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Abstract

Recently Wireless Multimedia Sensor Networks (WMSN) is extensively used and
huge amounts of data are generated on daily basis. There are huge processes that
have to be monitored in real-time, so preprocessing and fast analysis of raw data is
required to be done and stored on the edge. Since, edge computation allows the envi-
ronment to be decentralized, which makes it highly responsive, low price, scalable, and
secure. WMSN and edge computing are important in areas like healthcare where the
subject has to be monitored and analyzed continuously. In this work, we propose the
healthcare system for monitoring human emotion using speech in realtime (RSER).
Firstly, this project aims to analyze state-of-the are SER approaches with respect
to time and the ability to work on constrained devices. Secondly, the new approach
based on time analysis will be provided. There will be Exploratory data Analysis
on multiple datasets that will be used for training such as the Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) , Berlin (EMO-DB) and IMEO-
CAP datasets. Data based on Vocal tract spectrum features and low-level acoustic
features (Pitch and energy) will be extracted. The data will be trained and evaluated
on Deep Learning and Machine Learning algorithms. Algorithms will be prioritized
by their time, energy, and accuracy metrics. Then, this experiment will be tested
and evaluated on embedded device (Raspberry PI). Finally, modified model based
on algorithm analysis will be tested on 3 Scenarios (Processing on Edge, Processing
Sink, and Streaming).
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Chapter 1

Introduction

Human emotions are one of the significant indicators of the state of mind and

health. With instant mental and physical deviations, a person cannot consciously

understand the seriousness of the situation. This means that he needs an assistant

who can control his emotions. So, there is huge attention to exploration in this

field. Recently, researchers use speech to identify human emotions. Consequently,

there is big progress in Speech Emotion Recognition. The interesting thing is that, a

human sound can be represented in various ways. So this rich variety helps to find

correlations with human emotions. There are a number of quality techniques were

proposed by scientists in terms of accuracy. However, these algorithms are expensive

in terms of speed and hardware implementation. Since humans can’t effort themselves

high-powered devices and bear them on a daily basis. Therefore, this field needs more

investigation into speed and the capability of work in constrained devices.

Wireless Multimedia Sensor Network (WMSN) is widely used in various spheres

such as healthcare, agriculture, and etc. It generates huge amounts of various data

from environmental sensors and multimedia devices such as cameras and microphones.

Multimedia data is very heavy and the raw transition can drastically overwhelm the

throughput of the network. So, the needed context has to be extracted in order to

minimize and clean the data. Therefore, edge computation allows the environment

to be decentralized, which makes it highly responsive, low price, scalable, and se-

cure. Therefore, current embedded systems provide enough computational power to
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perform Real-time Speech Emotion Recognition.

There are 3 aims of this project. Firstly, to analyze the time complexity and

ability to work on edge devices of Deep Learning approaches. Secondly, based on

results from the previous step develop RSER system. Also, to test and analyse

proposed SER Model in 3 WMSN scenarios.

In this paper, the research on RSER will be proposed. Firstly, a brief review of

the literature related to Speech Emotion Recognition will be presented. Secondly,

the description of datasets, feature extraction, and methodology, and results will be

demonstrated.

1.1 Related Works

Deep Learning architectures such as Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN) are widely used in solving the speech-emotion

recognition problem [1, 2, 6]. CNN helps to find concealed features, and RNN finds

special sequence-dependent patterns from the audio file. And the consolidation of

these architectures builds up a model that classifies speech emotions [1, 2]. In fact,

one of the biggest challenges is to find a feature that significantly emphasizes the

behavior of speech at different emotions. There are many ideas that researchers come

up with. In one of the researches raw audio was used by Trigeorgis et al. [8] as an

input. There CNN model was used to suppress noise. And Recurrent Long-Short

Term Memory architecture was trained to classify speech emotions. The proposed

model outperformed Support Vector Regressors that were trained on two different

sets of acoustic parameters of an audio such as eGeMAPS [8] and ComParE [10].

