
robotics

Article

Deep Learning-Based Object Classification and
Position Estimation Pipeline for Potential Use in
Robotized Pick-and-Place Operations

Sergey Soltan, Artemiy Oleinikov, M. Fatih Demirci and Almas Shintemirov *

School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan Z05H0P9, Kazakhstan;
sergey.soltan@nu.edu.kz (S.S.); artemiy.oleinikov@nu.edu.kz (A.O.); muhammed.demirci@nu.edu.kz (M.F.D.)
* Correspondence: ashintemirov@nu.edu.kz

Received: 27 May 2020; Accepted: 4 August 2020; Published: 18 August 2020
����������
�������

Abstract: Accurate object classification and position estimation is a crucial part of executing
autonomous pick-and-place operations by a robot and can be realized using RGB-D sensors becoming
increasingly available for use in industrial applications. In this paper, we present a novel unified
framework for object detection and classification using a combination of point cloud processing and
deep learning techniques. The proposed model uses two streams that recognize objects on RGB and
depth data separately and combines the two in later stages to classify objects. Experimental evaluation
of the proposed model including classification accuracy compared with previous works demonstrates
its effectiveness and efficiency, making the model suitable for real-time applications. In particular, the
experiments performed on the Washington RGB-D object dataset show that the proposed framework
has 97.5% and 95% fewer parameters compared to the previous state-of-the-art multimodel neural
networks Fus-CNN, CNN Features and VGG3D, respectively, with the cost of approximately 5%
drop in classification accuracy. Moreover, the inference of the proposed framework takes 66.11%,
32.65%, and 28.77% less time on GPU and 86.91%, 51.12%, and 50.15% less time on CPU in
comparison to VGG3D, Fus-CNN, and CNN Features. The potential applicability of the developed
object classification and position estimation framework was then demonstrated on an experimental
robot-manipulation setup realizing a simplified object pick-and-place scenario. In approximately 95%
of test trials, the system was able to accurately position the robot over the detected objects of interest
in an automatic mode, ensuring stable cyclic execution with no time delays.

Keywords: object classification; object position estimation; deep learning; neural network; RGB-D
image processing; 3D point cloud processing; robot vision; robot-manipulation; robotized pick-
and-place

1. Introduction

Industrial robot-manipulators are being widely deployed in manufacturing, warehouses,
and other environments for autonomous object manipulation tasks involving repetitive pick-and-place
operations such as part picking-placing, product packaging, bin-picking, and kitting, etc. Typically,
robotized stations are equipped with vision-based sensory systems for executing pick-and-place
tasks in unstructured or dynamic environments where different objects can be mixed in arbitrary
locations/poses, e.g., picking objects from warehouse shelves or moving conveyor belts [1,2].
Early end-effector mounted or fixed monocamera and multicamera stereo vision systems were
used for realizing 2D visual servo control schemes of industrial robots for autonomous object
grasping and manipulation [3,4]. Such visual servoing schemes were based on non-trivial analytical
derivations of a robot–target interaction matrices related 2D camera image features to robot kinematics,

Robotics 2020, 9, 63; doi:10.3390/robotics9030063 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0002-6969-8529
http://www.mdpi.com/2218-6581/9/3/63?type=check_update&version=1
http://dx.doi.org/10.3390/robotics9030063
http://www.mdpi.com/journal/robotics

Robotics 2020, 9, 63 2 of 16

and triangulation algorithms for estimating object positions [5]. Availability of compact optical 2D
laser scanner and laser rangefinder sensors led to the development of various combined 2D and 3D
vision end-effector mounted systems able to perform RGB image-based object classification and 3D
point cloud composition through successive scanning of the working area by a robot, e.g., as in [6,7].
The current state of technology facilitated the wide practical application of compact RGB-D sensors
for real-time capturing of 2D visual and depth image data, allowing on fly reconstruction of the 3D
working scene without the need for additional scanning robot motions [8]. The accurate object
detection or classification and 3D position/pose estimation based on RGB-D data processing is
currently an active research direction, that attracted much attention upon launching the Amazon
Picking Challenge competitions [9,10]. While some robotized systems adopt object detection and
pose estimation approaches for continuous object picking and placing from one location to another,
e.g., [11], more advanced systems additionally implement object classification for realizing selected
object grasping [12,13].

The above works inspired the authors of this paper to initiate research work on developing an
industrial robot-manipulator based pick-and-place system equipped with an RGB-D sensory system for
selected object grasping from a conveyer belt. The real-time performance of the RGB-D data processing
was set as one of the primary system design objectives along with the object classification performance.
In this paper, we report the visual system development phase of our work, formulated as a novel object
classification and position estimation pipeline with real-time computation performance. In particular,
we present an algorithm for object segmentation from the scene and its position estimation based
on the widely used open-source Point Cloud Library (PCL) [14,15]. In addition, we utilize recent
advancements in machine learning and artificial neural networks for object classification based on
RGB-D image data. The proposed object classification network architecture uses two streams that
process RGB and depth data separately and combines the two streams in later stages to identify objects
as presented in Figure 1. This approach is based on the multimodal deep learning architecture [16,17]
that showed remarkable performance on combined color and depth images. The stage-wise training
strategy is applied such that the two RGB and depth streams are first trained independently and
combined in the later stages for the final classification and position estimation task. We use the RGB-D
object dataset of Lai et al. [18] for training and testing, and compare accuracy and inference time with
other multimodal approaches.

