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This paper investigates estimation of the secondary path (SP) during the online operation of the filtered-x
least mean square (FxLMS) algorithm-based feedback active noise control (FBANC) systems. The proposed 
method develops upon a previous work where two adaptive filters were used, one for active noise control 
(ANC) and the other for secondary path modeling (SPM). The proposed method essentially comprises a 
similar structure as that of the previous method. The objectives here are to suggest modifications to 
improve upon the slow convergence of SPM filter and the noise reduction (NR) performance in the 
previous method. The key idea is to employ a gain-controlled modeling signal (generated from the 
additive random noise signal) mixed with the cancellation signal. The gain-factor for the modeling 
signal is adjusted such that a large-level modeling signal is used during the transient state of the 
ANC system. This improves the converge of the SPM filter. As the ANC system converges, the level of 
the modeling signal is reduced to achieve good NR performance. Besides controlling the level of the 
modeling, the gain control parameter is employed in adjusting the various other parameters too, viz. 
fixed step-size, regularization parameter, convergence monitoring parameter, while computing the time-
varying normalized step-size for the SPM filter. The simulation results demonstrate that the proposed 
method (equipped with the proposed modifications) outperforms the previous method and yet with a 
negligible increase in the computational complexity.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With urbanization and modernization, the acoustic noise pollu-
tion has become a serious threat to human health [1]. The noise 
reduction (NR), for comfortable living, can be achieved either by 
passive or active means. The passive noise control (PNC) systems 
employ absorbing materials to “absorb” the unwanted noise by 
converting it to other form of energy, e.g., heat. The traditional PNC 
works well for high frequency noise sources; however, does not 
appear as a viable solution, due to the weight, size, and the cost 
constraints, for the low frequency acoustic noise [2]. In contrast 
to PNC (based on absorbing the acoustic noise), the active noise 
control (ANC) relies on generating an appropriate “anti-noise” sig-
nal. The antinoise (canceling) signal is acoustically combined with 
the noise to be canceled. The destructive interference between the 
two would result in NR [3]. The research activities in the area of 
ANC [4,5] have resulted successfully achieving NR in many appli-
cations, viz., air conditioning ducts, cars, aircrafts, headphones, and 
so on (see [6–9] and references therein). The ANC systems are de-
signed to provide NR in a specific region of interest. Essentially, a 
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single-channel scenario can be deployed for NR in a local region, 
or a multiple-channel scenario when it is desired to cover a large 
space [4,5]. In this paper, we stick to the single-channel scenario, 
however, the presented theory and methods can be extended to 
multiple-channel applications, if needed.

Depending upon the application at hand, the ANC may be im-
plemented in either of two configurations, the feedforward ANC 
(FFANC) or feedback ANC (FBANC). A reference microphone is avail-
able to pick up the reference signal for the ANC adaptive filter in 
FFANC. The reference microphone cannot be installed due to the 
physical constraints in many practical scenarios [4,5]. In such cases, 
it is preferred to employ FBANC comprising one loudspeaker to 
propagate the canceling signal and an error microphone to pick 
up the residual error signal. It is worth to mention that FBANC 
gives plausible performance for the narrowband (predictable) noise 
sources without requiring any reference signal [4]. Furthermore, 
it would completely avoid the acoustic feedback which is always 
present in the case of FFANC due to the coupling between the 
canceling loudspeaker and the reference microphone [19,20]. See 
Fig. 1 for a block diagram of the single-channel FBANC, and see Ta-
ble 1 for listing of various signals and systems in Fig. 1 and the rest 
of the paper. As shown in Fig. 1, in the absence of the reference 
le under the CC BY-NC-ND license 
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Table 1
Listing of the various mathematical quantities used in the description of signals and systems in 
this paper.

r(n) = The reference noise at source
d(n) = The primary noise disturbance at the error microphone
x(n) = The reference noise for ANC adaptive filter

x f (n) = The filtered-reference or filtered-x signal
y(n) = The ANC adaptive filter output
e(n) = The error microphone signal

v0(n) = The additive random noise for SPM
v(n) = The modeling signal for SPM filter

D = The delay inserted in the path for the modeling signal

Primary Path: ppp(n) = [p0(n), p1(n), · · · , pL−1(n)]T

SP: sss(n) = [s0(n), s1(n), · · · , sM−1(n)]T

SPM Filter: ŝss(n) = [ŝ0(n), ŝ1(n), · · · , ŝM−1(n)]T

ANC adaptive filter: www(n) = [w0(n), w1(n), · · · , w L−1(n)]T

Reference Signal: xxx(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T

Filtered-x Signal: xxx f (n) = [x f (n), x f (n − 1), · · · , x f (n − L + 1)]T

Composite SPM Filter: hhh(n) = [hhhT
0 (n) hhhT

c (n)]T

= [h0(n),h1(n), · · · ,hD (n), · · · ,hD+M (n)]T

Modeling Signal: vvv(n) = [vvv T
0 (n) vvv T

c (n)]T

= [v(n), v(n − 1), · · · , y(n − D − M)]T

Note: Here all acoustic paths and adaptive filters have been
assumed to be finite impulse response (FIR) filters.
Fig. 1. Block diagram of the FxLMS algorithm-based feedback ANC (FBANC) system.

microphone, the reference signal needs to be generated internally 
which is achieved by computing an estimate of the cancellation 
signal and combining it with the error microphone signal.

