fig. 1, illuminated by an incident plane
wave with unit amplitude, at the resonance frequency iden-
tified in Fig. 1(c). Despite the deeply subwavelength size
of the scatterer (b/λ ≈ 0.0013) and the fact that we are
operating at a frequency more than a hundred times smaller
than ωp, the scatterer produces a large disturbance in the
spatial profile of the field and power flow, a clear signature
of the presence of a strong resonance. Figure 3(b) shows the
scattered field, and the inset provides a zoomed-in view of
the fields near and inside the scatterer, revealing the dipolar
nature of the resonance (corresponding to S−1). The observed
vortexlike scattering, different from the conventional pattern
of dipolar scattered fields, is due to the absence of a frequency-
degenerate resonance associated with the opposite dipolar
term S+1. Specifically, when only one term (S±1) is present,
the response is dominated by a circularly polarized induced
dipole of certain handedness or, equivalently, two orthogonal
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FIG. 3. (a) Total magnetic field distribution (time snapshot of
the out-of-plane field component) and Poynting vector streamlines,
for the cylindrical core-shell structure of Fig. 1(c), at resonance.
For comparison, the inset shows the off-resonance case for the
same object. (b) Similar to (a), but for the scattered field. The
inset shows a zoomed-in view of the scatterer and its dipolar field
distribution. (c) Resonance peaks of the scattering efficiency for
scatterers with circular [as in Fig. 1(c)], elliptical, and square cross
sections, all having the same perimeter l . Insets show the scattered
field distribution near the scatterers. (d), (e), (f) Similar to panel (c),
but for different configurations of interest: (d) nonmagnetized homo-
geneous plasmonic scatterer; (e) magnetized homogenous plasmonic
scatterer; (f) nonmagnetized core-shell scatterer with dielectric core
and thin plasmonic shell. For all these cases, the outer radius of the
scatterer is the same, and we used the same plasmonic material with
the same plasma frequency. For panels (c), (e), the magnetic bias is
the same. For panels (c), (f), the thickness of the shell is the same.

linear dipoles oscillating in quadrature (±π/2). This behavior
leads to a vortexlike scattered field carrying a nonzero angular
momentum, either +1 or −1, in contrast with the degener-
ate angular momentum channels of isotropic scatterers with
cylindrical symmetry.

B. Shape-independent scattering response

Another interesting feature of such ultralow-frequency
scattering resonances, stemming from the topological nature
of the low-frequency surface mode, is their robustness against
perturbations of the shape of the core-shell resonator. In
fact, the geometrical cross section of the scatterer can be
modified to a large extent, while robustly preserving the same
resonance frequency and line shape, as long as the perimeter

of the scatterer is kept fixed, similar to recently studied
shape-independent topological cavities [38,39]. Thanks to its
topological properties, the surface mode does not backscatter
at imperfections, discontinuities, and sharp bends, which may
otherwise disrupt the resonance properties of the scatterer as
multiple reflections would determine different optical paths
seen by the surface wave, giving rise to different resonances.

To demonstrate the robustness of the scattering response,
we deformed the circular cross section of the considered
cylindrical scatterer into an elongated ellipse and a square,
while retaining the same perimeter and, therefore, the same
path length l = 2πa seen by the surface mode. Figure 3(c)
shows the resonant peaks of the scattering efficiency σ/w (w
stands for the width of each object in the direction of the
incident wave) for these three scatterers of different shape.
As clearly seen in this figure, drastically reshaping the object
only slightly alters the resonance frequency. The ultranarrow
line shape and peak value λ/(πb) of these dipolar resonances
are also preserved. This behavior originates from the highly
confined unidirectional surface mode internally supported by
our core-shell structure, which makes the resonance depen-
dent only on the perimeter, not the shape of the scatterer.
In contrast, dipolar scattering resonances supported by more
conventional reciprocal or nonreciprocal plasmonic scatterers
are strongly affected by the shape of the particle. Figures 3(d)–
3(f) show different cases of interest: (d) Homogeneous, non-
magnetized, plasmonic cylinders with the same plasma fre-
quency and dimensions as in panel (c). The dipolar scattering
resonance (broader peak) is close to the plasma frequency,
consistent with Eq. (1), and is strongly affected by a change
of geometrical cross section, both in terms of resonance
frequency and line shape. Since the object is not deeply sub-
wavelength at frequencies near ωp, additional sharper peaks
are visible, due to multipolar resonances. (e) Homogeneous,
magnetized, plasmonic cylinders with the same plasma fre-
quency, cyclotron frequency, and dimensions as in panel (c).
Consistent with Eq. (2) for a circular cylinder, the dipolar
peak splits in two due to the magnetization (Zeeman effect).
As in panel (d), the resonances depend strongly on the shape
of the scatterer. (f) Nonmagnetized core-shell scatterer with a
dielectric core (ε = 2), and a plasmonic shell having the same
thickness and plasma frequency as in panel (c). Consistent
with Eq. (4) and our discussion in the Introduction, a thin
plasmonic shell does shift the resonance at lower frequencies,
but not nearly as much as in the case of the magnetized
core-shell scatterer in panel (c) for the same thickness. While
in this scenario the modification from circular to square cross
section perturbs the resonance only slightly, a change from
circular to elliptical cross section leads to a large perturbation
of the resonance frequency and line shape.

