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Abstract

In this thesis I examine the hypothesis that the performance of lipreading systems can
be improved by including thermal image data in combination with the usual visual
image streams. I test the hypothesis by constructing a system based on the Lip2Wav
model for lipreading using deep learning methods. The system takes silent video as
an input and generates synthesized audio as an output. System performance is eval-
uated using standard metrics such as the Word Recognition Rate (WRR), to assess
the contribution of the thermal input to the accuracy of the lipreading system, and
qualitative assessments of the synthesized audio such as Short-Term Objective Intel-
ligibility (STOI) and Extended STOI (ESTOI), and Perceptual Evaluation of Speech
Quality (PESQ). The model is trained using three variations of input channels: visual
images only, thermal images only, and a synthesis of the visual and thermal images.
The model uses a novel dataset, SpeakingFaces LipReading (SFLR), comprised of
aligned streams of visual and thermal images of a person reading short imperative
commands that are representative of typical human-computer interaction with de-
vices such as personal digital assistants. The results as shown in Table 5.2 suggest
that with the inclusion of aligned thermal data I was able to approximate the system
performance from the previously published results. However the addition of thermal
image stream did not show improvement in the performance.
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Chapter 1

Introduction

The number of lipreading systems has increased sharply in recent years (Fig. 1-1) due

to the emergence of high-performance deep learning architectures and the availability

of relevant large-scale databases. Lipreading systems are generally distinguished by

their output type: those that generate textual output are known as "lip2text", while

those that produce synthesized audio are described as "lip2speech". State-of-the-art

lip2text models have progressed significantly, achieving 85% accuracy [21] in lipread-

ing from silent video of subjects speaking "in the wild", that is, not in controlled

laboratory settings.

While the achieved recognition rate is quite an improvement over prior results, it

nevertheless leaves substantial room for improvement. A promising development is

the potential augmentation of the visual video stream with data acquired from high-

resolution thermal cameras. Given the recent trending of thermal sensors towards

higher resolution at lower cost, it is feasible that such sensors will become more com-

monplace as a component of popular commercial digital devices, such as smartphones

[1].

This trend, if realized, would increase the utility of research into the effective

utilization of thermal data. However, thus far, there is apparently only one published

conference paper which considers the use of thermal data aligned with visual video in

the performance of a speech recognition system [32]. While innovative, the authors

used a very short and phonetically limited dataset, and the research is now outdated.
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Figure 1-1: Cumulative number of lipreading papers (2007-2017) [12]

The objective for this thesis is to test the hypothesis by replicating and upgrading

recent work on lipreading utilizing the usual visual image stream paired with the

corresponding thermal image stream, and producing an output which can be analyzed

in terms of speech recognition as demonstrated by the standard metrics of the field.

For this purpose I chose to use a lip2speech model called Lip2Wav, which has

become known as a state-of-the-art system for lipreading in the lip2speech domain

[29]. The architecture of the system includes subtasks such as the identification and

cropping of the region-of-interest (ROI) in the image streams, where in this case the

ROI consists of a tight bound of subject’s face. Then the ROI data is submitted to an

encoder module (a convolutional neural network) that serves to extract the observable

features from a given n-gram, and then finally a decoder (a recurrent neural network)

to map the visual features into speech.

The choice of the Lip2Wav model has several advantages. First, the authors have

shown that the model is suitable for datasets collected from both controlled environ-

ments and speaking in the wild settings. Second, the Lip2Wav model uses the entire

face as the ROI, rather than just the region of the lips and mouth; consideration of

the larger ROI may contribute additional information and potentially improve the
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accuracy rate. Third, Lip2Wav is a speaker-specific model, which is convenient for

data collection: it requires only one subject to accept the hypothesis, and allows to

make some improvements in the setup compared to the existing thermal dataset (dis-

cussed in a later chapter). Fourth, the architecture of the model uses up-to-date deep

learning methods for both feature extraction and classification parts of the system.

Finally, as the fifth reason, the Lip2Wav model accommodates the consideration of

other datasets.

Based on the model and the noted advantages, the thesis presents the first publicly

available lip2speech study (as compared to lip2text) with the addition of thermal im-

age data. I tested the model using a new dataset SpeakingFaces LipReading (SFLR),

which was designed and collected for the purposes of the project by a team of re-

searchers at ISSAI.

The SFLR dataset’s transcript was built from phrases which are typical for users’

voice commands for smart devices, thus, these findings may be applied to improve the

speech recognition field of human-computer interaction in adverse environments, such

as transport hubs or industrial settings, where audio speech recognition is effectively

impeded.
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Chapter 2

Literature Review

Researchers in the domain of lipreading typically differentiate amongst five types of

audio-visual databases, depending on type of utterances that the subjects are tasked

to pronounce: alphabetical characters, digits, words, phrases and sentences.

Datasets used for the recognition of digit and alphabetical utterances were pop-

ular in the early stages of audio-visual speech recognition due to the constrained

vocabulary and the likelihood of having large numbers of instances per class [12].

However, the recognition scope was very limited, and the results difficult to extrap-

olate to more complex and practical tasks such as the recognition of full words and

sentences. While the research on the simpler models is still ongoing, over the past

decade the interest of researchers has shifted towards the more complicated structures

(Fig. 2-1). The transition has accelerated with the emergence of high-performance

Deep Learning (DL) architectures and the availability of large-scale databases which

support modern machine-learning methods.

Cognizant of these trends, and with access to the computational and technical

resources of the Institute for Smart Systems and Artificial Intelligence (ISSAI), I chose

to focus on the more complex databases consisting of words, phrases and sentences.

Note that the majority of the examples described are used as source material for

lipreading in general. As will be described later, there are very few datasets that

include the thermal data stream in the process of recording the utterances of research

participants.
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Figure 2-1: Cumulative number of lipreading papers (2007-2017) targeting different
utterance types [12]

2.1 Datasets

Table A.1 summarizes a representative set of commonly-referenced databases. The

table includes information on the year of release, types of speech units, number of

unique classes (such as vocabulary size, unique phrases or sentences, depending on

the class type), the number of unique speakers, image resolution, frame rate and the

approximate total duration recordings in the database. There are numerous similar

databases in the field; the table provides an overview of a sample of the largest and

most commonly cited databases.