The most famous adaptive algorithm is the least mean square 
(LMS) algorithm successfully employed in diverse applications in 
signal processing, control, and communication [10]. The LMS algo-
rithm can not be directly implemented for ANC applications, due 
to the so-called (electro-acoustic) secondary path (SP) present be-
tween the loudspeaker and the error microphone. The presence of 
SP requires filtering the reference signal via the SP modeling (SPM) 
filter. The filtered reference signal is used in the LMS update equa-
tion; resulting in the so-called filtered-x LMS (FxLMS) algorithm 
[5]. The FxLMS algorithm is fairly robust to the errors between 
the SPM filter and the true SP. It has been shown that the FxLMS 
algorithm converges with nearly 90◦ of phase error between the 
SPM filter and SP [11,12]. Therefore, offline modeling can be used 
to estimate the SPM filter during an initial training stage for ANC 
applications [5]. However, SP may be time varying in actual prac-
tice and it is desirable to update the SPM filter when ANC is in 
operation [13]. A variety of approaches have been developed to 
target adaptation of the SPM filter during operation of the FFANC 
systems [14–18]. The FBANC system is topic of many recent re-
searches [21–26]. Up to the best knowledge of Author, however, a 
very little effort has been carried out to investigate the online SPM 
in FBANC systems [28,27].

The method presented in this paper builds upon the previous 
work [29]. Here the main objective is to realize improved perfor-
2

mance from the view points of NR as well as adaptation of the 
SPM filter. As in the previous method, the proposed method com-
prises two adaptive filters which are updated simultaneously. The 
ANC adaptive filter is updated using the classical FxLMS algorithm 
[5], and its job is to perform the noise cancellation. The SPM fil-
ter identifies the characteristics of the unknown SP, and acts as 
a supporting filter for the main ANC adaptive filter. The SPM fil-
ter is excited by an additive random noise and is adapted using 
a delay-based adaptive algorithm with a time-varying step-size. A 
delay is appended in the path of the additive noise before being 
sent to the SP via the loudspeaker. The initial coefficients in the 
SPM filter thus attempt to model the appended delay, and the rest 
of coefficients are used to identify the acoustic SP. The convergence 
of the coefficients, modeling the appended delay, is used to mon-
itor the convergence status of the SPM filter, as well as regulate 
the additive random noise injected for SPM. The additive random 
noise is regulated to have a large-level modeling signal during the 
transient state of the FBANC system to achieve fast convergence. 
However, the additive random noise appears around the location 
of the error microphone and degrades the NR performance. There-
fore, injection of the random noise must be removed (or at least 
reduced) at the steady-state. This, however, also means that the 
SPM filter will be excited by a low-level modeling signal slowing 
down its convergence speed [29]. This sluggish convergence issue 
has been addressed in the proposed method where the step-size in 
the SPM filter is increased in proportion to reduction in the level 
of the additive random signal.

The organization of the rest of the paper is as follows. Section 2
gives a brief overview of the FBANC systems, and details exiting 
work on online SPM in FBANC. Section 3 describes the proposed 
method, and Section 4 details the numerical results. Finally, a few 
concluding remarks are presented in Section 5. A short version of 
this paper was presented at a conference [30].

2. Classical ANC systems

2.1. Feedback ANC (FBANC) systems

Let us consider Fig. 1 which shows a block diagram for the 
single-channel FBANC systems. Here, the error microphone signal 
e(n) is given as

e(n) = d(n) − yc(n), (1)
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where yc(n) = cccT (n)yyy(n) is the cancellation signal for the primary 
noise d(n) and where T denotes the transposition operation. It is 
important to notice that e(n) is directly available via the error mi-
crophone and d(n) is not accessible. Furthermore, the information 
about the reference noise r(n) is not available due to the absence 
of any reference microphone. Therefore, the error signal e(n) is not 
only used to update the coefficients of the ANC adaptive filter, but 
also to generate the reference signal x(n) well correlated with the 
disturbance signal d(n). The latter is achieved by filtering the out-
put y(n) the ANC adaptive filter www(n) via one copy of the SPM 
filter ŝss(n) and combining with the error signal e(n) as

x(n) = e(n) + ĉccT
(n)yyy(n)

= d(n) + [
ŝss(n) − sss(n)

]T
yyy(n), (2)

which shows that if ŝss(n) ≈ sss(n) (available from offline system iden-
tification [4], for example), then x(n) ≈ d(n). Using the same error 
signal e(n), the FxLMS algorithm updates the coefficients of the 
ANC adaptive filter www(n) as [4]

www(n + 1) = www(n) + μw e(n)xxx f (n), (3)

where μw denotes the step-size parameter, and xxx f (n) is a vector 
for the filtered-x signal x f (n) which is computed as

x f (n) = ĉccT
(n)xxx(n), (4)

where xxx(n) is comprised of samples of x(n) (see Table 1). It is 
worth to mention that the true SP sss(n) may be time varying in 
many practical situations. In order to ensure ŝss(n) ≈ sss(n) during all 
operating conditions, the SPM filter ŝss(n) needs to be updated dur-
ing the operation of ANC system, as considered in this paper.

2.2. Basic method for SPM in FBANC systems

The basic method for online SPM in FBANC systems [28] is a 
direct extension of that described in [14] for the FFANC systems. 
The method in [28] adds a few heuristically selected thresholds 
though. In this paper, a simplified version (as developed in [27]) is 
briefly reviewed. The block diagram of the basic method is shown 
in Fig. 2, where the additive random noise v0(n) is used to gen-
erate the modeling signal v(n). The modeling signal v(n) is mixed 
with the ANC adaptive filter output y(n) to give a composite signal 
for the canceling loudspeaker as

u(n) = y(n) − v(n), (5)

and hence, the residual error signal at the error microphone can 
now be expressed as

e(n) = d(n) − uc(n),

= d(n) − cccT (n)(yyy(n) − vvv(n)),

= d(n) − cccT (n)yyy(n) + cccT (n)vvv(n). (6)

Using e(n) as a ‘desired’ response for adaptation of the SPM 
filter ŝss(n), the corresponding error signal ec(n) is generated as

ec(n) = e(n) − ĉccT
(n)yyy(n),

=
[
d(n) − cccT (n)yyy(n)

]
+ [

sss(n) − ŝss(n)
]T

vvv(n). (7)

It is interesting to note that the first term on the right-hand-
side (RHS) of (7) is ‘error signal’ for adaptation of the ANC adaptive 
filter www(n), and the second term carries information for adaptation 
of the SPM filter ŝss(n). Therefore, both adaptive filters www(n) and 
ŝss(n) are updated using the same error signal ec(n). The coefficients 
3