Tarantino et al. [7] introduced CNN based self-attention architecture and win-

dowing techniques that used eGeMAPS features to classify emotions. They assert

that RNN models suffer from decaying memory, which makes them unable to pre-

serve correlations. On the other hand, self-attention remembers all correlations and

is able to make less computations in classification. In fact, results showed that CNN

model that was trained on acoustic features is better than RNN model trained on raw
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audio. In addition, Triantafyllopoulos et al. [16] used the same technique combining

eGeMAPS [8] and ComParE [10] feature sets. This approach significantly improved

results.

Transformation of raw audio to 2D representation was proposed by Lim et al. [1].

Researchers used short-time Fourier transform (STFT) to create an image from an

EMO-DB [4] dataset audio. The image was fed into the model. The model was based

on CNN and LSTM architectures. CNNs trained to extract features and LSTM

architectures were learned to recognize sequential dynamics. So, they called their

architecture “Time distributed CNN”.

The approach mentioned above gave a start on applying various acoustic 2-D rep-

resentations of audio. According to EMO-DB dataset [4], the best results are shown

by Zhao et al. [5] and Demircan and Kahramanli [11]. Firstly, Zhao et al. [5] trained

Time distributed CNN model on Log-Mel spectrograms and provided classification

with 95.89% accuracy. Secondly, Demircan and Kahramanli [11] trained classical ma-

chine learning algorithms with Mel Frequency Cepstral coefficients (MFCCs). Then,

they applied a fuzzy C-means clustering dimensionality reduction technique. So,

the best result was demonstrated by support vector machines (SVM) and k-nearest

neighbors (kNN) with test accuracies 92.86% and 92.86%, respectively.

Zhang et al. [12] combined speech and song samples from RAVDESS [3] dataset.

They proposed a multi-task classification approach. 4 classificators were trained in

(“Speech”, “Male”), (“Speech”, “Female”), (“Song”, “Male”), (“Song”, “Female”) man-

ner. Then, they applied 5 different decision-making algorithms using results from 4

classifiers such as Decision trees, Majority vote, etc. Unfortunately, they obtained an

accuracy of 57.14%.

Like-wise Zeng et al. [13] also combined speech and song samples from RAVDESS

[3] dataset. However, researchers propose Gated Residual Networks (GResNet) which

allows training multi-task classifiers jointly. They firstly extract spectrograms from

the audio, then they feed it to the introduced Deep Neural Network. Results are

significantly higher than models that were trained in a single task manner, which is

71% accuracy.
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Issa et.al [14] implemented deep CNN architecture that trains on multiple fre-

quency domain features (MFCC, Chromogram, Mel spectrogram, Contrast, Tonnetz).

This research was extensively investigated. For example, the proposed model was

trained on RAVDESS[3] and EMO-DB [4] datasets and demonstrated high testing

accuracies in each dataset: 71.61%, 86.1%, and 64.03% respectively. So, they outper-

formed previous state-of-the-art approaches.

Previously mentioned works show how accuracy significantly improved by ad-

vanced techniques in recent years. However, there are few works that demonstrate

the speed and complexity of SER algorithms. Also, there are no related works that

show how quality SER algorithms run on WMSN embedded devices such as Rasp-

berry pi, etc. Fortunately, there is research that is similar to ours. Silva et. al [15]

conducted research on Urban Sound Classification in WMSN. They evaluated ML

algorithms on embedded devices with respect to accuracy and execution time. They

compared the performances between powered and constrained devices. So, they show

that quality stays the same, but speed performance is 10 times lower on embedded

systems. Also, they mention that the feature extraction from the audio is the most

time-consuming part. In order to improve speed performance on constrained devices,

they suggest decreasing the size of the input audio frame.
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Chapter 2

Databases

For the thesis 3 datasets are used. Each dataset contains its own specific feature.

RAVDESS dataset is recorded from large number of speakers and it has significant

number of speech samples. And, EMODB dataset contains non-english data. Also,

TESS dataset contains large number utterances only with two speakers. Each of the

database has potentially significant impact on finding common emotional features

from speakers with the diverse backgrounds.

2.1 RAVDESS

The first dataset that was chosen is the Ryerson Audio-Visual Database of Emo-

tional Speech and Song [3]. And there are eight different emotion classes such as calm,

neutral, happy, angry, disgust, fearful, surprised and sad. The dataset was collected

from 24 actors where 12 are males and 12 female. They were recorded audio and

video of face by pronouncing English sentences. Only audio recordings will be used

for this research. As a result, the total number of utterances is 1440. The Figure

2-1 depicts distribution and amplitude information of the database. Each emotion

contains approximately 190 utterances, but only neutral class contains 90 utterance.

