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Abstract: We find the quantum power emitted and distribution in 3 4 1-dimensions of relativistic
acceleration radiation using a single perfectly reflecting mirror via Lorentz invariance, demonstrating

close analogies to point charge radiation in classical electrodynamics.
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1. Introduction

There are deep connections between point charge radiation in classical electrodynam-
ics and quantum vacuum acceleration radiation from the perfectly reflecting point mirrors
of DeWitt-Davies—Fulling [1-3]. For instance in 1982 Ford and Vilenkin [4] demonstrated
that the forceona 1 + 1 moving mirror has the same covariant expression as the Lorentz-
Abraham-Dirac (LAD) radiation reaction force of an arbitrary moving point charge in 3 + 1
classical electrodynamics. The connection extends to scalar source changes demonstrated,
for instance, in 1992 by Higuchi, Matsas and Sudarsky [5] through the discovery that
photon emission from a uniformly accelerated classical charge in the Minkowski vacuum
corresponds to emission of a zero-energy Rindler photon into an Unruh thermal bath.
In 1994, Hai [6] found the quantum energy flux integrated along a large sphere in the
asymptotic future as the Larmor formula for the power radiated by a moving scalar charge
with respect to an inertial observer. In 2002, Ritus [7-10] found symmetries linking creation
of pairs of massless bosons or fermions by an accelerated mirror in 1 + 1 space and the
emission of single photons or scalar quanta by electric or scalar charges in 3 + 1 space.

The above studies are just some of the fascinating connections, nowhere near exhaus-
tive, so far discovered. Recent studies ([11-13]) have also strengthened the connection
between quantum acceleration radiation and classical radiation of point charges, namely
the works by Landulfo,Fulling and Matsas [12], who found that zero-energy Rindler modes
are not mathematical artifacts but are critical to understanding the radiation in both the
classical and quantum realm, confirming that Larmor radiation emitted by a charge can be
seen as a consequence of the Unruh thermal bath. Moreover, Cozzella, Fulling, Landulfo,
and Matsas [13] concluded that uniformly accelerated pointlike structureless sources emit
only zero-energy Rindler particles using Unruh-deWitt detectors [14]. The analogies hold
true with respect to the uniformly accelerated moving mirror, which emits zero energy flux
but produces non-zero particle counts as computed from the beta Bogolubov coefficients
(e.g., [15]).

Investigations are underway aimed at extending the 1 + 1 dimensional moving mir-
ror model to 3 + 1 dimensions, and understanding the production of scalar particles in the
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relativistic regime [16]. These efforts are carried out with the goal of direct detection of rel-
ativistic moving mirror radiation [17-19], and they complement the growing accumulation
of observations of the dynamical Casimir effect (see references therein [20]). Extension of
1 + 1 dimensions to 3 + 1 dimensions, particularly in connection to electrodynamics [21],
should be done with caution because, for instance, there is a genuine difference between a
two-dimensional world and an effective two-dimensional world arising when a charged
particle is placed on a straight line in ambient space. In the former case, the vector potential
A behaves in space as r, and hence the charged particle does not radiate at all, whereas in
the latter case, A exhibits Coulomb-like behavior, 1/r, so that usually Larmor radiation
results [22].

Experimental verification will be facilitated by knowing the distribution of detected
radiation. Recent studies have only just solved for the five classes of uniformly accelerated
trajectory distribution [23] in classical electrodynamics (effective Unruh-like temperatures
have also been calculated [24]). Unfortunately, mathematically, no settled upon or con-
vincing [25] covariant expression has yet been derived to express the power distribution
in a frame-independent formulation [26]. In order to know the distribution of quantum
power from a relativistic moving mirror we are also forced to abandon cherished covariant
language, while at the same time maintaining the principle of Lorentz invariance.

In this work we compute the quantum power Larmor formula for relativistic mov-
ing mirror radiation, the explicit non-covariant quantum power distribution, and apply
the results to the simple case of abrupt mirror creation, violent acceleration, and near-
instantaneous final constant velocity state of motion for the spectrum of radiation of the
mirror. Along the way, we highlight the direct analogies to classical radiation from a
moving point charge in electrodynamics.