The IBM corporation was an early entrant to the field, and generated numerous

proprietary databases of 30-50 hours each for the purpose of audio-visual speech

recognition; unfortunately none of them are publicly available. IBMViaVoice is one

of these datasets, it was collected in 2000 and included 290 speakers pronouncing

sentences with vocabulary of approximately 10,500 words.

I note here the well-known and widely referenced TIMIT database. TIMIT was

published in 1989 by a team comprised of members from Texas Instruments (TI)
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the Massachusets Institute of Technology (MIT), and the Stanford Research Insti-

tute (SRI) International. The project was officially known as the DARPA-TIMIT

Acoustic-Phonetic Continuous Speech Corpus. The researchers recorded 10 spoken

sentences, of duration 30 seconds, from 630 speakers. The sentences and speakers

were chosen to maximize acoustic-phonetic coverage of the English language, with

an explicit objective to balance regional dialects and gender [17]. It was stated that

the sentences were designed to provide a sufficient balance among both phoneme in-

stances and phoneme pairs. The TIMIT data (in whole or part) are widely used to

benchmark new methods and generate customized datasets.

One of the earliest publicly available audio-visual datasets was VIDTIMIT [39].

43 participants were uttering 10 sentences each, out of 346 different TIMIT sentences.

In addition to the sentences, each person performed a head rotation sequence in each

recording session.

Figure 2-2: Example images from different audio-visual speech datasets

AVICAR is another multi-speaker and multi-view dataset [3]. It was developed

in a car cabin, where four cameras were distributed on the dashboard to record
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a subject’s face from four different view angles. The audio was collected by eight

microphones placed on the front passenger seat. 86 speakers were asked to pronounce

4 types of utterances: digits, letters, phone numbers and TIMIT sentences. At the

time, this database solved the problem of a small number of speakers.

The next relevant database was completed by Japanese researchers. The database

is herein referenced as "Tottori", in recognition of the university where the researchers

were based. They gathered five sets of five Japanese words from three subjects. It

is a very small database: the total duration of the video is approximately 4 minutes.

It is noteworthy as it seems to be the first published conference paper that combines

the thermal image data with the typical visual video data.

The GRID corpus was published in 2006 and its popularity has increased over time

[38]. The corpus consists of 34 subjects uttering 1000 constrained phrases, produced

as all combinations of “color”, “digit” and “letter” with additional words, for example

“Place red in C 3 please” or “Lay green by B 2 now”.

The OuluVS1 [24] and OuluVS2 [25] databases are two of the most commonly used

datasets for evaluating visual speech recognition systems. OuluVS2 in particular has

come to be regarded as a standard public benchmark multi-view dataset. The data

was collected with high resolution from 52 subjects generating nearly 1600 utterances.

The data collection process was divided to three stages for each speaker. During the

first stage, a speaker was uttering continuously ten randomly generated sequences

of digits. In the second stage the subject was asked to pronounce 10 short English

phrases of daily use, such as “Thank you” and “You are welcome”, and in the third

stage the subject read ten random TIMIT sentences, which are considered to be

phonetically rich.

MIRACL-VC1 is a dataset which consists of both visual and depth streams of

images [22]. 15 speakers pronounced a set of ten words and ten phrases ten times

each.

TCD-TIMIT is a multi-angle high-quality audio-visual database, which includes

62 subjects reading a total of 6913 TIMIT sentences [37]. Video recording was done

from two different angles for each speaker: straight on, and at 30 degrees. Notably,
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TCD-TIMIT was shot with a greenscreen panel surface behind speakers’ backs "for

possible speaker segmentation applications as in CUAVE" [23].

While all preceding datasets were collected in a laboratory setting, most of the

following were collected in the wild. Speaking in the wild datasets have become more

popular over time, as the field had reached a kind of plateau in terms of laboratory

results, and the more interesting applications and challenging research problems were

associated with lipreading of video collected in public and therefore noisy spaces such

as transit hubs (airports and train stations).

The next three databases were collected by one research team; the corresponding

papers are mentioned further below. These three examples are very large-scale visual

speech recognition datasets, as the team extracted thousands of hours of spoken text

from BBC TV broadcasts covering a wide vocabulary size of thousands of different

words, from over one thousand different speakers [19].

The lexicon for the first one, Lip Reading in the Wild (LRW), was collected by

picking out the 500 most frequently occurring words with length ranging from 5 to

10 characters. Its duration is approximately 111 hours in total. The Lip Reading

Sentences (LRS) database consists of individual sentences/phrases which were sep-

arated using the punctuation in the transcript. The sentences were constrained to

100 characters or 10 seconds in length. The dataset contains thousands of different

speakers and lasts about 328 hours. The Multi-View Lip Reading Sentences (MV-

LRS) database is is an extension of LRS, in that it includes a wider range of subject’s

profile. The database was fitted to the purposes of the paper, which was modeling

the lip reading in profile. For this reason, the MV-LRS authors took the faces angled

from 0 to 90 degrees, where 0 is front view, and 90 is profile (the previous databases

were constrained to include face angles of no more than 30 degrees).

One of the most recent databases is LRW-1000, collected in 2019 [20]. The authors

claim that it is currently the largest word-level audio-visual dataset and also the only

public large-scale lipreading dataset for the Mandarin dialect of the Chinese language.

It was extracted from Chinese national TV stations, in a manner similar to that of the

three previous datasets. It contains one thousand classes with 718018 samples from
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more than two thousand individual speakers. Each class corresponds to the syllables

of a Mandarin word.

The Lip2Wav dataset was collected by the authors of the paper [29] in 2020.

It consists of lectures downloaded from YouTube and presented by 5 speakers on

the topics of chemistry, chess, deep learning, hardware security and ethical hacking.