Average duration of audio samples is approximately 3.5 seconds. And, each sample

of audio is padded with nearly 0.75 seconds of silence.
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Figure 2-1: RAVDESS Dataset Information

2.2 EMODB

The second dataset was taken from Berlin Database of Emotional Speech [16]

(EMODB). It is open German speech database that contains audios with seven emo-

tions: happiness, sadness, anger, fear, disgust, boredom, and neutral. Speech samples

were recorded by 5 male and 5 female people and each subject produced 10 utterances

for each emotion. Utterances were recorded with sampling rate 48Hz. Totally it con-

tains 535 audio files. The Figure 2-2 depicts distribution and amplitude information

of the database. Each emotion contains on average 80 utterances. However, ’angry’

emotion contains 120 speech samples. and disgust class has only 50 speech samples.

Overall, this database is small and distributed not evenly. Also, average duration

of audio samples is approximately 3.5 seconds. However, the duration of audios are

not distributed normally, it contains few audios that are more than 6 seconds. And,

samples of audio are not padded with silence.

Figure 2-2: EMODB Dataset Information
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2.3 IMEOCAP

EMEOCAP dataset [18] was also employed. This database contains a set of 200

target words spoken by two English actors aged 26 and 64. It depicts audios with seven

emotions (happiness, anger, disgust, fear, pleasant surprise, neutral and sadness) and

overall it contains 2800 audio files. Utterances were recorded with sampling rate

48Hz. IMEOCAP involves only two speakers. The Figure 2-3 depicts distribution and

amplitude information of the database. Each emotion contains equally 400 utterances.

Average duration of audio samples is approximately 2 seconds. Durations of speech

samples are normally distributed. And, samples of audio are not padded with silence.

Figure 2-3: IMEOCAP Dataset Information
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Chapter 3

Methodology

3.1 Digital Sound

In physics the sound is product of vibrations and collisions of gas molecules en-

tering to the human ears by varying air pressure. The vibration of air molecules from

the source will cause vibration of surrounding particles by chain reaction creating

sound wave. In order to record the sound, it have to be converted to digital sound.

The incoming data captured by microphone converting variations of air pressure to

variations of voltages. Then, analog electric signals converted to digitized version us-

ing Analog-to-Digital-Converter (ADC). Signal by itself continuous data stream. So,

during digitization process sound is collected as discrete data at defined sampling rate

in time domain and magnitude is quantized at a defined bit-depth. Mostly, quality

sound recorded with 44100 Hz sampling rate and 16 bit bit-depth. Therefore, digital

sound is one-dimensional sequence of numbers. Usually, uncompressed digital sounds

are stored in WAV PCM format. Recorded sounds can have multiple channels (for

example Stereo), but for Machine Learning purpose single channel audio (Mono) is

used.
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3.2 Preprocessing

To transform the audio in a proper format data preprocessing operations are used.

It includes data cleaning, transformation and augmentation. It helps to handle irrele-

vant and missing data samples. Given datasets does not contain missing or irrelavent

data, but RAVDESS dataset have to be transformed to have common format. Also,

EMODB dataset contains insufficient data, so some data enrichment techiniques have

to be used.

3.2.1 Silence Removal

As I mentioned before RAVDESS dataset’s audio samples are padded with 0.75

seconds of silence from both starting and ending of a audio file. This kind of data

might be sufficient to be trained for models that only using one dataset. However,

models trained on padded audios may negatively effect on prediction of RSER model.

Since, Voice Activity Algorithms that segment speeches in audio stream will produce

data samples with no silence padding. Consequently, there might be a misunderstand-

ing between incoming speech samples and a model trained on padded utterances.

To remove silent paddings energy of every frame is used. Energy of an audio sam-

ple is measured in Decibel (dB). For each chunk of the audio with length 0.2 seconds

the mean power is calculated.

𝜇𝑃𝑜𝑤𝑒𝑟 =
∑︁

𝑆2/𝑛

Then, with the given equation we can calculate the energy of the chunk. The lower

bound threshold for the energy is taken as 40 dB .