Fig. 2. Block diagram of the basic method for FBANC systems with online SPM.

of the SPM filter ŝss(n) are updated using a variable step-size (VSS)-
based adaptive algorithm [14] as

Pe(n) = λPe(n − 1) + γ e2(n), (8a)

Pec (n) = λPec (n − 1) + γ e2
c (n), (8b)

α(n) = Pec (n)/Pe(n), (8c)

μc(n) = α(n)μ1 + (1 − α(n))μ2; (μ1 < μ2), (8d)

ĉcc(n + 1) = ŝss(n) + μc(n)ec(n)vvv(n), (8e)

where Pe(n) and Pec (n) denote (lowpass) power estimates of 
the error signals e(n) and ec(n), respectively, 0 � λ < 1 and 0 <
γ � 1 are parameters for the lowpass estimators in (8a) and (8b), 
α(n) in (8c) is a time-varying parameter to compute the VSS μc(n)

in (8d), and (8e) is LMS-update equation for adapting the SPM fil-
ter ŝss(n). It can be shown that α(n) ≈ 1 at the start-up and α(n)

reduces as the ANC system converges (see [14] for details). The 
parameter α(n) is, therefore, used to control the level of the addi-
tive random signal v0(n) as follows

v(n) = α(n)v0(n), (9)

which results in the modeling signal v(n) = v0(n) at the start-up 
and the level of modeling signal v(n) decreases as the ANC system 
converges. This improves the NR performance, as the last term on 
the RHS of (6) becomes small. On the other hand, a low-level mod-
eling signal v(n) would slow down the convergence speed of the 
SPM filter ŝss(n) (see (8e)). This degradation in the convergence of 
SPM filter is somewhat compensated by increasing the step-size 
μc(n) in (8d). The coefficients of the ANC adaptive filter www(n) are 
updated using the FxLMS algorithm (3) using the error signal ec(n)

as

www(n + 1) = www(n) + μw ec(n)xxx f (n). (10)

3. Proposed method for SPM in FBANC systems

Block diagram of the proposed method is shown in Fig. 3, 
where the gain-controlled modeling signal v(n) is computed as

v(n) = ρ(n)v0(n), (11)
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Fig. 3. The proposed method for the FBANC systems with online SPM.

where ρ(n) is the gain control parameter. The role of ρ(n) is sim-
ilar to that of the parameter α(n) in the basic method, and there-
fore, it is desired to have ρ(0) = 1 and ρ(n) → 0 as n → ∞ (the 
computation of such ρ(n) in the proposed method is explained 
later). The loudspeaker signal u(n) in the proposed method is com-
puted as

u(n) = y(n) − v(n − D), (12)

where D denotes the delay inserted in the path for the modeling 
signal v(n) (see block z−D in Fig. 3), and y(n) is the output signal 
of the ANC adaptive filter www(n) computed as

y(n) = www T (n)xxx(n). (13)

The inserted delay increases the effective path traversed by the 
modeling signal v(n). Therefore, the SPM filter hhh(n) is a composite 
filter comprising two parts hhh0(n) and hhhc(n) (see Table 1). The initial 
coefficients hhh0(n) model the inserted delay, and latter coefficients 
attempt to identify the SP sss(n). The coefficients of ‘delay-based’ 
composite SPM filter hhh(n) are updated using the normalized LMS 
(NLMS) algorithm [31] as

hhh(n + 1) = hhh(n) + μh(n)
ec(n)vvv(n)

||vvv(n)||22 + ε
, (14)

where || · ||2 denotes the Euclidean norm, ε is the regularization 
parameter (a small positive constant to avoid division by zero), 
μh(n) is the normalized variable step-size (VSS), and ec(n) is 
the (adaptation) error signal. The error microphone signal e(n) =
d(n) − uc(n) is combined with the output of the SPM filter hhh(n) to 
give ec(n) as

ec(n) = e(n) −hhhT (n)vvv(n) (15)

= [d(n) − cccT (n)yyy(n)] + [cccT (n)vvv(n − D) −hhhT (n)vvv(n)].
It is evident from the second term [cccT (n)vvv(n − D) −hhhT (n)vvv(n)]

on the RHS of (15) that hhh(n) needs to take care of the inserted 
delay as well as to estimate the true SP sss(n) to ensure that 
[cccT (n)vvv(n − D) − hhhT (n)vvv(n)] → 0 as n → ∞. The normalized VSS 
μh(n) in (14) is computed as
4

μh(n) =
⎧⎨
⎩

μ̂N̂D(n)

Pec (n) + ε
; N̂D(n)

Pec (n)
> μhmin

μhmin ; otherwise
(16)

where μ̂ is a (semi-) fixed step-size parameter, Pec (n) estimates 
power of ec(n) as in (8b), μhmin is the empirically selected mini-
mum value for μh(n), and N̂D(n) is a parameter computed as

N̂D(n) = λN̂D(n − 1) + γ

(||hhh0(n)||22||vvvT
0 (n)||22

)
ρ(n)D

, (17)

where ρ(n) is the same parameter as used in computing the 
modeling signal v(n). Since the NLMS algorithm spreads the er-
ror among the filter coefficients [31], the convergence of hhh0(n)

(for which the desired solution is known a priori) can be used to 
monitor the convergence status of the composite SPM filter hhh(n). 
Essentially, we compute the parameter ρ(n) using coefficients of 
hhh0(n) as

ρ(n) =

D−1∑
i=0

|hi(n)|2

D
. (18)

By initializing hhh0(0) = 1 (vector of all 1’s), it is straightforward 
to conclude that ρ(0) = 1 initially and ρ(n) → 0 as the ANC sys-
tem converges at n → ∞.