Our paper is organized as follows: in Section 2, we obtain a total power definition for
quantum radiation emitted by a single relativistic moving mirror in 1 4 1-dimensions. We
highlight that it has identical form to the relativistic generalization of the Larmor formula
for power emitted by an accelerated point charge. In Section 3, we derive the angular
distribution in time of the quantum radiation of the mirror in 3 4+ 1 dimensions using
Lorentz invariance. Here we utilize the ansatz that proper acceleration magnitude is a
Lorentz scalar independent of direction or dimension. We determine that the quantum
power distribution has the same form as in classical electrodynamics. In Section 4, we
derive the radiation integral, demonstrating that the approach in electrodynamics equally
applies to the mirror. Finally, in Section 5, we specialize our results to an abruptly created,
rapidly accelerated, constant velocity moving mirror connecting the frequency-independent
spectrum with that of beta decay. We discuss and conclude in Sections 6 and 7, respectively.
We use natural units throughout, # = ¢ = 1. For conversion from the SI electrodynamics
analog, one requires: g — 1, g — 1, g — 1. For the commonly used Gaussian units one
converts by 47teg — 1 and po — 4.

2. Relativistic Quantum Larmor Formula

The energy flux, F, radiated by the mirror moving along a trajectory p(u) in null
coordinates where u = t — x and p is the advanced time, v = t + x, is derived from the
Davies-Fulling quantum stress tensor [2],

FR(u) = — 5y {plu),u), 0

where the total energy emitted to the right of the mirror is (e.g., Walker [27]):

ER = [ FRd, @)
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defining the Schwarzian derivative by (e.g., Fabbri-Navarro-Salas [28]):
2
p/// 3 p//
{p(u),u} =l ) 3)

This energy Equation (2) can be expressed in lab coordinates as (see Equation (2.34) of
Good, Anderson, and Evans [29]):

1 [
ER = @/,M“Z(Hx) dt, @)

where a is the proper acceleration of the mirror. The energy radiated to the left, E*, is found
by the same expression but with a parity flip, ¥ — —X, so that the total radiated energy is:

1 o0
E:ER+EL:aLma2dt. )

This allows us to identify and define a relativistic quantum power for the moving

mirror, P = dE/ dt,
E= — dt pdt
/ o dt /m ! ©)

which gives, from Equation (5), a familiar acceleration scaling:

a2

o @)

b mirror —

The quantum vacuum scalar radiation power, Equation (7), (in SI units Puyjyror =
ha? /67c?) emitted by the mirror enjoys the same scaling as the relativistic Larmor formula,

. 2 a2 _ 4202 . 4202 ©
electron ™ 3 47reqc®  671e0Cd 6’

in classical electrodynamics, where we start in SI units and “—" implies conversion to
natural units where €y = ¢ = 1, and «a is the magnitude of the proper acceleration of the
moving point charge (e.g., electron).

3. Angular Distribution in Time

The relativistic quantum generalization of Larmor’s power formula, Equation (7), is a
Lorentz invariant scalar,
2
o
P=pP=_—,
671

©)
where P* is the instant rest frame power and P is the lab frame power. Here we make a
critical assumption about the 1 + 1-dimensional result (Equation (9)): the universality of
the Lorentz invariant scalar in any frame suggests it is independent of dimension. It is just
a number after all, with no associated direction (see Appendix A for elucidation). We take
this as an ansatz and find it possible to proceed. In this case, a simple definition for the
angular distribution of the power Equation (9) of a moving mirror in 3 4 1 dimensions can
be written as (we imagine the boundary condition is still defined as a perfectly reflecting
point, not a two-dimensional surface, but see the end of this section for more discussion):

dp* p*
P= [ Goedey = [ 45 sin@"d0 dg". (10)

Here the * designates the instantaneous rest frame, and the angle ®* is between the
acceleration 3-vector a* and the direction to the observer in the * frame. What we have
done is assumed that the power formula derived in 1 + 1 dimensions (Equation (9)) holds
true in 3 + 1 dimensions (this was found 20 years ago by Bekenstein for power emitted by
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black holes in the context of information transmission [30]). Likewise we will assume the
power is distributed in 3 4 1 dimensions by using the 3 4- 1 dimensional Lorentz covariant
definition of proper acceleration. Therefore:

ar la* x A*|? _ a2 sin? @* 1)
dQ* 1672 1672 7
where the instantaneous rest frame unit vector, i*, is:
A" = sinf* cos ¢*£* + sin0* sin p*§* + cos 02", (12)
and a* is the proper acceleration 3-vector in the instant rest frame, where a* = —ayat. The

acceleration 4-vector in the instant rest frame has components (0, a*), i.e., « is the invariant
Lorentz scalar, the acceleration felt by the moving mirror itself—its “property” [31]. The
numerical 167t factor in Equation (11) originates from:

21 7 gin? @* 1 87t 1
in@ dO*dp* = — o — L 1
/0 /o o2 Sn@dOdY" = 15 = = ox (13)

See Figure 1 for an illustration of the usual angle convention we have adopted. We
now wish to find the power distribution starting from Equation (11). We will find the
dimensional allocation without appeal to fields or potentials, using only the principle of
Lorentz invariance.