𝐸𝑛𝑒𝑟𝑔𝑦 = 10 * log10(𝜇𝑃𝑜𝑤𝑒𝑟)
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3.2.2 Data Augmentation

Deep Learning models significantly improve by using huge amount of data because

they can find more patterns to find differences between classes and similarities within

the class. So, by increasing the amount of the training data models can avoid over-

fitting issues and find a way to significantly generalize. Mining new data samples is

expensive so Data Augmentation techniques are used to deal with deficiency of data.

Data Augmentation is technique to increase data by using data itself. This method

can be applied to any kind of data such as numeric, acoustic and image data. Usually,

generated sample is similar to original data but affected by synthetic transformations.

For example, images can be rotated and signals can have noise.

For the thesis 3 data augmentation techniques are applied for EMODB dataset

(fig). Since, the dataset have only 535 data samples.

• Adding Noise - Adding noise to the training set can give a significant regu-

larization effect on the learning process. For the each sample of the audio there

were added a noise with +15 Db signal to noise ratio (SNR). The SNR metric

helps to not overbalance noise effect on original audio. The SNR is defined as

10𝑙𝑜𝑔10(𝑃𝑠𝑝𝑒𝑒𝑐ℎ/𝑃𝑛𝑜𝑖𝑠𝑒), where P is the mean power of the audio signal.

• Shift the Audio - it shift the audio to the left or to the right in the time

domain by some amount of seconds.

• Stretch - This technique changing the speed in two ways such as make faster

or make slower.

The samples to be augmented are choosen randomly. The amount of the augmented

data is predefined.

3.3 Acoustic Features

Feature of the speech is a transformation of the data from wave form to parametric

representation for processing and analysis purposes. Features help to understand the
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data in multi-dimensional spectrum. For example, the data that was recorded has

time domain information. Consequently, using SFFT we can convert the data to be

in frequency and time domain. So, by changing the representation of the sound wave

more information can be learned about it. For instance, there are more features can

be extracted from audio data. There are two mostly used feature classes in SER are

prosody and spectral features.

• Prosodic features - these features analyse the sound in long term basis such

as long connected speech. Specifically, it shows behaviour of the intonation,

rhythm and stress. They are also called supersegmental features because it

needs minimum 30-100ms of sound duration for analysis [10]. Mostly duration,

intensity, fundamental frequency (pitch) and long-term spectral features are

used to extract prosodic features. For example, statistical values (minimum,

maximum, mean, standard deviation, etc) derived from time domain amplitudes

or from fundamental frequencies are called prosodic features. The advantage of

them is well distinguishing between low and high arousal emotions (happy and

bored). However, disadvantage is poor classification between the same arousal

emotions (sad and bored).

• Spectral features - they are also called segmental features because they ex-

tract features in short time periods such as 10-30 ms] [10]. The aim of the

spectral analysis is to extract the energy information at different frequency lev-

els in the short time period. These features are good at modelling vocal fold

vibration. Possible disadvantage is that they poorly performs on speaker in-

dependent emotion recognition. The most prevalent spectral feature in recent

researches is Mel Frequency Cepstral Coefficients.

In this research 6 feature extraction methods will be analysed:

1. Chroma: Chroma features are known as pitch class profiles. They show to

what pitch class current sound is related. It is widely used in identifying correlation

between human timber and musical aspect of harmony because of its robustness.

2. Spectral Contrast: Spectral representation of the sound may significantly
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suffer from high noise level. To overcome this kind of issue Spectral Contrast features

are used. Spectral contrast evaluates difference of frequency levels between picks and

valleys. So, these features can help to enhance the intelligibility of the sound in high

SNR environment.

3. Tonnetz: Tonnetz is used to detect changes in fundamental frequency (Har-

monic wave). As Chroma features detect the class of the pitch, Tonnetz features

identify pitch behaviour in temporal dimension.