The second term on the RHS of (15) represents the error sig-
nal required for adaptation of the SPM filter. As hhh(n) converges, it 
is expected [cccT (n)vvv(n − D) − hhhT (n)vvv(n)] → 0, and hence ec(n) →
[d(n) −cccT (n)yyy(n)]. Therefore, ec(n) is used (as (e(n) in (2)) to gen-
erate the reference signal x(n) as

x(n) = ec(n) + ĉccT
(n)yyy(n),

≈ [d(n) − cccT (n)yyy(n)] + ĉccT
(n)yyy(n),

≈ d(n). (19)

Using the same error signal ec(n) (14) the coefficients of the 
ANC adaptive filter www(n) are updated by employing the FxLMS al-
gorithm as in (10).

3.1. Convergence monitoring

The inserted delay D results in requiring an extended-length
composite filter hhh(n) for modeling of SP. This obviously increases 
the computational complexity. However, the delay-based adapta-
tion results in designing a parameter ρ(n) which serves two pur-
poses. First, ρ(n) regulates the modeling signal v(n) (11) such that 
the modeling signal is reduced as the ANC system converges. Sec-
ond, ρ(n) helps in designing a strategy for convergence monitoring 
and detection of a sudden change in SP (as given in Table 2 and 
explained below).

Table 2 presents an algorithm for the convergence monitoring. 
The threshold T 1 (on ρ(n)) can be selected as a small number 
less than unity, indicating that ANC system is converging. T 2 is 
a dynamic threshold which is updated as long as ρ(n) keeps on 
decreasing. When ρ(n) approaches its steady-state, the FLAG1 is 
set (TRUE); and the algorithm starts monitoring for any sudden 
changes in the acoustic paths. In such a situation of a change, the 
SPM filter error ec(n) would suddenly increase. This results in a 
drop in the value of μh(n) (the normalized VSS in (16)) which 
is computed inversely proportional to Pec (n) (power estimate of 
the error signal ec(n)). Once μh(n) drops below a pre-decided em-
pirical value μhmin , the coefficients hhh0(n) are reset to all 1’s. This 
results in ρ(n) = 1 (18) which in turn makes v(n) = v0(n) (11), i.e., 
a large-level modeling signal is injected for fast a re-convergence 
of the SPM filter hhh(n).
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Table 2
Algorithm for convergence monitoring of the SPM filter and SP-change detection in the 
proposed method.

FLAG1 = FALSE % Change Detection Flag
FLAG2 = FALSE % Convergence Monitoring Flag
0 < T1� 1,T2 % Thresholds on ρ(n)

1. if FLAG1 == FALSE
2. if FLAG2 == FALSE
3. Update μ̂ in (16) as μ̂ ← μ̂/ρ(n)

4. Update ε in (16) as ε ← ρ(n)

5. if ρ(n) ≤ T1
6. Update threshold on ρ(n) as T2= ρ(n)

7. Reset convergence monitoring flag as FLAG2 = TRUE
8. end
9. elseif FLAG2 == TRUE
10. if ρ(n) ≤ T2
11. Update threshold on ρ(n) as T2= ρ(n)

12. else
13. Reset change detection flag as FLAG1 = TRUE
14. end
15. elseif FLAG1 == TRUE
16. if μh(n) < μhmin

17. Re-initialize hhh0(n) to all 1’s resulting in ρ(n) = 1
18. Reset flags FLAG1= FALSE, FLAG2= FALSE, and running threshold T2
19. end
20. end

Table 3
Summary of the proposed method.

Available:
The error microphone signal e(n)

Internally generated additive random noise v0(n)

Parameters and Initialization:
L, M , D , λ, γ , ε, μhmin , μ̂, μw

www(n) = 000L×1, xxx(n) = 000L×1, hhh(n) = 000(M+D)×1

Computations:
v(n) = v0(n); % Initially assume ρ(n) = 1

while {e(n)} available do · · ·
1. Update the secondary path modeling filter hhh(n):

vvv(n) = [v(n), v(n − 1), · · · , y(n − D − M)]T ; % Update modeling signal vector
ec(n) = e(n) −hhhT (n)vvv(n); % Adaptation error signal ec(n)

Pec (n) = λPec (n − 1) + γ e2
c (n); % Estimate power of ec(n)

N̂D (n) = λN̂D (n − 1) + γ

(||hhh0(n)||22||vvv T
0 (n)||22

)
ρ(n)D

; % convergence status of hhh(n)

μh(n) =
⎧⎨
⎩

μ̂N̂D (n)

Pec (n) + ε
; N̂D (n)

Pec (n)
> μhmin

μhmin ; otherwise
; % Normalized VSS for hhh(n)

hhh(n + 1) = hhh(n) + μh(n)
ec(n)vvv(n)

||vvv(n)||22 + ε
; % Update coefficient of hhh(n)

2. Update the ANC adaptive filter www(n):
y(n) = www T (n)xxx(n); % ANC adaptive filter output

x(n) = ec(n) + ĉccT
(n)yyy(n); % Estimate reference signal

x f (n) = ĉccT
(n)xxx(n); % Compute filtered-x signal

xxx f (n) = [x f (n), x f (n − 1), · · · , x f (n − L + 1)]T ; % Update filtered-x vector
www(n + 1) = www(n) + μw ec(n)xxx f (n); % FxLMS algorithm for www(n)

xxx(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T ; % Update reference signal vector
3. Compute the loudspeaker signal:

ρ(n) =

D−1∑
i=0

|hi(n)|2

D ; % Gain-control parameter
v(n) = ρ(n)v0(n); % modeling signal
u(n) = y(n) − v(n − D); % loudspeaker signal

4. Execute convergence monitoring and change detection algorithm in Table 2.
end while
The parameter ρ(n) converges to (ideally) zero at the steady-
state, which makes v(n) very small. This makes convergence of 
hhh(n) (14) very slow as indeed observed in the previous method 
[29]. In order to compensate such effect two modifications are sug-
gested while computing the normalized VSS μh(n). The parameter 
N̂D(n) computed using coefficients hhh0(n) and corresponding sig-
nal vector vvv0(n) (see (17)) is made inversely proportional to ρ(n). 
5