*

Z

Sy

9*

Figure 1. This figure shows the angles we adopt between the relevant vectors, where x* is the angle
between acceleration and velocity in the x*z* plane, 6* is the angle between velocity and the normal
vector, ©* is the angle between acceleration and the normal vector, and ¢* is the azimuthal angle.

First, let us transform the solid angle to the lab frame. Under Lorentz transform the
solid angle is (e.g., [25]):
_ aQ
~ 92(1— Bcosh)?’
and the energy density is dU* = (1 — B cos0)dU, while the square of the acceleration
scalar is written,

dO* (14)

a? = 9%(a® — (B x a)?). (15)

Hence, we write, using dt = ydt*, the distribution from the source, Equation (11), in
the lab frame coordinates

dpP 1 ap*
= 1
dQ  9*(1— Bcosh)3dO*’ (16)
obtaining:
27,2 3\2

dQ ~ 16m2 (1— Bcos6)?
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Since the distribution is needed in the lab frame, the rest frame angle ®* should be
described in terms of lab frame angles 6, ¢, and x (see Appendix C). To put Equation (17)
in a more explicitly useful (and recognizable) form without reference to the angle ®*, we
would like to show that:

&7 a® — (v x a)?]sin? @ = [A x ((A—v) x a)]?, (18)
or more concisely, that:

la* x A2 = ;[ﬁx ((h—v) xa)] (19)

To do this, we express the instantaneous rest frame 3-vector acceleration, a*, in terms
of the lab frame 3-vector acceleration, a, via the appropriate usual Lorentz acceleration
transformation (e.g., [32]):

LA @wwi-1), @
T T2 022(1— 2)3 T 21— 02)3 (20)

We can transform instant rest angles (6%, ¢*) to lab angles (6, ¢) by:

2 2
0 60—
sin2 0" = S,)I/IQ?, COS2 0" = (COngﬁ), (21)
where g is the Doppler factor, g = 1 — Bcos 6 and ¢* = ¢. This gives:
A
la* x A*|? = |ﬁ(ﬁ'a)fafv(ﬁoa)+a(ﬁ'v)|2—2. (22)

8

From A x (B x C) = B(A - C) — C(A - B), the right-hand side of Equation (22) is equal
to the right-hand side of Equation (19). Therefore, our power distribution in the lab frame,
Equation (17), is (see Appendix D for a demonstration of well-known limits):

dP 1 [Ax((a-p)xp)]?
dQ ~ 16m2 (1—Bcosf)S @3)

This form for the quantum power distribution of scalar radiation from a relativistic
moving mirror is that of the widely used textbook result for the classical power distribution
of an arbitrarily moving electric point charge (e.g., [33-35]). Note that this derivation does
not rely upon fields or potentials and depends solely on the validity of Lorentz invariance
of proper acceleration and its vector decomposition in 3 + 1 dimensions. Although the
derivation method of Equation (23) was for quantum radiation from a moving mirror, it is
also valid for classical radiation from a moving electron.

The exact equation of motion of the system in 3 + 1 dimensions has not been defined.
The derivation does not rely upon the fields directly, but the system obeys the homogeneous
Klein—Gordon equation everywhere except at the mirror and some boundary conditions at
the mirror. The main result of this paper is to demonstrate that the constraints of Lorentz
invariance and dependence only on acceleration completely determine the radiation distri-
bution, given the single integrated power quantity Equation (9). Barring the details of the (1
+ 1)-dimensional derivation of Equation (9), the (3 + 1)-dimensional result is independent of
the precise boundary condition at the mirror (or whatever is located at the singular point).

4. Angular Distribution in Frequency

In this section we confirm a procedure to obtain the widely-used classical radiation
integral of electrodynamics but for the case of quantum scalar radiation from a moving
mirror. This is needed to find the angular distribution in frequency. We demonstrate that
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the derivation and assumptions applied in the context of classical electromagnetic fields is
applicable to the quantum scalar field.