4. Mel-Spectrogram: As it was mentioned before Mel Spectrogram is a repre-

sentation of the signal strength in frequency and time domain. This is fundamental

basis for extracting spectral features mentioned above. Also, Mel-spectrograms are

used in learning CNN models to classify acoustic sounds. Since, it gives an oppor-

tunity to use sound as a picture. Firstly, to obtain Mel-Spectrogram a spectrogram

is derived with Short Term Fourier Transform. Then, the resulted spectrogram is

transformed to human perceptual scale (Mel Scale).

5. MFCC: MFCCs is a inverse Fourier Transform of Mel-Spectrum. Human

sounds are results of the air pressure passed through vocal tract (including teeth,

tongue etc). The envolope of the time power spectrum of the speech signal is char-

acterization of the vocal tract. So, MFCC accurately represents this vocal shape.

They are widely applied in Deep Learning models such as Speech Recognition and

Text-to-Speech jobs.

6. Common Standards (LLD): There are many acoustic features to extract

from the sound. Researchers from fields related to Speech Analysis and Speech

recognition created standard set of feature extraction methods. For this thesis two

standards are analysed. First, extended Geneva Minimalistic Acoustic Parameter

Set (eGeMAPS) which contains 42 low-level-descriptors [b7]. Second, Interspeech

Computational Paralinguistics Challenge features set which contains 65 low-level-

descriptors [b7].
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Figure 3-1: eGeMAPS feature set

3.4 Voice Activity Detection Algorithm

Voice activity detection is a algorithm that segments speech regions from the audio

stream. It is an important front end preprocessing step for Real-time Speech emotion

recognition applications. The performance of VAD algorithms is significantly impacts

Speech emotion recognition results. For the purpose of examining real-time speech

emotion recognition on embedded devices the VAD algorithm have to be simple and

robust in noisy environment. So, for the thesis an algorithm proposed by Moattar

et.al [18] is utilized. In their research they propose three features to identify speech

parts of the sound:

• Spectral flatness provides a way to quantify how tone-like a sound is, as

opposed to being noise-like. The probability that a sound is a noise.

• Short Term Energy it is measured with Decibels (dB). Perceptible loudness

indicator.

• Most dominant Frequency Component - Frequency level with maximum
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magnitude.

The proposed algorithm starts with framing the audio stream chunk. Initial N

frames are used for threshold precomputation. For the following frames three metrics

are evaluated. If one or more conditions are satisfied with thresholds, given frame is

labeled as a speech frame. In the below figure detailed pseudo implementation can

be seen.

Figure 3-2: VAD Algorithm
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3.5 Speech Recognition Models

In this research 4 types of Deep Learning models are experimented for testing

accuracy, time and energy consumption. This models proposed by 4 research pa-

pers. So, they are reimplemented and tested on embedded device. Below detailed

information about architectures is provided.

3.5.1 1D CNN Model

Issa et al.[14] provided a 1D CNN architecture that consumes 1 dimensional input

array. Input is stacked array of mean intensity of MFCC ,spectral-contrast, Mel-

Spectrogram, chroma, tonnetz at each frequency level. The base-line CNN architec-

ture constructed from 1D convolution layer followed by dropout, batch normalization

and activation layers (ReLU).

Figure 3-3: 1D CNN model Architecture
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3.5.2 2D CNN model Architecture

To learn speech samples as an images 2D CNN model is used. The model is trained

on Mel-spectrograms. Spectrograms are derived by STFT with Hamming window of

5ms and 4.4 ms overlap. The frequency information above 4KHz is removed. In result,

129 frequency levels are represented in sepctrograms. The spectrogram is resized to

have 129x129 shape and fed to the network as an image with one channel.2D CNN

Network is constructed with two 2D Convolution layers followed by Max Pooling

layers. After flattening the feature space, one hidden dense layer is followed.