The overall duration of the dataset is 120 hours, it was gathered for the purpose of

exploring individual speaker specifics, with approximately 20 hours of talking for each

speaker.

Figure 2-3: Examples of corresponding visual and thermal image pairs of Speaking-
Faces dataset [1]

Finally, Abdrakhmanova et al., of the Institute for Smart Systems and Artificial

Intelligence (ISSAI) of Nazarbayev University collected the SpeakingFaces [1] dataset

in 2020. It is a publicly available multiview large-scale dataset that includes aligned

streams of visual, thermal and audio recordings. SpeakingFaces was collected from a

balanced sample of 142 subjects. Each person was asked to utter approximately 100

phrases out of a pool of 1800 unique human-computer interaction phrases (such as

‘play Despacito’), with an average total duration per speaker of approx. 20 minutes.
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The video was captured from a total of nine different positions (angles) of a subject’s

face (Fig. 2-3).

While there are additional thermal imaging datasets that include the facial region,

they are not relevant to this work as the subjects are not speaking, thus, lipreading

is not an achievable task.

2.2 Related Works

Table A.2 lists the main works on the topic, which have influenced developments in

the field. This section is divided into two part depending on what kind of output the

studied model was expected to produce: lip2text models to generate text output, and

lip2speech models to generate audio speech.

2.2.1 Lip2text Generation

In this section I have prioritized the papers published since 2016, based on the ob-

servation that the major improvements in results have only occurred in recent years.

I have recorded the databases that were used, described the models and summarized

the final results. The exception here is the Saitoh and Konishi paper [32], which is

noteworthy due to the innovation in the use of thermal image data streams. It is an

older paper, from 2006, with a very small database. They reported modest success

of their thesis, citing a word recognition rate (WRR) of 76% while using visual im-

age only, 44% WRR using thermal image only and the modest improvement to an

80% WRR using both channels. The authors gave an explanation to this increase

that the thermal images register the changes in the temperature in the mouth area

when a speaker breathes out, and therefore gives additional data for the model for

distinguishing different visemes (an image of a face/mouth which depicts some sound,

adapted from "phoneme").

Regarding the methods, the year 2016 also marks the emergence of the now-

common practice used to solve the speech recognition problem by first extracting

facial features using Convolutional Neural Networks (CNNs) and then classifying the
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Figure 2-4: Classification methods and the number of times they were utilized in the
lipreading papers (2007-2017) [12]

phonemes and visemes using some kind of Recurrent Neural Network. Prior to 2016

the most popular method of classification was Hidden Markov Models (HMMs) (Fig.

2-4), which at the time were achieving only 14 to 70% of accuracy [12].

In 2016 Wand et al. [40] showed that the neural network based lipreading system

performs significantly better in terms of WRR than a system based on a conventional

processing pipeline at that time (such as HOG for feature extraction and SVM for

classification). This outcome can be seen in the Table A.2 where the Capital “V” in

the “Accuracy” column indicates the WRR on video-only speech recognition, while

“A” and “AV” refer to audio-only and audio-visual experiments, respectively.

Assael et al. [2] used the GRID database to establish new state-of-the-art per-

formance on the dataset at the time - WRR of 95.20%, using a system with CNN

encoders and bi-GRU as a classifier. The authors claimed that their architecture was

the first end-to-end model which was using sentences for automatic lipreading.

There are two teams in particular which are well-known for their dedication to the
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lip-reading problem. The first one, consisting of Chung and Zisserman et al, released

a number of papers [5, 6, 7, 8] on the topic and introduced a new benchmark for

performance – their LRW database [6]. In 2017 Chung and Zisserman created a new

database MV-LRS [7], which included faces in profile unlike the previous one, and

proposed a model, which gave an accuracy of 88.9% on OuluVS2 database and 37.20%

on the MV-LRS database for profile speech recognition. In the same year they created

one more database based on BBC TV extractions, this time consisting of sentences,

and included an audio channel to the research. The accuracy of video-only speech

recognition was 49.8%, audio-only – 37.1% and audio-visual – 58% [5]. In 2018 they

returned to LRW and OuluVS2 and improved the performance on these datasets to

66% and 94.1% [8].

The second prominent team, Petridis, Pantic, et al., started with OuluVS1 and

trained a deep autoencoder with a bottleneck layer, gaining 81.8% WRR [26]. In 2017

they moved to OuluVS2 and using bi-LSTM achieved maximum accuracy 96.9% [28].

In 2018 and 2020 they started experimenting on audio and audio-visual inputs. In

2018 they achieved the best performance on LRW [27], beating the previous record of

Stafylakis and Tzimiropoulos from 2017 [35]. In 2020 they improved the performance

on LRW, and to the best of my knowledge have the current state-of-the-art perfor-

mance on this dataset with word recognition rate of 85.3% for video-only, 98.46% for

audio-only and 98.96% for audio-visual speech recognition [21].

Yang et al. [41] presented a benchmark for lipreading in the wild in Chinese,

named LRW-1000 [20]. Their results showed no improvement in Word Recognition

Rates (WRRs), showing WRR of 34.76%, but the database is new, so there is some

space for improvement. Martinez et al. [21] for now have the best performance to

date on this dataset as well with 41.1% accuracy on lipreading.

2.2.2 Lip2speech Generation

All of the afore-mentioned works were focusing on lip2text generation. Starting from

2017 there was an increase in the studies interested in synthesizing audio speech from

silent lip movements. For example, Le Cornu and Milner [18] reported 85% word
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accuracy on GRID corpus using regression and classification methods for feature

extraction and RNN for generating the audio. Table A.2 presents lip2speech papers

highlighted with gray color, distinguishing them from the lip2text papers. These

entries include complementary metrics (STOI, ESTOI and PESQ), which are specific

to the audio processing field and indicate the intelligibility level of the synthesized

audio.

The same year year Ephrat and Peleg [11] published an end-to-end architecture

called Vid2Speech. Using the GRID corpus, they showed how CNN can extract visual

features in order to reconstruct the audio based on silent video. Later that year they

improved the model and tested it additionally on the TCD-TIMIT dataset [10].