Converting to the frequency domain requires considering the power distribution in
the time domain as an energy density distribution in both time and angle, and defining
angular distribution in frequency,

dP(t) d*U  dl(w)  d*U

aQ — drdQ)’ dQ  dwdQ’ (24)
where we write:
dQ / at dQ - 0/ @5
Parseval’s theorem can be used to deduce that:
+o0 +o0
au dP(t) 1 dP(w)
L —E/dwidg . (26)

—00 —00

We apply a reality condition to the integrand such that P(t) = P*(t) and P(w) =
P*(—w), which gives an even integral,

—+o00
au 1 7 dpP(w)

The angular distribution in frequency can be found by a derivative,

d du d 1 dP(w)
fedn ~dow ] 28)
which amounts to, using the notation of Equation (24):
dl(w)  d*U 1 dP(w) 29)

AQ  dwdQ 7 dQ

We now have picked up a 7t and a Fourier transform. We plug in Equation (23), which
is the time-domain Equation (24), into:

aP(w) _ 7°dtdp<f>ei¢

a0 aa =’ (30)

—00

where ¢ = w(t, —#t - 9(t;)), using the radiation zone approximation. This assumes the
observation point is very far from the regions of space where the acceleration is non-zero:
fi, &~ #is constant. The mirror always moves on some arbitrary trajectory r(f) with velocity
v(t) = 7y(t). Then, using Equation (29), as well as expressing the Fourier transform over
retarded time, dt = gdt,, gives the widely-used analog formula (see, e.g., Jackson [33] or
Zangwill [34]):
o 2
i) 1| T [0 (=B Bl -
aQ 1673 (1 —PBcosh)?

— 00

An important virtue of the form of Equation (31) is that the integrand is zero when the
mirror acceleration is zero, which will always be the case for collision scattering-type and
open-orbit situations where the mirror is subjected to a force for a finite amount of time. In
the next section we will look specifically at such a situation in the case of abrupt creation of
the mirror itself.
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5. Specialized Case: Abrupt Mirror Creation

The sudden creation of a fast moving mirror can be viewed, for our purposes, as the
violent acceleration of the mirror initially at rest to some final velocity within a very short
time interval, or, alternatively, as the sudden switching on of the boundary describing the
moving mirror in the same short time interval.

Consider the initial situations, where the the mirror is either static or non-existent:
there is no radiation. Now consider the more subtle final situation, where a Lorentz boost
to the frame of the moving mirror renders the final constant velocity state of motion as
trivially non-radiating as that of a static or non-existent mirror. Thus, it is the intermediate
situation, where the radiation is sourced from the non-trivial physics during the short time
period, in which there is violent acceleration or sudden creation.

Our goal is to calculate the spectrum of this perfectly reflecting boundary. While our
calculation can be interpreted both as an accelerated boundary with violent acceleration to
constant velocity, and the sudden creation of the mirror, these systems are not the same!
As pointed out in the previous sections, the specification of the particular equation of
motion and boundary condition in 3 + 1 dimensions is not given. Examples can be found
in previous work, such as that by Brown and Louko, who described the case of smooth
creation of a two-sided Dirichlet mirror in (1 + 1)-dimensional flat space-time that generates
a flux of real quanta [19]. Also relevant is the creation of boundaries in 3 4 1 dimensions and
the resulting particle production; that induced by the creation that changes the gravitational
field itself as worked out for cosmic strings by Parker [36] (unlike a point Dirichlet mirror,
it is known that cosmic strings have effects on the quantum fields around them in 3 + 1
dimensions). For our particular spectral result, the systems cannot be distinguished from
each other. That is to say, while sudden creation and violent acceleration are not the same
physical processes, the nature of our approximation gives a regime of validity where the
result can be interpreted as either sudden creation or violent acceleration. The spectrum
will critically depend on a short time period approximation of Equation (31), where all that
matters is before t < 0 there is no radiation contribution to the integral and after t > 0
the mirror is moving at constant velocity relative to a faraway observer. It is this limiting
short-period form that can be straightforwardly integrated.

To compute the spectrum, we first start with the use of a perfect differential identity
(see Appendix B for a proof):

Ax((h—p)xp _d {nx(nxm] (32)

(1—pBcos)>2 — dt,| 1—Bcosh

where the derivatives are evaluated at retarded time. We apply this identity to perform an
integration by parts on Equation (31),

2

+o0 o0
—iw / dt, x (it x B)e'?| , (33)
0
0

dl(w) 1

aQ 1613

i x (i X ﬁ)ei¢
1— Bcost

where the boundary terms vanish. Again, we have defined ¢ = wt, — k - 7o (), where
k = w. Using 1 = # as a constant vector means it comes outside the integral, and since
[# x (# x B)|*> = |# x BJ? for any vector B, we obtain the angular spectrum of radiated

energy as:
2
2 o0
) _ & Jox [at ptyexpl-itk () —wh)]| 34
0
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The integral is zero from —oo to 0 but non-zero from 0 to +oo. The non-zero con-
tribution comes because B(t) = B for t > 0 with trajectory function ry(t) = pt. Using
k = w?,