Figure 3-4: as

3.5.3 1D CNN LSTM Model

To examine speech emotion recognition without using any acoustic feature extrac-

tion LSTM model is implemented. To build this model the architecture introduced

by Zhao et al[11] is used. This model consumes raw audio as an input. The input

size is 64000 frames (4 seconds with sampling rate 16K Hz ) of audio. The model is

starting with four 1D convolution layers followed by Batch Normalization, Activation

and MaxPooling Layers. After which sequenced with LSTM layer. Finally, LSTM

layer connects to fully connected layer which contains weights for each emotion class.
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Figure 3-5: LSTM Model

3.5.4 Self-Attention Model using 1D CNN

Self-Attention mechanism is used to lower computation complexity on learning

sequential data. Self-Attention models became superior to RNN models due to its

simplicity and performance. Tarantino et el [7] provided Self-Attention model to

predict Speech emotions using eGeMAPS feature set as an input. The architecture

starts with 6 sequentially connected 1D Convolution Layer and Max-Pooling layer

pairs. Then, the last Max-Pooling layer connects with Self-Attention Layer. Finally,

Self-Attention layer is followed by 2D Convolution, Max-Pooling and Dense layer.
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Figure 3-6: Self-Attention model

3.6 Hardware Setup

Two hardware devices are used:

3.6.1 Raspberry Pi

Figure 3-7: Raspberry pi 3B+

Raspberry Pi is a small sized pocket computer which is called micro-controller.

This device is used to run read incoming audio stream, run VAD and SER algorithms

on real-time basis. Its main features are:

• Model: Raspberry Pi 3B+

• SoC: Broadcom BCM2837
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• CPU: 4× ARM Cortex-A53, 1.2GHz

• GPU: Broadcom VideoCore IV

• RAM: 1GB LPDDR2 (900 MHz)

• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

• 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet

3.6.2 Voltage Tester

Figure 3-8: USB Voltage Tester RuiDeng AT34

Voltage Tester is a device that detects voltage, current, power consumption in

real-time. This device is used to measure energy consumption of Speech Emotion

Recognition in real-time. This device is connected between Raspberry pi and power

source.

• Voltage measurement range: 3.70-30.00V

• Voltage measurement resolution: 0.01V

• Current measurement range: 0-4.000A

• Current measurement resolution: 0.001A

• Capacity accumulation range: 0-99999mAh

32



• Energy accumulation range: 0-99999mWh-999.99Wh

• Power measurement range: 0-120W

• Temperature range:0-80℃

• Temperature measurement error: ±3℃

3.6.3 Edge TPU USB Accelerator

Figure 3-9: Coral TPU Accelerator

Coral Edge TPU is a coprocessor which accelerates Tensorflow Deep Learning

computations. It is widely used with constrained devices like Raspberry Pi to en-

hance computation power used for running complex DL models. In this project TPU

accelerator is used to check whether it can enhance SER models computation speed.

• Google Edge TPU coprocessor: 4 TOPS (int8); 2 TOPS per watt

• USB 3.0 Type-C* (data/power)

3.7 Real-time Prediction Scenarios

There are 3 main scenarios are implemented. There are three ways how can we

run RSER. Firstly, running VAD and SER on edge and then sending results to sink.
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Secondly, running VAD on the edge, send speech samples to the sink and predict

emotions on sink. Finally, stream audio to sink from edge, and run VAD and SER

on sink.

Figure 3-10: Full RSER on Edge

Figure 3-11: Local VAD and remote SER

Figure 3-12: Stream to Remote and SER remotely
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Chapter 4

Results and Discussion

As it was mentioned before Real-time Speech Emotion recognition models have to

be tested in all steps starting from feature extraction, SER, and VAD step. All steps

will include speed, accuracy, and energy consumption results run on Raspberry Pi.

4.1 Feature Extraction Results

Table 4.1: Spectral Features Speed Test

Feature Size RPi (s)

stft 1025 0.083

mfccs 40 0.214

chroma 12 0.261

mel 128 0.185

contrast 7 0.078

tonnetz 6 6.09

Feature Extraction is the main basis for establishing SER on embedded devices.

There are two types of features spectral features and LLD sets. 100 audio samples

with average of 3 seconds duration were used to extract features. Here in Table 4.1
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can be seen that most of the spectral features are computed in less than half second.

The shortest time taken for spectral contrast (0.078 s). But the longest computation

is held by tonnetz 6.09 seconds. The reason why tonnetz takes so long to be computed

is the precomputation of two consecutive operations. They are extraction of stft and

getting harmonic elements from stft output.