Furthermore, the fixed step-size μ̂ is also varied inversely propor-
tional to ρ(n) (see line 3 in Table 2). Yet another modification is 
suggested to update the regularization parameter ε in (16) using 
ρ(n) during the initial stage of convergence (see line 4 in Table 2). 
These modifications substantially improve the NR performance and 
the modeling accuracy of the SPM filter, as demonstrated by de-
tailed simulation results presented later.
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3.2. Summary of proposed method and computational complexity 
analysis

The execution summary (in a pseudo code style) of the pro-
posed method is given in Table 3. The two adaptive filters www(n)

and hhh(n) can be initialized by the null vectors of appropriate 
lengths. At the star-up, it is assumed that ρ(n) = 1, and hence 
v(n) = v0(n). Furthermore, the reference signal vector xxx(n) is ini-
tialized as a null vector, as the reference signal x(n) is computed 
later internally and not available directly.

The computational complexity analysis can be performed on 
the basis of computations required per iteration of the algorithm. 
Using the computations give in Section 2.2, it is straightforward to
see that the basic method for FBANC with online SPM [27] would 
require 2L + 4M + 13 multiplications, 2L + 4M + 3 additions, and 
one division per iteration of the algorithm, where L is the length 
of the FIR ANC adaptive filter www(n) and M is the length of the FIR 
SPM filter ŝss(n). The proposed method is based on a few modifi-
cations to the previous method (see Section 3.1, and Tables 2 and 
3).

Using the summary given in Tables 2 and 3, and ignoring 
the modifications highlighted in Section 3.1, the previous method 
would require 2L +5M +6D +11 multiplications, 2L +4M +3D +1
additions, and 3 division per iteration. In addition to the computa-
tions required for the previous method [29], the proposed method 
would require one extra multiplication (in the denominator of 
N̂D(n)) and one extra division in updating the step-size μ̂ (see Ta-
ble 2). In summary, the computational complexity of the previous 
method is somewhat higher than that of the basic method, and 
that the computational requirements of the proposed method are 
similar to that of the previous method.

4. Numerical results

This section presents detailed numerical results to evaluate the 
performance of various methods discussed in this paper. The sim-
ulations have been designed to mimic the practical scenarios. The 
first objective is to develop understanding of the effect of the 
modeling error (between the true acoustic SP sss(n) and the SPM 
filter ŝss(n)) on the performance of the conventional FBANC sys-
tems. The second and the main objective is to use these results 
to demonstrate improved performance of the proposed method 
for the FBANC systems. The reference noise comprises pure sinu-
soids of frequencies 165 Hz, 290 Hz, 315 Hz, 410 Hz, and 600 
Hz. The sampling frequency is 4 kHz, and the measurement noise 
is added with 30 dB single-to-noise ratio (SNR). The results pre-
sented are ensemble averaged over 25 realizations. The data for 
the acoustic paths ppp(n) and sss(n), modeled as FIR filters of length 
256 and 128, respectively, are taken from the disk provided with 
[4]. The impulse response characteristics of the primary and sec-
ondary acoustic paths are shown in Fig. 4, and the corresponding 
magnitude and phase responses are shown in Fig. 5.

The performance comparison has been carried out on the basis 
of the NR achieved around the location of the error microphone, 
which is computed as

NR(n) = 10 log10
E

{
e2(n)

}

E
{

d2(n)
} (dB). (20)

It is also very important to compute the modeling accuracy 
which signifies the normalized misalignment (NM) between the 
true SP sss(n) and the SPM filter ŝss(n). The NM measure is computed 
as

NM(n) = 10 log10
‖sss(n) − ŝss(n)‖2

2

‖sss(n)‖2
(dB). (21)
2

6

Fig. 4. Impulse response characteristics of the acoustic paths used in the computer 
simulations.

4.1. Effect of modeling error on the conventional FBANC systems

Let us first study the effect of the modeling error between sss(n)

and ŝss(n) on the performance of the conventional FBANC system. 
The ANC adaptive filter www(n) is an FIR filter of length L = 192 and 
is initialized by a null vector of same length L = 192. The corre-
sponding step-size parameter is adjusted to μw = 1 × 10−6. The 
length of the SPM filter ŝss(n) is same as that of the SP sss(n), i.e., 
M = 128. The effect of the modeling error on the performance of 
the FFANC systems has been studied in [13]. We follow a simi-
lar approach here for the conventional FBANC system as shown 
in Fig. 1. The experiments have been performed for various ver-
sions of ŝss(n) in Fig. 1. These variants of ŝss(n) have been generated 
by replacing the last coefficients of the true impulse response sss(n)

(shown in Fig. 4) with zeros. The curves for mean NR in the con-
ventional FBANC system are shown in Fig. 6, where the legend 
shows the number of last zero-valued samples in ŝss(n). Thus “0” 
indicates the ideal scenario that the true acoustic SP sss(n) and 
the SPM filter ŝss(n) are having exactly the same coefficients, i.e., 
ŝss(n) = sss(n). On the other hand, the number “125” in the legend of 
Fig. 6 shows that only first three samples in the SPM filter ŝss(n)

are exactly same as those in the impulse response of the true 
sss(n), whereas the last 125 coefficients have been replaced with ze-
ros. This simple experiment demonstrates that the modeling error 
between sss(n) and ŝss(n) indeed affects the NR performance of the 
conventional FBANC systems. In order to signify the initial conver-
gence trend of various curves, the curves in Fig. 6(a) are replotted 
in Fig. 6(b) using a log-scale for the x-axis.