These results clearly show that only the proposed gy-
rotropic configuration in panel (c) is very robust to generic
perturbations of the shape of the scatterer.

C. Superscattering effects

The scattering effects discussed above are not limited to
dipolar resonances. Indeed, the flattening of the surface-mode
dispersion in Fig. 2(c) for large values of k/kp suggests
the possibility that the whispering-gallery mode condition in
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FIG. 4. Superscattering effects. (a) Dipole (solid blue) and
quadrupole (dotted red) scattering efficiency for the three-layer struc-
ture shown in the inset (details in the text). Parameters: ωp,2/ωp,1 =
11, ωp,3/ωp,1 = 2.72, ωc,1/ωp,1 = ωc,3/ωp,1 = 0.3, b/λp,1 = 0.2,
a/b = 0.9, and g/b = 0.85, where ωp, j, j = 1, 2, 3 are the plasma
frequencies of the core, intermediate layer, and outer shell, ωc, j, j =
1, 3 are the cyclotron frequencies of the core and outer shell, and
g, a, b are the radii of the core, intermediate layer, and outer shell,
respectively. λp,1 is the free-space wavelength at ωp,1. Insets show
the scattered field distribution near the layered cylinder. (b) Similar
to panel (a), but for a superscattering configuration with dipole
and quadrupole resonances at the same frequency. The structure
parameters are the same as in (a), except ωp,2/ωp,1 = 12.

Eq. (5) may be satisfied for different values of n > 1 over
a narrow frequency window, leading to the spectral overlap
of multiple scattering resonances of different order and an-
gular momentum. This is indeed the mechanism behind so-
called superscatterers, first demonstrated in Ref. [17], which
allow overcoming the single-channel limit of the scattering
efficiency [λ/(πb) for a two-dimensional (2D) object of
width 2b] by resonantly exciting different angular momentum
channels at the same frequency. However, we found that
our simple core-shell structure studied above does not offer
enough degrees of freedom to control and induce such a
resonance superposition. Inspired by the geometry studied in
Ref. [17], we therefore considered the three-layer structure
illustrated in the inset of Fig. 4(a), where the inner core
and outer shell are gyrotropic while the intermediate layer
is isotropic. This extra layer enables the emergence of two
coupled surface modes supported by the two inner cylindrical
interfaces, allowing control of their dispersion with more
flexibility. Figure 4(a) shows an example of the resulting scat-
tering efficiency spectrum for two different angular momen-
tum channels, revealing the presence of both a dipole and a
quadrupole resonance, at two separate but nearby frequencies
(the insets show the corresponding field profiles). By suitably
engineering and optimizing the geometry and material prop-
erties of the layers, it is then possible to bring these two res-
onances at the same frequency, as demonstrated in Fig. 4(b),
producing superscattering effects. It should be stressed that,
while the design considered in Fig. 4(b) achieves resonance
superposition at a frequency only moderately smaller than the
plasma frequency (ω ≈ ωp/5), it is in principle possible to
push this superscattering effect to arbitrarily low frequencies,
similar to the dipolar scattering results in Fig. 1. We expect
that the topological properties of these resonances may be
beneficial to the realization of robust superscattering effects,
which are typically very sensitive to perturbations and defects
that detune the resonances.

III. CONCLUSION

In this paper, we have investigated the physical mechanism
at the origin of a class of anomalous ultralow-frequency
plasmonic resonances, shedding light onto their relation to
unidirectional and topological surface plasmon polaritons
supported by nonreciprocal plasmonic platforms. These topo-
logical properties endow the scattering resonance with ro-
bustness against perturbations and geometrical modifications.
While we expect that the effect of material absorption may be
important in solid-state plasmonic media at room temperature,
we predict that these scattering effects could be observed in
low-loss plasmonic (meta)materials and gas plasmas under
weak magnetization, including in atmospheric and astrophys-
ical settings where rarefied plasmas under magnetic bias are a
common occurrence. Further details on the practical feasibil-
ity of the proposed scatterers and on the impact of dissipation
are provided in Appendix C.