Kumar et al. [16] used all 53 speakers of OuluVS2 database and claimed that

multi-view videos got better results compared to single-view using an architecture

with first was classifying a frame by its angle and then processing it with a deep

neural network to obtain audio or text results.

Finally, Prajwal et al. [29] collected their own dataset consisting of Youtube lec-

tures (on subjects such as chemistry, chess, and deep learning), and built a lip2speech

model, but could not report on resulting word recognition rate due to the lack of text

transcripts in the videos. They also tested their architecture on other benchmark

datasets apart from their own: applied to the GRID corpus they achieved a recog-

nition rate of 85.92%, TCD-TIMIT 68.74% and Lip reading in the wild dataset –

65.8%.

Overall, the field of lipreading through visual speech recognition has achieved sig-

nificant progress in the past several years, but their performance still lags behind

the audio-based systems. Additionally, even though researchers achieved remarkable

results in building deep learning architectures for lip-reading in basic databases like

OuluVS2 and GRID, their performance has not yet been extended to more com-

plicated examples like LRW or LRS. Continuous natural speech recognition is also

expected to be a developing field at least in the next decade. The addition of thermal

images to the lipreading problem seems to be an unexplored area for further work,

with only one paper currently published on the topic.

26



Chapter 3

Research Methodology

The Lip2Wav model [29] was selected to serve as the baseline system to test the

hypothesis of this thesis work; the rationale is described below.

The Lip2Wav model accommodates experiments on the full range of tested dataset

types: those focused on uttering words, phrases and sentences, recorded both in a

fixed environment and in the wild. The model is speaker-specific, such that it is

trained for each individual person speaking; the authors state that they were inspired

by the fact that it is easier for professionals to lip read people with whom they interact

frequently.

The Lip2Wav uses more up-to-date methods as compared to the Tottori archi-

tecture [32]. Tottori used LDA as a feature extractor from the image streams and

eigenimage waveforms as a decoder of the ROI embeddings, while Lip2Wav uses CNN

layers for encoding the images and LSTM + attention layers for decoding them into

the output.

This chapter will describe how the original model processed the videos and how I

modified the system to add thermal images to the input.

3.1 Original Architecture

Fig. 3-1 illustrates the architecture of the model used in this study. During the

preprocessing step the model splits the video into frames, identifies the face as the
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region-of-interest (ROI) and then extracts the facial ROI from each frame. For this

purpose the authors use the pre-trained s3fd face detector [42]. The data is further

divided into training, validation and testing sets, 90%-5%-5%, respectively.

Figure 3-1: The architecture of the model [29]

The sequence of faces is fed to a face encoder, which consists of a stack of 3D

convolutions with residual skip connections and batch normalizations, and outputs a

vector for each image. For the decoder the authors chose to adapt Tacotron 2 [33],

which was originally created to synthesize audio speech from text input, conditioning
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it on the encoded visual stream. The melspectrogram transformation of an audio

extracted from the corresponding video is used as the ground truth for training.

Most of the lip2speech models use melspectrograms as an encoding for audios, as

it is not so straightforward for the neural networks to process the raw audio signal; the

melspectrogram can be treated like a visualization of an audio data (Fig. 3-2). The

fast Fourier transform algorithm is utilized here to convert the signal into spectrum of

frequencies, additionally mapped according to the mel scale, which gives the resulting

melspectrogram.

Figure 3-2: An example of audio signal (left) and its melspectogram (right)

The decoder is trained to output a melspectrogram, which is then further con-

verted into audio using the Griffin-Lim reconstruction algorithm, which is a kind of

reverse function mapping of a spectogram back to the time domain (audio signal).

The authors suggest to train the system until such time as the loss value plateaus

for more than 30,000 epochs.

After training, the authors plotted the activations of the penultimate layer of

the encoder and the attention alignment from the decoder and concluded that the

system focuses not only on the mouth area, but also a slightly wider region of interest,

including features such as the nose, the brows and the forehead (Fig. 3-3). Therefore

the region of interest encompasses much of the the whole face, not only the lips (as

previously expected).

There is a relatively standard set of metrics used to assess the performance of

lipreading systems; I have adopted these metrics for this study for purposes of com-

parability. The Word Recognition Rate (WRR) is used to assess the accuracy of the
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Figure 3-3: Visualization of the attention of the decoder [29]

synthesized text, while the Short-Term Objective Intelligibility (STOI), the Extended

STOI (ESTOI), and the Perceptual Evaluation of Speech Quality (PESQ) are applied

for estimating the quality of the audio output.

The most significant metric is the WRR, which is a calculation of words recognized

correctly over the total number of words; it is this measure that is used to determine

the potential improvement of my approach over prior methods. In this instance, it

is an indication of the relative contribution of the thermal data to the results. It

can be referred as word accuracy (WAcc), and it is similar to the widely familiar

accuracy measure which is commonly used for classification problems: the WRR

ranges between 0 and 1 (or 0% and 100%) and indicates the closeness of a synthesized

output to its true value in automatic speech recognition problems. The WRR can be

computed as follows:

𝑊𝑅𝑅 =
𝑁 − 𝑆 −𝐷 − 𝐼

𝑁
,

where N is the overall number of words in the reference text, S is the number of words

that were substituted with another ones, D is the number of deletions which occur

when a whole word was skipped in the resulting text, and I is the number of insertions

such as when a word has been replaced by a consonant phrase. Many studies in the
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field also like to use the word error rate (WER), which is associated with the WRR:

𝑊𝐸𝑅 = 1−𝑊𝑅𝑅.

For the purpose of this study, I emphasize WRR as an estimate of the relative ac-

curacy, rather than WER as an estimate of the incorrectness of the fit. WRR and

WER are most typically calculated for lip2text methods, and omitted while working

with lip2speech architecture, only assessing the quality of the resulting audio. The

authors of Lip2Wav [29] obtained the WER by using out-of-the-box Google speech

to text API to compare the accuracy of their model to existing studies.