In the next experiment, we study the influence of the modeling 
error from another perspective. Let us assume that at the start-up 
of ANC system the SP has been exactly identified using some of-
fline measurements, i.e., ŝss(n) = sss(n). At the middle of operation of 
ANC system, the true SP changes to a new value, which may hap-
pen in many practical situation, for example, moving noise sources, 
bringing some object to the close proximity of FBANC system, posi-
tion change of portable ANC devices like NR headsets/hearing aids, 
etc. Such situation would result mainly in the change of gain char-
acteristic, as observed for acoustic path in hearing aids [32]. A few 
examples for such characteristics are plotted in Fig. 7, where the 
legend shows the gain drop (on a linear scale). Here gain equal 
to 1 corresponds to the original path characteristics as shown 
in Fig. 5(a). The experiments are performed for the conventional 
FBANC system of Fig. 1 by considering that ŝss(n) = sss(n) at the start-
up. The true SP changes to as shown in Fig. 7, whereas there is 
no way to update the coefficients of ŝss(n), and hence the model-
ing error suddenly increases during the middle of simulation. The 
change in the primary path p̂pp(n) is simulated by reversing sign of 
its coefficients. The simulation results for these experiments are 
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Fig. 5. The magnitude response (a) and the phase response (b) characteristics of the acoustic paths used in computer simulations.

Fig. 6. Studying the influence of the imperfect secondary path modeling filter on the noise reduction performance of the standard FBANC system. (The curves in (a) are 
replotted in (b) using log-scale for the x-axis.)
Fig. 7. Magnitude response characterless of the secondary path under various gain 
conditions.

shown in Fig. 8 (a) and (b), where (b) shows a zoomed version of 
curves in (a) around the point of change.

From the above-detailed experiments and the corresponding 
results presented in Figs. 6–8, it is observed that the FxLMS 
7

algorithm-based conventional FBANC system is fairly robust to the 
modeling errors between sss(n) and ŝss(n). Therefore, offline model-
ing can be used to estimate sss(n) during an initial training stage 
for the ANC applications [5]. However, NR performance degrades 
if the SPM filter ŝss(n) does not match well enough with the true 
SP sss(n). For some applications, the true SP may be time varying 
which in general may result in a NR performance inferior to that 
under the ideal conditions. In the worst case scenario, the whole 
FBANC system may become unstable. Accordingly, we should use 
online identification of the SP characteristics to ensure the stability 
and to maintain the NR performance when the SP is time varying. 
Therefore, it is desirable to estimate the SP online when the ANC 
is in operation [13].

4.2. Choosing delay D in the proposed method

It is very important to choose an appropriate value of the delay 
D (see block z−D in Fig. 3) in the proposed method. As explained 
earlier, the key objective of inserting this delay is to have infor-
mation about the convergence status of the (composite) SPM filter 
hhh(n). With the understanding that the initial coefficients of hhh(n)

would attempt to model the inserted delay and with the knowl-
edge that the adaptive algorithm would spread the approximation 
error to all coefficient [31]; the initial coefficients of hhh(n) indeed 
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Fig. 8. Studying the influence of modeling error on the noise reduction performance of the standard FBANC system when the true acoustic paths change suddenly to a new 
characteristic (as shown in Fig. 7) during the middle of simulation. (The zoomed version of curves around the point of change is given in (b).)

Fig. 9. Experiments for the proposed method with various values of the inserted delay D . (a) Mean noise reduction (NR) (in dB), and (b) Mean normalized misalignment 
(NM) (in dB).
give information about the convergence status of the overall com-
posite filter hhh(n). It is important to mention that a (too) small 
value for D would result in errors in the judgment about the con-
vergence status of the overall filter, whereas a (too) large value 
would result in an increased computational complexity. Therefore, 
it is a trade-off situation. In order to get further insight, experi-
ments have been performed to study the impact of selecting an 
appropriate delay for the proposed method. The reference signal is 
the same as described earlier, and the acoustic paths are same as 
shown in Fig. 5. It is assumed that an initial estimate of the SPM 
filter (with the modeling error of about -2.5 dB) is available from 
some offline system identification experiments.

The performance of the proposed method for various values of 
the delay D is shown in Fig. 9(a) and (b). Here, legends show val-
ues of the delay D used in simulations. It is important to recall 
here that the gain-control parameter ρ(n) for the modeling signal 
is computed using the initial coefficients of hhh(n) (see (18)). There-
fore, a small value for the delay D would mean a small length 
of the composite SPM filter hhh(n). This would quickly reduce the 
modeling signal v(n) (see (11)) which would in turn make the con-
vergence of hhh(n) sluggish. This in turn degrades the convergence 
of FxLMS-based ANC adaptive filter www(n) and hence the overall NR 
8

performance. Increasing the value of the delay D would increase 
the length of hhh(n) which affects its convergence speed. Now ρ(n)

stays high for a somewhat longer time as compared with the sit-
uation described earlier. This improves the accuracy of the SPM 
filter hhh(n) which in turn improves the efficiency of the NR pro-
cess comprising the ANC adaptive filter www(n). Further increase in 
the delay D increases computational complexity of hhh(n) and affects 
its convergence speed. This in turns degrades the NR performance. 
Since both hhh(n) and www(n) are adapted using the same error signal 
ec(n), the overall ANC system may become unstable. Our experi-
ence shows that D = 8 is a good choice from the view points of 
computational complexity and stable convergence.

4.3. Performance comparison for stationary acoustic environment

In the numerical results presented in this section, the following 
methods have been considered for the performance comparison:

1. The main objective of any ANC system is to provide NR around 
some desired location. The conventional FBANC system shown 
in Fig. 1 would give the best NR performance, provided that 
SPM filter ŝss(n) perfectly matches the unknown SP sss(n). Since 
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Fig. 10. Performance comparison between various methods for stationary acoustic paths. (a) Mean noise reduction (NR) (in dB), (b) Mean normalized misalignment (NM) (in 
dB), (c) Variation of the gain control parameter for probe signal v(n), and (d) Variable step-size (VSS) for SPM filter.
the offline measurements are essential for implementation of 
practical ANC systems, therefore, assuming that SP filter is 
known a priori as ŝss(n) = sss(n), the conventional FBANC of Fig. 1
has been considered as a benchmark method as far as the NR 
performance is concerned.