In summary, our findings describe a class of anomalous
low-frequency scattering resonances and show an intriguing
connection between topological photonics/electromagnetics
and scattering problems.
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APPENDIX A: DIPOLAR SCATTERING COEFFICIENTS
FOR A CORE-SHELL GYROTROPIC SCATTERER

Consider a generic, infinitely long, circular cylinder in
free space with axis along the z direction (see Fig. 1). When
a transverse-magnetic (TM) plane wave with magnetic field
along the cylinder axis illuminates the scatterer, the scattered
field into free space can be represented as a discrete sum of
cylindrical harmonics, Hs

z = ∑+∞
m=−∞ SmH (2)

m (k0r)eimφ , where
φ is the cylindrical coordinate angle measured from the +x
axis, H (2)

m is the mth order Hankel function of the second
kind representing outgoing waves, and Sm is referred to as
the TM scattering coefficient. Writing the incident plane
wave in the form Hz = H0e−ik0.r, with H0 being the magnetic
field amplitude, the scattering width takes the form σ2D =
2λ
π

∑+∞
m=−∞ |Sm|2. By normalizing σ2D to the width of the

object, 2b, it can be seen that the theoretical upper bound
of the scattering efficiency for any mth angular momentum
channel is λ/πb for 2D objects.

Since we are interested in small, subwavelength scatterers,
we make a quasistatic approximation to simplify the expres-
sions of the scattering coefficients. Mathematically, the qua-
sistatic analysis is based on a small-argument approximation
for the Bessel and Hankel functions in a Mie-theory formula-
tion of the scattering coefficients (corresponding, physically,
to neglecting retardation effects). The Bessel/Hankel func-
tion arguments entering the formulation are, in free space,
k0b = 2πb/λ0 and, in the magnetized plasma, k0b

√
εeff =

k0b
√

(ε2
t − ε2

g )/εt , where εt and εg are the diagonal and

023180-6



TOPOLOGICAL SCATTERING RESONANCES AT ULTRALOW … PHYSICAL REVIEW RESEARCH 2, 023180 (2020)

off-diagonal permittivity tensor elements. In the limit of small
frequency and small cyclotron frequency (with respect to
the plasma frequency), it is straightforward to show that
k0b

√
εeff = 2π ib/λp, where λp is the free-space wavelength

at the plasma frequency. Thus, if the radius b is smaller than
both the free-space wavelength at the operational frequency
and the free-space wavelength at the plasma frequency, a
small-argument, quasistatic approximation of the scattering
coefficients is valid. This is indeed the case in our work,
which explains why the quasistatic formulas agree well with

full-wave calculations (Fig. 1) and numerical simulations
(Fig. 3).

As explained in the main text, in the quasistatic limit the
dominant scattering coefficients are the S±1 ones, correspond-
ing to dipolar scattered waves of equal and opposite angular
momentum. Applying Mie theory to the core-shell gyrotropic
cylinder considered in the main text, in the long-wavelength
regime, we find the following approximate expression for the
dipolar scattering coefficients (further details are available
in Ref. [10]):

S±1 ≈ π3

(
b

λp

)2(
ω

ωp

)2

×
ωc
ωp

[(
a
b

)2 − 1
][

1 − 2
(

ω
ωp

)2] ± 2 ω
ωp

[(
ω
ωp

)2 − 1
]

2 ω
ωp

[
1 − (

ω
ωp

)2][
1 − 2

(
ω
ωp

)2] ∓ ωc
ωp

{(
a
b

)2 − [
1 − (

ω
ωp

)2]2} , (A1)

where ωc is the cyclotron frequency (bias applied only to
the core region) and ωp is the common plasma frequency
of the entire plasmonic cylinder. In the above equation, the
roots of the denominator indicate the frequencies at which
scattering resonances occur (in the quasistatic regime, ne-
glecting radiation loss, scattering resonances and poles coin-
cide). Due to the presence of the bias, ωc �= 0, the degener-
acy of dipolar resonances with opposite angular momentum
is lifted. This situation is similar to the case of a biased
homogeneous plasmonic cylinder; however, as discussed in
the main text, a partially magnetized plasmonic scatterer
supports additional ultralow-frequency resonances associated
with ultralow-frequency topological surface modes supported
by the internal interface.

APPENDIX B: POTENTIAL IMPLEMENTATION
OF THE PROPOSED SCATTERER

The biased portion of the proposed scatterer could be real-
ized in the form of n-doped semiconductors, e.g., n-type InSb,
which is a popular model system for nonreciprocal plasmonics
since the 1970s [25,28,40,41]. The plasma frequency of InSb
with electron density of 1022 per cubic meters is equal to
ωp/2π = 2 THz. Considering the low effective electron mass
of InSb (m∗/m = 0.0142), we find that it is possible to obtain
sufficiently large cyclotron frequency with low values of bias.
Specifically, the strength of the magnetic field in our Figs. 1
to 3 of the main text is about 0.05 T, and for the results
of Fig. 4 it is about 0.3 T. These levels of bias intensity
can be achieved even with commercially available permanent
magnets or simple electromagnets.