2 s ?
dl(w w” 2| [ s
% = 163 |? x B| /dtexp[—zw(r~ﬁ— )| - (35)
0

Notice the pre-factor w? frequency dependence, which will ultimately cancel out after
appropriate integration. The integral diverges at late times (upper limit), so we use a
convergence regulator e~ and set € — 0 after integration. Using # - B = B cos 0, where 0 is
the angle between f and the observation point, the integral is:

' . i
O/dtexp[zw(ﬁcos@ —Dt—et)] = et w(l—Boosd)’ (36)
where we can now set € — 0, and write the square of the integral as:
o 2
1
) 7. —1 = — 7
O/dtexp[ W B=10]| = i peosar (37)

demonstrating that frequency dependence cancels out exactly from Equation (35). Using
7 x B = Bsinf, the result is:

dl(w) 1 B%sin’ 0
dQ 1673 (1 —Bcosh)?’

(38)

This is angular distribution of energy radiated per unit frequency in the frequency
domain for the abrupt creation or violent acceleration of a moving mirror in 3 + 1 dimen-
sions. We can see that in this application, the angular distribution of energy radiated per
unit frequency (and the total energy radiated per unit frequency in the next subsection) are
independent of frequency.

Total Energy & Particles
The total energy radiated per unit frequency is found by the integral
1 B%sin’ 0
I(w) = aQ 39
(w) 16703 / (1 —Bcosh)? 39

Using dQ) = sin 6d6 d¢, the numerator scales by sin® § and integrating 6 from (0, 77)
and ¢ from (0,27), we obtain: a simple expression in terms of the final rapidity, 1 =
tanh~! B, and final velocity, B, of the mirror,

[(w) = % (Z - 1). (40)

For non-relativistic speeds f < 1, the radiated intensity is negligible and scales as
I(w) = B%/(67%). For ultra-relativistic speeds, I(w) = 5/ (27%). See Figure 2 for a plot of
Equation (40).
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Figure 2. A plot of the spectrum, I(w), for the violent acceleration of a moving mirror to constant
velocity, Equation (40), as a function of the final speed, 8. Note that the radiated intensity is negligible
at non-relativistic speeds (green) scaling as B2 but at ultra-relativistic speeds (blue) the spectrum
scales as the rapidity #. Equation (40) corresponds to the spectrum of an electron’s radiation during

©
o

beta decay.

Ultimately, the spectrum does not depend on the frequency w because the mirror is
made to be in instantaneous motion at t = 0 with velocity v. A more physical picture will
have the velocity approached in some very short time interval At. In this case the spectrum
will die off and be negligible when w > 1/At. The number of scalars per unit energy range

is given by:
N(w) = 27(12w (Z - 1). 41)

Their total energy radiated has a maximum frequency dependence:

Wmax
1
Epg = O/ N (@)dw = 5 (Z _ 1>wmax. 42)

We reiterate that the mirror is assumed to be created with constant velocity such that
the acceleration period occurs within a very short time interval. The spectrum function
is negligibly small when the frequency is much larger than the inverse time interval of
acceleration. The intensity distribution, Equation (40), has the same form as a typical inner
bremsstrahlung spectrum [33] in classical electrodynamics. In the case of beta decay [33,34],
e.g., the electron plays the role of the mirror.

6. Discussion

First, we should comment on the regime of validity of P = a?/(677) and the assump-
tions that were required to obtain it. Equation (4) has undergone an integration by parts
(for details see Equation (2.34) of [29]), which is only valid if globally the acceleration of the
mirror is asymptotically zero in both the past and future. Moreover, the boundary terms
only disappear if the mirror is sub-light speed asymptotically, which is an even stronger
constraint.

This seemingly inconsequential subtlety almost certainly has much to do with the
longstanding debate [37,38] over whether a uniformly accelerated point charge radiates
(consider the clear distinctions needed between the electromagnetic power received by
a set of far-off observers and the instantaneous mechanical power loss of the charge
in [39]); in this case we comment that the power formula does not apply to global uniform
acceleration, as that would violate the previously mentioned assumptions giving non-
vanishing boundary terms. That is, a globally uniformly accelerated mirror does not
radiate [15] energy but does radiate particles (as is well known [40—42]). This is also in
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line with the fact that uniformly accelerated point-like structure-less sources emit only
zero-energy Rindler particles [13].

Second, we comment on the assumption that the Lorentz power scalar holds in
higher dimensions. Conformal invariance breaks down in higher dimensions [18] but our
derivation, underscoring the Larmor formula as a Lorentz scalar independent of direction,
does not ostensibly require conformal invariance. The moving mirror in 1 + 1 dimensions
permits exact solutions to the field equation because of conformal invariance but our result
does not appeal to an exact explicit solution to the wave equation of motion. It only appeals
to the dynamics of the mirror as computed through the general renormalized quantum
stress tensor as given by the Schwarzian derivative. In general contexts, the quantum stress
tensor, as opposed to particle production, is much easier to obtain. This is true in higher
dimensions where conformal invariance no longer holds (see [18] and references therein,
e.g., Refs [15-19]).