2. The ‘basic method’ [27] which builds upon [14] for the FFANC 
systems. As stated earlier, the method in [28] is also based 
upon [14] and adds a few heuristically selected thresholds, and 
hence is not included in the performance comparison in this 
paper.

3. The previous method as presented in [29].
4. The proposed method which may be considered as a modified 

version of the previous method (see Section 3.1 for details).

In the results presented in this case study, the objective is to 
investigate the convergence speed and the steady-state NR per-
formance for various methods for FBANC with online SPM. The 
simulation parameters for various methods for FBANC with online 
SPM are adjusted for fast and stable convergence of the respec-
tive method. The length of the SPM filter ŝss(n) is same as that of 
the true SP sss(n), i.e., M = 128 in the basic method. In the previ-
ous and proposed methods, the appended delay z−D is selected as 
D = 8 samples and hence the length of the composite SPM filter 
hhh(n) is D + M = 136. The step-size for ANC adaptive filter www(n)

in the basic method (Fig. 2) is adjusted to μw = 1 × 10−7. The 
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basic method employs the modeling signal v(n) being computed 
using (9) where v0(n) is zero-mean white Gaussian noise of vari-
ance 0.75. The step-size parameters for the adaptive SPM filter are 
selected as μ1 = 1 × 10−5 and μ2 = 1 × 10−4, and the correspond-
ing VSS μc(n) is computed using (8d). The empirical parameters in 
the lowpass estimators in (8a) and (8b) are selected as λ = 0.9 and 
γ = 0.01. The step-size for ANC adaptive filter www(n) in the previ-
ous and proposed methods (Fig. 3) is adjusted to μw = 5 × 10−7. 
The values of various parameters in computing the normalized VSS 
μh(n) (in (16)) are selected as μ̂ = 5 × 10−3 (fixed step-size in the 
previous method and a semi-fixed one in the proposed method), 
μhmin = 1 × 10−5 (the lower bound on the steps-size value), and 
ε = 0.25 (the regularization parameter to avoid division by zero). 
In the algorithm for convergence monitoring and change detection, 
the threshold on the parameter ρ(n) is selected as T 1 = 0.15 and 
T 2 is a dynamic one being updated as long as the ANC systems 
remains in convergence (see Table 2). The additive random signal 
is same as in the basic method. The simulation results for vari-
ous performance measures and behavior of various parameters are 
summarized in Figs. 10–12.

The curves for mean NR (in dB) for various methods are plotted 
in Fig. 10(a). It is observed that the standard FBANC system gives 
the best NR performance, which is obvious as it has a luxury of 
a perfect estimate of the SP. This performance in fact can be used 
as a benchmark to assess the performance of the rest of methods 
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Fig. 11. Variation of probe signal v(n) (color) in comparison with the additive ran-
dom noise v0(n) (light-gray) for (a) the basic method, (b) the previous method, and 
(c) the proposed method.

equipped with online SPM. It is observed that the basic method 
falls far behind the rest, as far as the NR performance is concerned. 
The main reason lies in the way the additive random noise v0(n)

is regulated to generate the modeling signal v(n). The gain control 
parameter α(n) in the basic method is computed as ratio of the 
error signals’ powers Pec (n) and Pe(n) (see (8c) and (9)).

It is worth to mention that the output y(n) of the ANC adap-
tive filter is expected to take care of the disturbance signal d(n)

(see (6)), however, the component due to modeling signal remains 
there always at the error microphone (this is why we want to reg-
ulate the modeling signal at the first place). As seen in (7), the 
error signal ec(n) (and hence Pec (n)) will reduce (ideally converge 
to zero), if both the ANC adaptive filter www(n) and the SPM filter 
ŝss(n) converge. Since the same error signal ec(n) is used to adapt 
the two adaptive filters as well as to compute the parameter α(n), 
there is a strong intrusion between two adaptation process.

Consider the results presented in Fig. 10(c) for the adaptation 
of the gain control parameters. It is observed that the parameter 
α(n) does decay as the ANC system converges; however, settles 
to a somewhat larger value as that obtained for the gain control 
parameter ρ(n) in the previous and proposed methods. Thus the 
modeling signal in the basic method settles to a large level and re-
sults in a poor NR performance. The VSS μc(n) in the basic method 
(computed using (8d)) increases the value of the step-size as α(n)

decreases. This somewhat improves the convergence of the SPM 
filter ŝss(n) (see curves for mean NM (in dB) as shown in Fig. 10(b)); 
however, cannot improve upon the NR as α(n) does not become 
too small.

In the previous and proposed methods, the gain control param-
eter ρ(n) (for the modeling signal) is computed using a delay-
based processing which turns out to be a far superior strategy 
as compared with computing α(n) in the basic method. As stated 
earlier, the parameter ρ(n) is computed using the initial coeffi-
cients of the composite SPM filter hhh(n), which would coverage to 
zeros (to model the appended delay). This is indeed observed in 
Fig. 10(c), with ρ(n) converging to a smaller value in the proposed 
method as compared to that in the previous method (thanks to 
the modifications suggested in this paper). This reduces the mod-
eling signal v(n) to a very low level as observed in plots for v(n)

in comparison with the additive random noise v0(n) as shown in 
Fig. 11 for a typical realization. This has a substantial impact on 
the NR performance of the proposed method.

It is noticed from the results presented in Fig. 10(a) that the 
proposed method gives the best NR performance. As soon as ANC 
system converges, the modeling signal v(n) becomes very low 
which in turn makes the convergence of the SPM filter very slug-
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gish. This is indeed observed in the previous method (see mean 
NM curves in Fig. 10(b)). This is somewhat compensated in the 
proposed method as explained in Section 3.1. It is observed from 
the results shown in Fig. 10(d) that the normalized VSS μh(n) in 
the proposed method is (almost) always larger than that in the 
previous method. This results in the fast convergence of SPM filter 
in the proposed method as depicted by the curves for mean NM 
plotted in Fig. 10(b).