In many prior papers, the STOI, the ESTOI, and the PESQ are also used to

assess the overall quality of the synthesized audio output. These are standard speech

quality metrics used in the lip2speech papers to provide different estimations of the

intelligibility of an audio file. The PESQ metric is now considered slightly dated, as

it has been superseded by a new ITU-T standard, the Perceptual Objective Listening

Quality Assessment (POLQA) [4], but for purposes of direct comparability and due

to the restrictive licensing requirements of the ITU, I utilize the PESQ metric for this

study.

In brief, the STOI [36] and ESTOI [14] metrics measure the correlation value

between processed or distorted audio speech and clear sound. STOI uses the average

of linear correlations between short temporal envelops of original and noisy audio,

while ESTOI follows the same procedure, but uses spectral correlation coefficients.

Therefore, both STOI and ESTOI range from 0 to 1, from least to most intelligible

audio prediction, respectively. Lastly, PESQ [31] is an algorithm built to predict

mean opinion score (MOS), a "true" value of audio quality, calculated by averaging

the scores given by subjects ranging between 1 (bad) and 5 (excellent).

These metrics are calculated using standard code libraries, thus, they did not

require re-implementation, and also enabled better direct comparisons with earlier

results.

Table 3.1 lists the four datasets that were tested for the Lip2Wav model and shows
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Table 3.1: Lip2Wav results

Dataset Hours per speaker STOI ESTOI PESQ WRR
GRID 0.8 0.731 0.535 1.772 85.92%
TCD-TIMIT 0.5 0.558 0.365 1.350 68.74%
LRW 0.03-0.08 0.543 0.344 1.197 65.80%
Lip2Wav (chem) 20 0.416 0.284 1.300 -

how their attributes such as durations per speaker, STOI, ESTOI, PESQ, and WRR

measures affect each other. All four estimates are roughly proportional, for example

if we compare the results on GRID and LRW as the datasets with the largest and

the smallest WRR, respectively, we can notice that the system performed best using

the GRID corpus, as shown by the STOI, ESTOI and PESQ metrics, while the LRW

dataset yielded the lowest values of audio intelligibility measures among the datasets

with defined WRR. This could mean that the better the quality of the synthesized

audio is, the better speech2text system performs in terms of accuracy.

Additionally, there is a pattern in the dependence of the model performance from

the type of environment in which the dataset was collected, and the average dura-

tion of speech. The first two datasets – GRID and TCD-TIMIT were collected in

fixed environments, while LRW and Lip2Wav are in-the-wild video datasets, there-

fore the performance of systems using those datasets are slightly degraded. Even 20

hours per speaker of Lip2Wav dataset do not increase the intelligibility metrics. Fur-

thermore, the performance of systems using the TCD-TIMIT dataset is worse than

those using the GRID dataset, probably because TCD-TIMIT is a richer dataset with

larger vocabulary, while GRID consists of combinations of “color”, “digit” and “letter”

with additional words (though these datasets have comparable numbers of hours per

speaker).
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3.2 Changes in the Model

I first replicated the original model by training with the visual images of a new

dataset (described in the next chapter). I decided to leave the thermal image as

it is (3 channels) in order to match the input dimension of the original model for

visual stream, therefore there was no need to adapt the system in terms of data

dimensionality.

For the purpose of encoding the combined streams, a concatenated array of the

visual and thermal images was fed to the system. This method of concatenating two

different streams of images was used in a number of similar research. For instance,

Pujar et al. [30] combined visual and depth images into four channels (RGBD)

and fed it as an input to CNN encoder for indoor scene classification. Another

example was published by Shopovska et al. [34], where they concatenated visual and

thermal images into 6-channeled array, and trained their model in order to increase

pedestrians’ visibility using deep neural network.

Similarly, the new input for the Lip2Wav model’s combined input represents not

only visual information but also indicates thermal differences between the pixels.

In this case the thermal image was converted to grayscale to preserve an equivalent

number of input channels: 3 channels for the original model and 3+1 for the combined

model so as to include the additional thermal image channel.

In order to include a thermal data stream matching the visual stream it was

necessary to identify the facial region on the thermal image. This was achieved by

aligning the visual and thermal images (described in the next chapter) and cropping

the face based on mapping the bounding box from the corresponding visual image.

The main structure of the CNN encoder did not require any changes due to the

similar nature of the images (comparable size of the images). The only modification

in the encoder was a new option for input shape: when the system received visual or

thermal input, it would be conditioned for 3-channeled input, and for combined input

it would expect a 4-channeled array. Additionally, for combined image the shape of

the initial kernel was changed to 4 channels to match the input’s dimensions.
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The RNN decoder needed some adjustments, as it was fit for training big data

files of Lip2Wav dataset. When the authors trained the system on the GRID and

TCD-TIMIT datasets they chose to halve the number of layers of the LSTM network

in order to avoid overfitting. The relative size of the dataset I used for training

is comparable to both GRID and TCD-TIMIT, therefore I followed their "halving"

approach and set the decoder units to 512 instead of 1024.
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Chapter 4

Datasets Description

The working hypothesis for this thesis is that the inclusion of thermal video data

aligned with the corresponding visual data stream could improve lipreading recog-

nition rates. Thus, it is imperative that the dataset used in the experiment include

synchronized thermal data, such that the model as described can take the two video

streams as inputs and then accurately generate the audio as output.

As noted, there are few existing datasets that include the thermal data stream.

In this section I review the work done to identify and evaluate the existing datasets,

and describe in some detail SpeakingFaces, the largest such dataset collected to date,

and then describe why it was necessary to design, collect, and prepare a new dataset

for the purpose of the project.