Third, we comment on the general applicability of the power distribution of
Equation (23). This formula applies to very general trajectories (albeit globally asymp-
totically sub-light speed and time-like; although this does not stop one from being able
to locally compute the power distributions of the five classes of uniform acceleration,
which for an electric charge will be the same form as for uniformly accelerated moving
mirrors [23]. It is unclear whether the effective temperatures will also carry-over [24]). For
instance, a mirror moving on a circular arc near the speed of light will emit a synchrotron-
type of radiation in the form of a narrow and intense beam directed tangent to the arc,
implying that a fixed observer will see a brief flash or pulse of radiation every time the
mirror moves directly toward them.

This power distribution, Equation (23), in the context of vacuum acceleration radi-
ation, warrants study because of its importance in connection to synchrotron radiation.
Disentanglement in contexts where it is relevant will be essential in confirming the source’s
origin. While astrophysical synchrotron radiation is a powerful indicator of the presence
of magnetic fields and particle acceleration mechanisms near pulsars and black holes,
the possibility that similar radiation could point to quantum amplification of vacuum
fluctuations due to an accelerated boundary condition is of interest to a wide range of
physicists concerned with relativistic quantum fields and information.

7. Conclusions

We have investigated the acceleration radiation emitted by a single relativistic per-
fect point mirror in 3 + 1 dimensions and its analogies with a moving point charge in
electrodynamics. Namely,

*  We found the quantum power formula for moving mirrors and identified it with
Larmor’s form.

¢ The quantum Larmor formula is not applicable for eternal uniform acceleration.

¢  We generalized the 1 + 1-dimensional moving mirror model to 3 + 1 dimensions in
the context of distributed power. This was done with the ansatz that the scalar power
in1 + 1 dimensions (which is proportional to the proper acceleration magnitude
squared) is also the scalar power in 3 + 1 dimensions, i.e., the scalar will be invariant
under Lorentz transformations in 3 4- 1 dimensions and obeys Larmor’s form. The
only covariant choice of definition for scalar magnitude of proper acceleration in 3 + 1
dimensions is that constructed by the usual Lorentz 4-vector acceleration.

¢ Consequently, we derived the power distribution and found its form is in analog to the
well-known power distribution in electrodynamics (e.g., the apportioning responsible
for synchrotron radiation.). This was done by Lorentz invariant vector decomposition
of relativistic acceleration. The allotment is a result of the motion of the mirror only
and the derivation did not rely on the use of fields or potentials, i.e., there are no
requisite Lienard-Wiechert potentials or electric and magnetic field counterparts for
the quantum scalar radiation.
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*  We derived the spectrum of a moving mirror abruptly created and violently acceler-
ated to a constant velocity. In analog to beta decay in classical electrodynamics, we
found the appearance of the moving mirror plays the role of the moving electron.

Knowing the radiated distribution of power for the moving mirror is a necessary first
step toward precise orientation for accurate detection. The work here determines that the
distribution for quantum scalar radiation from a moving mirror is the same form as that
of accelerated electron radiation in classical electrodynamics. The close analogy suggests
direction for future work, including the application and interpretation of moving mirror
trajectories in analog to the exactly known spectra associated with the moving point charge,
including, for example, and not limited to, the well-known bending magnet trajectory, the
undulator trajectory, and the collinear acceleration burst trajectory.
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Appendix A. Comment on Invariant Scaling

A Lorentz scalar is a number that is invariant under Lorentz transformations. The
most well-known examples include the speed of light c, the space-time distance between
two fixed events As?, rest mass 1, proper time 7, and E - B and E2—B%in electrodynamics.

Numbers that are not invariant under Lorentz transformations, which we could call
“non-Lorentz” scalars, may have no associated direction but nevertheless change under
a Lorentz transformation. Examples include E - E or electric charge density, which are
invariant with respect to spatial rotations but not with respect to boosts. Other exam-
ples are components of vectors and tensors that in general are altered under Lorentz
transformations.