Regarding the implementation of the bias, there are at least
two strategies that could be used to practically implement
a cylindrical configuration with biased core and nonbiased
shell. For example, by loosely wrapping a solenoid around the
core region (cylinder of radius a), with DC current I , it would
be possible to create a magnetic field that is almost completely
confined within the core region, as long as its length L is
much larger than a. In addition, if the windings are sufficiently
separated and/or tilted, their effect on the incident harmonic
wave may be reduced. If one denotes by N the solenoid loops
per unit length along the z axis, the DC magnetic field inside
the long solenoid (r < a) is almost homogeneous, especially

if our observation plane, e.g., z = 0, is far from the cylinder
ends. The value of the internal field is given by B0 = NIμ0,
and the field is parallel to the z axis. However, due to its
finite size, the magnetic field outside the solenoid (r > a)
is non-zero since the magnetic field lines must form closed
loops. The axial magnetic field Bz in the region r > a on the
plane z = 0 can be determined as follows [42,43]:

Bz

B0
= 2(a/L)2√

[1 + 4(r/L)2]3
, (B1)

where r is the radial distance. It is clear that, if a � L, the
external field, Bz, is much smaller than the homogeneous field
B0 inside the core; therefore, its effect on the properties of
the shell material will be quite limited and may be ignored.
In other words, the gyrotropic character of the shell region
(a < r < b) will be weak since the magnetic lines form very
sparsely distributed closed loops across a semi-infinite region,
yielding a particularly low magnetic field.

We also would like to stress that, in the main text, we have
considered a structure with the same plasma frequency for the
core and shell in order to simplify the analysis and gain more
physical insight from the resulting simple analytical expres-
sions. However, having exactly the same plasma frequency for
the core and shell is not a requirement to obtain the observed
ultralow-frequency scattering resonances. These resonances,
like all plasmonic resonances, originate from surface plas-
mon polaritons existing on the interfaces of the scatterer. As
mentioned in the main text, the unidirectional and topological
mode that is responsible for these scattering features has been
shown in several papers to exist if a magnetized plasma is
interfaced with a generic opaque material. Indeed, the topo-
logical nature of these modes is retained as long as the two
materials at the interface have overlapping bulk-mode band
gaps [19]. Thus, even if the plasma frequency of the shell was
different, the unidirectional surface plasmon-polariton mode
would still exist, with a slightly different dispersion, resulting
in a scattering resonance with slightly different frequency, but
otherwise mostly unaltered. Indeed, an even simpler strategy
to practically realize the proposed configuration is to consider
a core-shell cylinder that is uniformly magnetized, but with
the shell composed of a different material with much higher
plasma frequency and/or much larger electron effective mass.
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In this way, for the same level of magnetic bias, the cyclotron
frequency normalized by the plasma frequency, ωc/ωp, in the
shell would be much lower than in the core, and could be
neglected. In other words, despite the presence of the bias,
the permittivity of the shell would be essentially scalar, with
negligible nonreciprocal effects.

APPENDIX C: IMPACT OF DISSIPATION

The ultrasharp scattering resonances described in the main
text are very sensitive to absorption loss. However, we would
like to note that, in this work, we have considered particularly
extreme cases. Indeed, these topological resonances do not
have to be at such low frequencies. They can occur at fre-
quencies closer to the plasma frequency where the scattering
peak becomes wider and less sensitive to the effect of losses.
In Fig. 5, we show an example of the impact of absorption
losses on the scattering resonance, calculated exactly using
Mie theory. We consider InSb with plasma frequency as
in Appendix B and cyclotron frequency ωc = 0.5ωp. The
considered losses correspond to collision frequencies 2γ =
10−6ωp, 10−5ωp, 10−4ωp, which are potentially feasible for
InSb at liquid-nitrogen temperatures [44,45] or for gas plas-
mas. The permittivity tensor elements in the presence of loss
take the form

εt,1 = 1 − ω2
p

(
1 − i γ

ω

)
(ω − iγ )2 − ω2

c

, εg,1 = ω2
pωc

ω
[
ω2

c − (ω − iγ )2
] .

(C1)

FIG. 5. Impact of dissipation on the low-frequency scattering
resonance of the proposed gyrotropic core-shell particle, for three
different levels of absorption loss.

From these results, it is clear that the scattering resonance
remains fairly strong for a reasonably wide range of Ohmic
losses. Low-loss plasmas are available in nature in the form
of low-temperature solid-state plasmas, low-loss plasmonic
metamaterials (e.g., wire media), and rarefied gas plasmas.
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