Table 4.2: Low Level Desciptors Speed Test

Low Level Descripters Size RPi (s)

egemaps 88 0.2078

compare 6373 0.5691

gemaps 62 0.3752

Low Level Descriptors are also analyzed for this research. Same 100 audio samples

were used to extract LLDs. The results are can be seen in Table 4.2. Here we can see

that eGeMAPS is the lightest way of LLD extraction (0.2078 s). And, ComparE is the

slowest (0.5691 s). Even GeMAPS LLDs has the smallest size, it is a bit slower than

eGeMAPS extraction. It might be that parameters of feature extraction methods and

implementations of feature extraction methods are different.

4.2 Modelling results

As it was mentioned before, 4 different SER models are analysed in this research.

These models are analysed in terms of accuracy and time consumption.
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4.2.1 1D CNN model

Table 4.3: 1D CNN Model

Feature Sets Input Size RAVDESS EMODB IMEOCAP

All 5 Spectral Features 193 71.30% 86.10% 64.30%

MFCC, CHROMA, MelSpectrogram, Contrast 187 69.30% 82.86% 65.40%

Egemaps 88 59.00% 50.78% 51%

Compare 6373 55.00% 49.65% 54%

Gemaps 62 52.00% 51.56% 49%

All features + Egemaps 281 65.00% 50.50% 60%

1D CNN model that was provided by Dias et al. was performed approximately

the same as it was claimed in their research. The original model that uses 5 spec-

tral features (Table 4.1) achieved 71.3%, 86.1%, and 64.3% on RAVDESS, EMODB,

IMEOCAP respectively. However, this model contains the slowest features extraction

method (Tonnetz). So this model was also analysed without tonnetz feature. The

results obtained from the modified feature set performed a little bit poor but yet they

are good 69.3%, 82.86% and 65.4% on RAVDESS, EMODB, IMEOCAP respectively.

This model was also trained the standard feature sets such as eGeMAPS, ComparE

and GeMAPS. However, the results were significantly lower than the previous two

models varying between 50 - 55 % on each dataset.

Table 4.4: 1D model Speed Test

Model Inference Speed Only inference Spectral Features without tonnetz

Raspberry Pi 0.047 0.768 s

PC 0.013 0.066 s

For testing time consumption the second model is chosen since the time spend
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on feature extraction is low and the model accuracy is relatively high. In Table 4.4

timing results can be seen. The model inference is less than 1 second (0.047 s) on

RPi and 0.013s on PC. The time taken for the whole feature extraction and inference

is 0.768s on RPi and 0.066 s.

4.2.2 2D CNN Model

Table 4.5: 2D Model
Augmentation Input Size RAVDESS EMODB IMEOCAP

Noise, Shift, Time Stretch 129x129 66.70% 73.60% 62.30%

Table 4.6: 2D Model Speed Test

Model Inference Speed Only inference TPU without FE TPU with FE

Raspberry Pi 0.313 0.271 s 0.325 s

PC 0.031

2D CNN model is constructed from ourselves. And tested for this thesis purpose.

The results show that it obtained 66.7%, 73.6% and 62.3% of accuracy for datasets

respectively (Table 4.6). The inference has taken 0.313 seconds on RPi and 0.031s

on 0.031s on PC. Overall it took 0.325s to extract Mel-Spectrogram and prediction.

The prediction speed is relatively slow because the model is more complex. However,

it compensates its model complexity with single feature extraction.

4.2.3 1D CNN LSTM Model

Table 4.7: 1D CNN LSTM Model
Augmentation Input Size RAVDESS EMODB IMEOCAP

No Augmentation 4 seconds (64000) 62% 61% 52%
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Table 4.8: 1D CNN LSTM Model speed test

Model Inference Speed Only inference Coral Accelerator TPU

Raspberry Pi 0.642 0.59 s

PC 0.091

1D LSTM Model is tested in terms of accuracy and speed. The results can be seen

in Tables 4.7 and 4.8. It obtained 62%, 61% and 52% of accuracy on datasets respec-

tively. It inferences two times longer than the 2D CNN model (0.642 s) on Rpi and

respectively on PC (0.091). Results show that training the LSTM model on raw audio

is poorly performing. So, feature extraction is playing a crucial role in performance.

Also, the LSTM model appears to be slow on inference. The possible reason for such

slow speed is the LSTM architecture by itself.