A Lorentz scalar is invariant in a given dimensionality, but it is not a priori guaranteed
that the same physics in a different dimension would render the same scaling. Consider
the Stefan-Boltzmann law that scales as P ~ T? in (1 + 1)D and P ~ T* in (3 + 1)D. Despite
no associated direction, the physics changes dramatically in different dimensions (see
below for a caveat). This may be an example of a number which is not invariant under
Lorentz transformation—a “non-Lorentz” scalar (see, e.g., the relativistic Stefan-Boltzmann
law [43]). There is no consensus on whether temperature is a Lorentz scalar. (Einstein [44]
and Planck [45] derived a moving body to be cooler, T = T/, whereas Ott [46] derived a
moving body to be warmer, T" = ¢ T. Landsberg [47] derived T' = T).

Our ansatz that the quantum power remains invariant under a change of dimensions,
used to derive Equation (10), is motivated by the invariance of the proper acceleration as a
Lorentz scalar. This assumption is akin to conjecturing that the speed of light remains the
same in both (1 + 1)D and (3 + 1)D. While our conjecture is in no way guaranteed, it is a
good starting point for the form of the (3 + 1)D quantum power.

The caveat to the Stefan-Boltzmann scaling is seen by considering a (1 + 1)D thermal
system (like the thermal moving mirror [48] with energy flux F = 71T?/12), where the
power is thus:

P~ T2 (A1)

However, for a black body surface in (3 + 1)D, using the usual Stefan-Boltzmann law,
we have:
P ~ AT*, (A2)

which, as we have just mentioned, seemingly deviates from Equation (A1). However, for a
Schwarzschild black hole of temperature T ~ M ™!, we see the areais A ~ M? or A ~ T~2.
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Substituting this into Equation (A2) we retrieve Equation (A1). Therefore, a (3 + 1)D black
hole acts as a (1 + 1)D moving mirror with the same power dependence on temperature
(accelerated boundary correspondences exist for more than just the Schwarzschild black
hole [49]. See the Reissner—Nordstrom [50], Taub-NUT [51] and Kerr [52] black holes. De
Sitter and anti-de Sitter cosmologies [53] are also modeled by moving mirrors as well as
extremal black holes [54-56]). This interesting caveat to the change in dimensional scaling
provides an example where the power does remain invariant for a moving mirror.

Appendix B. Derivation of Perfect Differential Identity

Here we derive the identity Equation (32) in the text. We start with the right-hand
side of Equation (32), where we have dropped the subscript of retarded time,

d ax(axp), _ (Ax@xp))(1—ph)—(1-pa)# x (@ xB))
il 1— Bh ] (1— Ba)? , (A3)

using vector multiplication as the dot product (i.e., i = B - #i) unless otherwise indicated.
Calculating the numerator using the bac-cab rule and then differentiating,

(2 x (2 x B)) = [(ap)a — (an)B) = (AP)A — B, (A4)
and differentiating the Doppler factor g,

[1— Ba]' = —pBa, (A5)

hence the numerator expanded out and simplified gives:

((aB)a— B)(1— pir) — (—pi)(
= (ap)n — (B ﬁ)( 3 )h — B+l3
=—B— (B)B+ (AP)n +

such that our time derivative gives a form inversely proportional to the Doppler factor
squared:

Bh) + (Bh) (Bh)A — () B (A6)

d A (0% B), _ —B—(BN)B-+ (3f)n+ B(h)
ail 1-pa - (i) (A7)

The denominators of both sides of Equation (32) are now equal. Consider the numera-
tor only of the left-hand side of Equation (32) and expand it,

i x [(A— B) x p] = (A) (A — B) — (A(A — B))B
= (ap)a — B(Ap) — [B — (AB)B] (A8)
= —p — B(ap) + (AP)B + (AP)h
One can see that Equations (A6) and (A8) are equal, and thus we obtain the identity
Equation (32).
Appendix C. Derivation of ®*(6, ¢, x)

The velocity vector B is directed along the z*-axis and the acceleration vector *
is lying on the x*z* plane. As we mentioned earlier, the angle between velocity and
acceleration, as well as the azimuth, will be constant. In the instantaneous rest frame, the
angles of 0" and @* change; therefore we express:

B* = B*(sin x*£* + cos x*£*), (A9)
and B = Bz*. Additionally, we know that the instant unit vector is:

" = sin@” cos ™2™ + sin 6" sin ¢ §* + cos 07", (A10)
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The dot product between each of the elements gives us:
" - B = pBcosb”, (A11)
and likewise for the velocity with the instantaneous acceleration vector,
B-Br = pprcosy’ (A12)
and the unit instant vector with the instant acceleration vector,
i* - B* = B* cos @ = B*(cos ¢* sin 6* sin x* + cos 8* cos x*) (A13)

We then rewrite angles of the lab frame in terms of angles of the instantaneous rest
frame:
cos @ = (cos ¢* sin 6" sin x* + cos 6" cos x*). (A14)

Converting from the instant rest frame to the lab frame gives us:

_ cos¢sinfsin x n (cos® — B) cos x

cos O@* (A15)
78 8

which is: )

1 — i@ — (Cosgbsm951n)(+ (cosG—ﬁ)cosx) (A16)
78 8
Finally we have the general relationship for ©*(6, ¢, x):

. . . - 2

Sl ® = 1 — (cos ¢ sinfsin y — y(v — cosB) cos x) ' (A17)

728>

Equation (A17) explicitly demonstrates how the angle ®* in the instantaneous rest
frame is related to the lab frame through angles ¢, 6, and x.