The steady-state spectrum for the residual error signal e(n) for 
various methods is plotted in Fig. 12 for one realization. The plots 
for various methods are given in separate panels for a clarity of 
presentation, and spectrum of the primary disturbance d(n) is in-
cluded for comparison. The overall performance of the proposed 
method is better than that of the rest of methods, in reducing 
the tones present in the disturbance signal d(n). It is important 
to consider the computational complexity comparison here. Using 
the expressions presented in Section 3.2, the basic method [27]
would require 1037 multiplications, 1027 additions and 1 divi-
sion per iteration for simulation conditions considered in this pa-
per. The previous method [29] requires 1211 multiplications, 1049 
additions and 3 division per iteration, and in addition the pro-
posed method would require one more multiplication and one di-
vision per iteration. It is plausible that both previous and proposed 
method give much improved NR performance which is achieved 
at an expense of a slightly increased computational complexity as 
compared with the basic method. Last but not least, the proposed 
method clearly outperforms the rest of the methods considered in 
this paper.

4.4. Performance comparison for non-stationary acoustic environment

In the present case study, simulations have been carried out to 
investigate the performance in the situation of a sudden change in 
the acoustic environment. As stated earlier, such a situation may 
arise when there is a sudden and drastic movements in the area 
where ANC is deployed. Another possibility is sudden change of 
humidity, temperature, air flow, etc., in the area. In order to mimic 
such a scenario of sudden change, at the middle of simulation the 
coefficients of the ppp(n) are sign reversed and that of the SP sss(n) are 
changed to a new values as shown in Fig. 7 for the gain reduction 
of 0.35. The reference signal and the other simulation parameters 
are same as in the previous case.

The simulation results for various performance measures are 
presented in Figs. 13 and 14. As observed in the previous case 
study on the influence of modeling error, the conventional FBANC 
system having a fixed (non-adaptive) SPM filter becomes unstable 
when the acoustic paths change during the middle of simulation. 
The reason is quite obvious that the modeling error between sss(n)

and ŝss(n) is too significant for the conventional FBANC system to 
stay stable.

It is observed that all methods equipped with online SPM per-
form very well as far as the robustness against the sudden change 
is concerned. The basis method gives an improved performance 
from the view point of SPM (especially after the change in acous-
tic paths) as shown in Fig. 13(b), however, does not exhibit good 
NR performance (see Fig. 13(a)). The reason lies in the fact that 
the gain control parameter α(n) (see Fig. 13(c)) settles to a large 
value, and hence a large modeling signal v(n) (see curve (a) in 
Fig. 14) is present in the ANC system. This large level modeling sig-
nal gives fast convergence for the modeling filter, however, severely 
degrades the NR performance.

The main task of any ANC system is to provide NR around the 
error microphone location and the proposed method does this job 
very well as in the previous case. In fact, the proposed method 
gives the best NR performance before as well as after the sudden 
change. Furthermore, it improves upon the modeling accuracy of 



M.T. Akhtar Digital Signal Processing 111 (2021) 102976

Fig. 12. Spectrum of the residual error signal e(n) at the steady-state in comparison with that of the primary disturbance d(n). (top-left) FBANC with fixed SPM filter, 
(bottom-left) the basic method, (top-right) the previous method, and (bottom-right) the proposed method.

Fig. 13. Performance comparison between various methods for non-stationary acoustic paths having a sudden change during the middle of simulation. (a) Mean noise 
reduction (NR) (in dB), (b) Mean normalized misalignment (NM) (in dB), (c) Variation of the gain control parameter for probe signal v(n), and (d) Variable step-size (VSS) 
for SPM filter.
SPM filter as compared with the previous method. This improved 
performance in the proposed method can be explained by observ-
ing the various results as follows. The gain control parameter ρ(n)

(Fig. 13(c)) becomes very small at the steady-state, resulting is re-
11
ducing the modeling signal (curve (c) in Fig. 14) and hence giving 
the best NR performance (Fig. 13(a)). In addition to this, the nor-
malized VSS parameter μh(n) (Fig. 13(d)) stays large as compared 
with that in the previous method. This improves the modeling ac-
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Fig. 14. Variation of probe signal v(n) (color) in comparison with the additive ran-
dom noise v0(n) (light-gray) for (a) basic method, (b) the previous method, and (c) 
the proposed method, for simulations with non-stationary acoustic paths having a 
sudden change during the middle of simulations.

curacy of the SPM filter, which further aids in the NR performance 
of the overall ANC system.

5. Conclusions

This paper develops an efficient method for the FBANC systems 
when simultaneous adaptation of ANC and SPM filters is needed. 
The proposed method injects an uncorrelated random noise as a 
modeling signal for the adaption of the SPM filter. By employing 
a delay-based adaptation [31,32] for the SPM filter, a time-varying 
gain parameter is tuned online to control the level of the model-
ing signal. The idea is to track the convergence status of the SPM 
filter, such that the level of modeling signal is reduced as soon as 
the system converges. This has plausible impact on the NR perfor-
mance of ANC system, as demonstrated by detailed simulation re-
sults presented earlier. The presented numerical results show that 
the proposed method gives the best NR performance, in fact very 
close to that achieved by the conventional FBANC system having 
an exact estimate of the SPM filter sss(n). It is important to mention 
that the proposed method gives an improved NR performance, and 
yet with adding just a negligible computational complexity to the 
previous method presented in [29].

One limitation of the proposed method is its ability to work 
with only the narrowband noise sources. This is in fact is due 
to the basic structure of the FBANC system which requires noise 
source to be predictable. In many practical scenarios the target 
noise may be comprised of a mix of both narrowband as well as 
broadband components. In such cases, it is recommended to em-
ploy a hybrid ANC structure which comprises feedforward as well 
as feedback parts [33]. It would be interesting to extend the pro-
posed method for such hybrid ANC systems. Furthermore, it will 
be interesting to explore in future if the injection of the additive 
random noise can be completely stopped at the steady-state.
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