4.2.4 Self-Attention Model

Table 4.9: Self-Attention Model
Augmentation Input Size RAVDESS EMODB IMEOCAP

Noise, Shift, Time Stretch [88] 69.50% 72.60% 70.60%

Table 4.10: Self-Attention Model speed test

Model Inference Speed Only inference With FE TPU with FE

Raspberry Pi 0.501 0.43 s 0.521 s

PC 0.084

Self-Attention Model is tested in terms of accuracy and speed. The results can

be seen in Tables 4.9 and 4.10. It obtained 69.5%, 72.6% and 70.6% of accuracy on

datasets respectively. The inference is quite faster than the LSTM Model (0.501 s on
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Rpi and 0.084s on PC). The speed with inference and feature extraction is 0.71s on

RPi. The results are quite promising. The model is able to show that its performance

is better than the LSTM model. However, it uses an additional eGeMAPS extraction

step which makes the model slower.

4.3 Modified 1D CNN Model

Table 4.11: Modified 1D CNN Model

Features Size Combined Dataset

Only MFCC [40] 82.3 %

Table 4.12: Modified 1D CNN Model Speed Test

Model Inference Speed Only inference With FE

Raspberry Pi 0.04 0.261 s

PC 0.01 0.046 s

In this research a new model is proposed based on the analysis made above. The

model architecture is based on the 1D CNN architecture. After the analysis of existing

models, it can be seen that the 1D CNN models show the best results in terms of

accuracy. So, it was chosen to introduce a slight modification for feature extraction

and training process with datasets for this model.

By using only MFCC as a feature and combining all datasets we could achieve

82.3% of accuracy on the combined dataset. And in terms of speed, we could achieve

0.05s of inference and 0.261s of overall time with feature extraction on Rpi.
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Table 4.13: Modified 1D CNN Model Speed Test

Model Inference Speed Only inference With FE

Raspberry Pi 0.04 0.261 s

PC 0.01 0.046 s

4.3.1 Scenario Simulation and Results

As it was mentioned before, 3 scenarios are proposed to test the RSER Model in

terms of time, energy consumption, and accuracy. We have a testbed that contains

196 audio samples from datasets merged to create a stream of audio. Overall, the

testbed duration contains 800 seconds of audio. The results can be seen in Table 4.11.

Table 4.14: Scenario analysis

Prediction Time Idle state EC Prediction EC EC at Sending data

Scinario 1 30 s 2.57 W 0.45 W 0.1 W

Scinario 2 2.57 W 0.2 W

Scinario 3 2.4 W 0.2 W

In Scenario 1, the total time spend for SER is 18 seconds on the edge. At idle

state it spends 2.257 W. The energy spent for model prediction is 0.47W. And the

energy spent for sending results to sink is 0.1 W.

In Scenario 2, there is no SER inference on the edge. At idle state it spends 2.257

W. There is no energy spent for prediction. And the energy spent for sending audio

chunks to sink is 0.2 W.

In Scenario 3, there is no SER inference and VAD on the edge. At idle state it

spends 2.4 W. There is no energy spent for prediction. And the energy spent for

sending audio chunks to sink is 0.2 W. It is important to mention that the audio

chunks are sent continuously (Figure 4.1).
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Figure 4-1: Energy consumption at each Scenario

The proposed modified model accuracy achieved 75.5% on a given testbed. The

confusion matrix of the proposed model can be seen in Figure 4-2. The model per-

forming significantly well on predicting ’happy’, ’angry’, and ’fearful’ emotion classes.

And weak results are shown by ’neutral’ and ’surprised’ classes. The ’surprised’ class

is mostly confused with ’happy’ class. The model performs well on distinguishing

between negative and positive emotions.

Figure 4-2: Performance of model a on testbed
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Chapter 5

Conclusion

This study could introduce an important analysis of the SER models in WMSN.

Firstly, we were able to understand that feature extraction methods play a crucial

role in model performance. Secondly, simple CNN models with feature extraction

methods are predicting more accurately than the LSTM and Self-Attention models.

Thirdly, the amount of data have to be large to train simple models.

We could see that processing on the edge consumes more energy than the SER on

the sink. However, in a big picture processing on the edge can significantly lighten

sink computation burden.

Lastly, we could achieve near real-time speed and good performance on the edge.
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