Appendix D. Limits of Power Distribution

The angular distribution of instantaneous radiated power can be written in two forms,
both as Equation (17) and as Equation (23), and despite their different appearance they are
equivalent (see also [25]). As a consistency check, we demonstrate their limits in the most
well-known cases and confirm they are also the same. First, Equation (23) is expanded and
rewritten in terms of lab frame angles 6, ¢ and . It is decomposed as follows:

dP 1 [ax((a—p)xp)?
dQ 1672 (1—Bcosh)?
1 [(a=p)(@a-p)—p1—p )

1672 (1 — Bcosh)>
T At . R . (A18)
_ 1 (a-p)(A-2a-p+p°)—2-p—B-B)(1-B-A)(-B)+p°(1-B-#)
1672 (1 — Bcosh)>
_ 1 @ pPB - +2m-B)(B-pA—p )+ p(1—-B-7)
1672 (1 —Bcosh)® '

The coordinate system is chosen so that vector B is directed along the z-axis, and the
acceleration vector B lies on the x z plane:

B=pB2 P=pB(sinyt+cosy?2), (A19)
and the direction of the radiation 7 is given by:

i1 = sinBcos ¢ £ + sinfsin¢ § 4 cos b Z. (A20)
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Thus, the dot product between the elements 7, 8 and B gives:

-B=PBcosb, B-B=PBcosy,
B = Bcos® = B(cos ¢sinbsin x + cos b cos x).

>

(A21)

>

Then, by substituting Equations (A19)—(A21) into the equation of angular distribution
in the expanded form Equation (A18), Equation (23) is rewritten as follows:

dP 1 B?cos?’® (B2 —1)+2p?Bcos®cos x(1 — fcosh) + p*(1 — Bcosh)?
dQ 1672 (1 — BcosB)>

. (A22)

Now consider the limit of the power distribution, Equation (A22), in the case of
parallel and perpendicular positions of the acceleration and velocity vectors. For x = 0
(i.e., a||v), where cos ® = cos 6:

dPj 1 preos?f (B*—1) +2p*Bcosf(1 — Bcosb) + B*(1 — fcosb)?
aQ  16m? 1-— 5
67T ’ (1—Bcosb) (A23)
1 pB?sin? 6
1672 (1 — BcosB)>’
and for x = 7t/2 (i.e.,, a L v), where cos ® = cos ¢ sin 6:
dP; 1 pPcos?¢ sin?0 (% —1) + BZ(1 — Bcosh)?
aQ 1672 (1—PBcosh)>
. ., (A24)
_ p? 1 cos? ¢ sin? 6
~ 1672(1 — Bcosh)3 12(1—Bcosh)? |

The power distribution limits by using Equation (17) in terms of angles are found by
applying Equation (A17):

P _ 1 PE- BB oo

dQ  16m2 (1 - Bcosb)? (6, %) (A25)
_ 1 2B = (BBsin)?] o o
- 1672 (1—Bcosh)3 sin” €7 (0, ¢, x)-
dP B 421 — BZsin?y] 1— (cos psinfsin y — y(B — cos ) cos x)? A%6
dQ 1612 (1 — Bcosh)? < Y2(1 — Bcos )2 ) (A26)

For x = 0 (i.e., a||v), Equation (A26) transforms to:

ap 7 (B—cos0)2\ 1  [Psin?0
dQ 1672 (1~ peos)’ (1 ~ (1—Bcos 9)2> 1672 (1 - Bcosb)®’ (A27)

and for x = 7t/2 (i.e., a L v), Equation (A26) converts to:

P, B2 41— pY 1 (cos ¢sin6)?
dQ 1672 (1 .—2[5 cos )3 ( B 72(12— ‘B,COZS 9)2) (A28)
B <1 cos” ¢ sin“ 6 )

T 16m2(1—Bcosf) | 72(1— Bcosh)?

Comparing Equations (A23) and (A27), as well as Equations (A24) and (A28) , it can
be seen that the limits of Equations (17) and (23) are the same, which gives the correct
results for both rectilinear (braking) and circular (cyclotron) distributions.
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