4.1 Tottori

As described previously, the "Tottori" dataset was the first publicly referenced dataset

that recorded the thermal data stream and used the data in the analytics for the

purpose of visual speech recognition; in their case, the inclusion of thermal data

marginally improved the lipreading recognition rate. However, the dataset is quite

small, and thus insufficient for the purpose of this thesis. Moreover, it is not publicly

available.
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4.2 SpeakingFaces (SF)

As noted in the Literature Review, SpeakingFaces is a large dataset, collected from

numerous subjects, well-balanced and publicly available for purposes of research. At

the time of publication, SpeakingFaces was the most extensive dataset of its kind,

and was the first option considered for the purposes of the project. However, after

initial experimentation with the system architecture using a subset of the Speaking-

Faces data, it became apparent that it was not the best fit for the project. Firstly,

the dataset is too large to consider in full, for purposes of training, due to the com-

putational requirements and time constraints. Secondly, and of greater significance,

the duration of recordings per subject is relatively short, ranging from 10-20 min-

utes per subject. By comparison, the Lip2Wav dataset has on average 20 hours per

speaker. Based upon the preliminary investigations using SF, it was determined that

for the purposes of the project a speaker-specific dataset comprised of longer duration

recordings of individual speakers would be more effective; the optimal duration was

set at approx. 2 hours, as explained below.

4.3 SpeakingFaces LipReading (SFLR)

Based on the prior review of existing datasets, and the detailed examination of the

full SpeakingFaces dataset, I determined to use instead a speaker-specific model of

extended recording duration. Given the relative lack of such data sources, the ISSAI

team agreed to design and collect an extension of the SF dataset, designated as

SpeakingFaces LipReading (SFLR), consisting of the two main streams of visual and

thermal video (Fig. 4-1), but enhanced with features more convenient to the purposes

of the project.

This section will describe the similarities and differences between SF and SFLR

datasets, changes in the setup and how the changes affected the process of data

cleaning and preparation.
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Figure 4-1: Snapshots of the visual and thermal image streams with 2-second intervals

4.3.1 Data Collection

The SFLR dataset was collected by the ISSAI team, on site at the research labs

in Nur-Sultan, Kazakhstan. For the purpose of proof-of-concept, it was sufficient to

capture the data of a single subject; if successful, the dataset can be readily expanded,

and the model scaled to consider the additional subjects.

The subject was asked to utter the phrases from the same pool of 1800 phrases

used for SF dataset. The list of these utterances was gathered from several sources

that specialize in the style of imperative commands typical of human-computer inter-
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Table 4.1: SF and SFLR datasets

Name Year Type Classes Speakers Resolution Duration
SpeakingFaces 2020 Phrases 1800 142 768 × 512 (visual), 45 hours

464 × 348 (thermal),
28 fps

SpeakingFaces 2021 Phrases 1298 1 768 × 512 (visual), 2 hours
LipReading 464 × 348 (thermal),

28 fps

action; sources include the Stanford University open source digital assistant command

database, and a selection of common commands used with popular digital assistants

such as Siri and Alexa.

The participant spoke for a longer period of time compared to the subjects in

SpeakingFaces. The duration was selected as a middle ground between the examples

of the datasets used in Lip2Wav paper. Lip2Wav dataset has 20 hours per speaker,

but the videos can be classified as speaking in the wild, and hence this amount of data

was necessary for training the model. The GRID and TCD-TIMIT datasets with 0.8

and 0.5 hours per speaker, respectively, have shown a good performance under the

Lip2Wav model, but the vocabulary per speaker was much more simple, shot in fixed

environments and therefore did not require long recordings.

SFLR has also been recorded in controlled laboratory environment, hence there

was no need for 20 hours of video, but the utterances are more complex and with wider

vocabulary, so 0.5 hours was considered insufficient. Thus, after due consideration,

the requisite recording interval of the subject was estimated at approximately two

hours.

The subject pronounced 1298 phrases taken from the SF utterances, which summed

up to 1.9 hours of speaking. The utterances were divided to sessions, two utterances

per video, for easier batching during the training. The main features of the dataset

and their comparison to the SF dataset are listed in Table 4.1.

The setup was slightly modified to one more convenient for recording and to
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reduce the need for further preprocessing. There is only one position for the speaker

- straight face, therefore it was possible to fix the cameras on a tripod, such that the

image would be more stable. The visual camera was attached on the top of thermal

camera in order to more closely align the frames. The cameras and their specifications

were the same as the ones used in SF data collection (Fig. 4-2). For SFLR the team

added two sources of light, so as to avoid the facial shadows caused by the single-

source overhead illumination that had afflicted the original SF dataset. The lights

were adjusted to prevent shadows on the background plane as well. A greenscreen

was placed behind speaker’s back following the example of TCD-TIMIT corpus, for

easier face recognition in visual images, as occasional errors in face detection were

encountered while preprocessing the original SF dataset.

Figure 4-2: Data pipeline for SpeakingFaces [1]

4.3.2 Data Preparation

The raw data required some cleaning and adjusting. For example, it was necessary to

align the visual and thermal recordings, even though there was only one position for

the speaker and the cameras were attached; they still had slightly different viewing

angles. Additionally, the thermal camera had an autofocus property, which would oc-

casionally change the shift of the frame. It was necessary to align the corresponding

visual and thermal images, matching them manually, as part of the data preprocess-

ing stage. As the recordings were collected over an interval of nearly two months,

it became apparent that for each day of the recording the thermal camera was set-

ting up the autofocus differently, hence more than one aligning process was needed.

39



Unfortunately, the data collection and occasional re-shoots introduced minor com-

plications in session identification and alignment. The issue was resolved by manual

classification of each session. As a result, I distinguished 12 classes of aligning.

Figure 4-3: An example of the process of aligning SFLR dataset’s subject

The aligning was done by detecting the lip landmarks of a visual frame and match-

ing them with the lips on a corresponding thermal image, such that while cropping

the region of interest (ROI) on a visual image, the program would be able to use the

same coordinates to crop the ROI on the thermal image as well (Fig. 4-3). After

ensuring that the alignment was correct for several random frames of a particular ses-

sion, the vertical and horizontal shift values were recorded and applied for all frames

in that session.

The artifacts common for the SF dataset, such as "freezing" of the thermal cam-

era’s stream, frame flickerings, and image blur were detected during data collection,

corresponding sections were deleted and re-shot on-the-go, so there was no need to

search for them.

Additionally, after preliminary experiments with the dataset, it was apparent that

the audio volume was uneven from one video to another, as the volume of synthesized

audio was noticeably sometimes different from the original. Therefore, all audios

were normalized using ffmpeg-normalize program in accordance with the EBU R128

loudness normalization standard.
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Chapter 5

Results and Analysis

The goal of this chapter is to present and discuss the results of my thesis work

using the metrics described above: STOI, ESTOI, PESQ and WRR. Based upon

the literature review, I identified the current state-of-the-art model for lip2speech

systems, Lip2Wav, and was able to download and install the system locally, using the

DGX computational environment of the Institute for Smart Systems and Artificial

Intelligence. I was able to configure and conduct test-runs of that system, and then

adapt it for the inclusion of the thermal data stream. I ran the system for training

purposes using the SFLR dataset.

Table 5.1 presents the results of the trained model on visual image from Speak-

ingFaces LipReading data, and compares them to the ones of the original Lip2Wav

paper. As shown in the table, the current performance metrics for the visual stream

are lower when I run the system on the SPLR dataset than they are when run on the

Lip2Wav dataset, but comparable to the overall results in the field.

Table 5.2 shows the results of training of Lip2Wav model on SLFR dataset’s

Table 5.1: The results of training Lip2Wav on the original dataset and on SFLR
visual image

Dataset STOI ESTOI PESQ
Lip2Wav [29] 0.282 0.183 1.671
SpeakingFaces LipReading 0.134 0.041 1.395

41



Table 5.2: The results of training Lip2Wav on different inputs from SFLR dataset

Channels STOI ESTOI PESQ WRR
Visual 0.134 0.041 1.395 14.2%
Thermal 0.045 0.002 1.141 0.00%
Both 0.125 0.031 1.372 14.3%

different types of data: visual image only, thermal image only and both streams si-

multaneously. The metrics of the thermal-only model are significantly worse than

those of visual only model. This can be attributed to the fact that a thermal image

contains less amount of information on facial features compared to the corresponding

visual image. Taking into the account the small numbers in the metrics for thermal

image training and the insignificant change in them from visual image only and com-

bined input models, I conclude that the thermal image in its current resolution does

not contribute any significant information for lipreading in this model.

Additionally, it should be pointed out that the word accuracy scores do not meet

the state-of-the-art standards. As the metrics were derived by using speech recogni-

tion model on synthesized audio, the intelligibility of the resulting audio is the reason

for these decreased numbers. The suggestions for their improvements are enumerated

in the conclusion.

The training was performed on a DGX-2 server. All of the preprocessing and train-

ing procedures were conducted using a set of Python programs adapted from the au-

thors’ original source code (available at https://github.com/Rudrabha/Lip2Wav).

The environment was set up in accordance with the directions of the authors of

Lip2Wav [29].

As shown in the literature review section, lip2text models have higher performance

levels than lip2speech models, as measured by the Word Recognition Rate. Taking

this into account, if we compare directly the achieved results against the published

results of other lip2speech models, we can see that the implemented system was

comparable to the others, but did not improve on those results. In short, I was able

to configure and adapt a state-of-the-art system, and replicate comparable results,
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but not yet further improve them.
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Chapter 6

Conclusion

The level of interest in lipreading systems has increased in recent years, due to rapid

improvements in system performance and the potential utility of lipreading in appli-

cations ranging from human-computer interaction to the use of speech2text systems

for the hearing-impaired people. However, the challenge of lipreading has not yet been

fully met: the results obtained from silent video rarely exceed a Word Recognition

Rate (WRR) of 85%, thus leaving substantial room for improvement.

This thesis examines the conjecture that the recognition rate could be improved

by augmenting visual image data with aligned thermal image data. The recent im-

provements in the resolution of thermal cameras provides an increased level of facial

feature granularity that could contribute additional information to the machine learn-

ing process and thereby potentially improve lipreading accuracy.

Upon reviewing the recent literature, and assessing the current state-of-the-art, I

chose to base my work on the Lip2Wav model, as described in the Methodology, and

adapt the system to incorporate the thermal data.

There are few existing datasets that include aligned thermal data, as noted in

the Literature Review. One of the largest such datasets is known as SpeakingFaces,

with which I began my initial investigations by conducting data preprocessing and

preliminary analytics. However, I determined that for the purpose of this study it

was necessary to have extended data collected from individual speakers, beyond the

approximately 20 minutes of utterances per speaker available in the SF dataset.
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To these ends, the ISSAI team designed an extended version known as Speaking-

Faces LipReading (SFLR), consisting of approximately two hours of recordings of a

single speaker, collected under the conditions of the original SF dataset.

I obtained the code for the open-source Lip2Wav system, and configured the code

for local execution, then adapted the system to take into account the thermal data

as provided in the novel SFLR dataset. I conducted experiments on three variations

of the data streams consisting of the visual image stream alone, the thermal image

stream alone, and the two combined. As shown in the Results, I was able to replicate

the system, generate comparable results for the PESQ measure on visual streams,

but PESQ results were lower on the thermal and combined streams.

Upon reflection, the system can be further enhanced by enlarging and improv-

ing the dataset. First, as the SFLR dataset’s transcripts consist of rather complex

phrases, the collection of additional data could potentially increase the training re-

sults. Second, the thermal and visual camera images were not matched pixel-by-pixel,

i.e. there is still some minor shift in the view angle, which affects the precision of

the alignment. Refinements of the recording setup could have a positive impact on

the performance of the model. Additionally, the extended dataset could include vari-

ations of head postures, as Kumar et al. [16] pointed out that multi-view data gives

better results compared to single-view data.

Changes in the model may also cause a positive dynamics in the results. Apart

from further fine-tuning of the Lip2Wav system, one can try to implement alternative

fusion approaches for the combined model, such as first encoding each image sepa-

rately, and then concatenating them [15], and more complex architectures [9, 13].

Another option is to try adapting other lipreading models to test the hypothesis,

not necessarily lip2speech and speaker-specific one. Furthermore, it is recommended

to use POLQA metrics for assessing synthesized audio intelligibility, as an improved

successor of PESQ, once its implementation is publicly available.

As future work, the Lip2Wav system as implemented produces synthesized audio

tracks; it is feasible that such output can be used as input in a similar lip2text system

so as to facilitate the association of the ROI with specific audio outputs in the deep
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learning process, following Kaldi or ESPNET-based model recipes. Possible findings

include the detection of patterns unique to the movements on thermal images, gaining

higher lipreading performance through adding thermal video on top of visual image,

increasing the robustness of audio-visual speech recognition in adverse environments,

and the investigation of results on how the inclusion of audio input affects each of

these methods.

47



48



Appendix A

Tables
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Table A.1: Literature Review: Datasets

Name Year Type Classes Speakers Resolution Duration
TIMIT 1989 Sentences 6300 360 - 30 hours
IBMViaVoice 2000 Sentences 10,500* 290 704 × 480, 30 fps 50 hours
VIDTIMIT [39] 2002 Sentences 346 43 512 × 384, 25 fps 30 minutes
AVICAR [3] 2004 Sentences 1317 86 720 × 480, 30 fps 33 hours
Tottori [32] 2006 Words 5 3 720 x 480, 30 fps 4 minutes
GRID [38] 2006 Phrases 1000 34 720 × 576, 25 fps 28 hours
OuluVS1 [24] 2009 Phrases 10 20 720 × 576, 25 fps 16 minutes
MIRACL-VC1 [22] 2014 Words 10 15 640 × 480, 15 fps 3 hours

Phrases
OuluVS2 [25] 2015 Phrases 10 52 1920 × 1080, 30 fps 2 hours

Sentences
TCD-TIMIT [37] 2015 Sentences 6913 62 1920 × 1080, 30 fps 6 hours
LRW [19] 2016 Words 500 1000+ 256 × 256, 25 fps 111 hours
LRS [19] 2017 Sentences 17428* 1000+ 160 × 160, 25 fps 328 hours
MV-LRS [19] 2017 Sentences 14960 1000+ 160 × 160, 25 fps 207 hours
LRW-1000 [20] 2019 Syllables 1000 2000+ 1024 × 576, 25 fps 57 hours
Lip2Wav [29] 2020 Sentences 5000 5 various, 25-30 fps 120 hours
SpeakingFaces [1] 2020 Phrases 1800 142 768 × 512 (visual), 45 hours

464 × 348 (thermal),
28 fps
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Table A.2: Literature Review: Papers

Year Reference Database Extractor Classifier Accuracy
2006 Saitoh and Tottori LDA Eigenimage RGB: 76.00%

Konishi [32] waveform Thr: 44.00%
+ DP matching Both: 80.00%

2016 Wand et al. [40] GRID Eigenlips SVM V: 70.60%
HOG SVM V: 71.30%
Feed-forward LSTM V: 79.60%

2016 Assael et al. [2] GRID CNN Bi-GRU V: 95.20%
2016 Chung and LRW CNN CNN V: 61.10%

Zisserman [6] OuluVS1 CNN CNN V: 91.40%
OuluVS2 CNN CNN V: 93.20%

2016 Petridis and OuluVS1 DBNF + DCT LSTM V: 81.80%
Pantic [26]

2017 Chung and OuluVS2 CNN LSTM+attention V: 88.90%
Zisserman [7] MV-LRS CNN LSTM+attention V: 37.20%

2017 Chung et al. [5] LRS CNN LSTM+attention V: 49.80%
A: 37.10%
AV: 58.00%

2017 Petridis et al. [28] OuluVS2 Autoencoder Bi-LSTM V: 96.90%
2017 Stafylakis and LRW 3D-CNN Bi-LSTM V: 83.00%

Tzimiropoulos [35] + ResNet A: 97.72%
2017 Le Cornu and GRID AAM RNN V: 33%

Milner [18] ESTOI: 0.434
PESQ: 1.686

2017 Ephrat and GRID CNN CNN STOI: 0.584
Peleg [11] PESQ: 1.190

2017 Ephrat et al. [10] GRID CNN CNN STOI: 0.7
ESTOI: 0.462
PESQ: 1.922

TCD-TIMIT CNN CNN STOI: 0.63
ESTOI: 0.447
PESQ: 1.612

2018 Chung and LRW CNN LSTM V: 66.00%
Zisserman [6] OuluVS1 CNN LSTM V: 94.10%

2018 Petridis et al. [27] LRW CNN ResNet + Bi-GRU V: 83.39%
A: 97.72%

Continued on next page
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Table A.2 – continued from previous page
Year Reference Database Extractor Classifier Accuracy

AV: 98.38%
2019 Kumar et al. [16] OuluVS2 VGG-16 Bi-GRU V: 97.00%

+ STCNN PESQ: 2.002
2019 Yang et al. [41] LRW CNN 3D-DenseNet V: 78.00%

LRW-1000 CNN 3D-DenseNet V: 34.76%
2020 Martinez et al. LRW CNN ResNet+MS-TCN V: 85.30%

[21] A: 98.46%
AV: 98.96%

LRW-1000 CNN ResNet+MS-TCN V: 41.10%
2020 Prajwal et al. [29] GRID 3D-CNN LSTM + attention V: 85.92%

(Tacotron 2) STOI: 0.731
ESTOI: 0.535
ESTOI: 1.772

TCD-TIMIT 3D-CNN LSTM + attention V: 68.74%
(Tacotron 2) STOI: 0.558

ESTOI: 0.365
PESQ: 1.350

LRW 3D-CNN LSTM + attention V: 65.80%
(Tacotron 2) STOI: 0.543

ESTOI: 0.344
PESQ: 1.197

Lip2Wav 3D-CNN LSTM + attention STOI: 0.416
(Tacotron 2) ESTOI: 0.284

ESTOI: 1.300
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