It is shown in the paper that the proposed object classification network architecture has much
fewer parameters and requires much less inference time in comparison with other multimodal
deep learning techniques, and is, therefore, suitable for real-time applications. Although the
network simplification results in a slight classification performance drop, we show that the presented
model facilitates the performance-complexity trade-off between accuracy and speed when creating a
pick-and-place robot system with object classification and position extraction capabilities. Namely,
the faster network is less accurate but suitable for real-time robotized applications, while the more
accurate architectures are slower and thus not suitable for real-time. To demonstrate the potential
applicability of the developed object classification and position estimation pipeline, it was integrated
into a real robot-manipulation setup for realizing a simplified pick-and-place scenario.

Robotics 2020, 9, 63 3 of 16

Figure 1. The architecture of the proposed network. The network consists of three parts. Two streams
perform feature extraction on RGB and Depth images separately using convolutional layers, shown in
green and blue respectively. Features from both streams are combined to perform classification using
fully connected layers, shown in gray.

2. Related Work

2.1. Recent Works with RGB-D Data

The RGB-D datasets, such as Washington RGB-D Object Recognition Dataset [18] has been a
popular subject of research related to 3D object recognition and classification. Several approaches that
rely on handcrafted features were developed over the years. The algorithms [18,19], that use SIFT
features and a set of kernel features extracted from depth images that describe the shape, size, and edges
of the model showed remarkable performers. Several works tried to apply unsupervised feature
learning from classical computer vision problems to the RGB-D domain. The work of Blum et al. [20]
uses K-Means based feature extraction approach for RGB-D data. Another work done by Bo et al. [21]
presented a new approach hierarchical matching pursuit (HMP) that learns the hierarchical feature
extracted from RGB-D data using the sparse coding method.

2.2. Deep Learning Approach

The success of deep learning in image classification and semantic segmentation [22–25] inspired
researchers to extend it to RGB-D data processing. The approaches, however, are different in the
way of how to feed depth data to the network. The first approach is to use the depth stream as a
fourth channel alongside the RGB and pass it to the neural network. The advantage of this method
is that there was done a vast amount of work for 2D RGB image classification. It is relatively easy to
convert three channel input into four channels for this application. This led to the question of how
to encode depth information. One of the approaches, the Horizontal Height Angle (HHA), encodes
depth information as three channels [26]. The HHA is composed of information inferred from depth
horizontal disparity, height above the ground, and the angle between the pixel’s local surface normal
and the direction of the gravity.

The work of Schwarz et al. [17] uses deep neural networks to extract features and classify
RGB-D images. The proposed architecture uses a pre-trained convolutional neural network (CNN)
as a feature extractor. The CNN of choice is CaffeNet [27]. The network structure is the following:

Robotics 2020, 9, 63 4 of 16

five convolutional layers, three max-pooling layers to reduce the output dimensionality of the first,
second, and fifth convolutional layers and two fully connected layers at the end of the network
followed by softmax layer for classification. The Rectified Linear Unit (ReLU) is used as an activation
function. The network was trained on ImageNet dataset [28] for 1000 category classification task.
Schwarz et al. preprocessed RGB images by combining them with segmentation masks provided with
the dataset to adapt the RGB-D images to CaffeNet. This approach transforms RGB images to fixed
227 by 227 sizes that CaffeNet expects. To process depth images the same model is used. The authors
present a novel method for depth image colorization to convert it to a three channel representation
that CaffeNet operates on. The features from RGB and depth images are then combined and passed to
support vector machine (SVM) for object classification.

The work of Eitel et al. [16] uses a similar approach to the one of Schwarz et al. [17] and improves
the performance by using only the neural network approach. The idea of using a pre-trained
model as a starting point stays the same, but their architecture uses two models that are fused
to perform classification. Similarly, the network comprised of two streams that are based on
pre-trained CNN. The first channel is performing feature extraction on an RGB image. The second
uses the depth data of the same data frame to extract another set of features. The two sets of features
concatenated and passed to a fully connected neural network to perform classification. The two
streams are also based on CaffeNet. However, in contrast to the previous work, the authors fine-tune
both streams on the RGB-D dataset [18]. Training begins by initializing two streams with pre-trained
weights, which are obtained from CaffeNet that was trained on ImageNet dataset. The second step is
to train two streams separately on the RGB-D Dataset. The final step is to combine the two streams
and train the last classification layers.

Finally, the work of Zia et al. [29] presented a method that uses 3D CNN to maximize the utilization
of the 3D RGB-D data nature. As a starting point, the authors used publicly available pre-trained
VGGNet-16 for RGB image classification and presented a method of transferring learning from 2D to
3D data. Authors propose three different networks that are used for classification. The first part of the
fused architecture is the pre-trained VGGNet. The second is the 3D-CNN that takes the voxel grid
as an input, constructed from RGB and depth images. The third part is VGG3D, the hybrid 2D/3D
CNN architecture. It takes the voxel grid as input and after the first layers, the network continues as
2D VGGNet. All three sets of features are concatenated and classified using SVM.

3. Proposed Unified Framework

In this paper, we present a novel unified object classification and position estimation pipeline,
which takes advantage of two approaches for object classification. The first is the classical point cloud
processing to segment objects from the scene. The second is to use a Convolutional Neural Network
(CNN) to classify each object. By finding clusters of points that correspond to objects, we calculate their
positions. We then perform object classification using the 2D images of these segments. The proposed
framework is summarized in Figure 2 and is described below in detail.

Figure 2. Diagram of the proposed unified object classification and position estimation pipeline.

Robotics 2020, 9, 63 5 of 16

3.1. Object Segmentation Pipeline

For capturing a stream of images, we use an Asus Xtion Pro RGB-D camera. The resolution of the
camera 640 × 480 for point cloud produces 307,200 3D points. To reduce the number of points in a
point cloud for real-time applications, the PCL provides several methods. Firstly, as shown in Figure 2,
we reject all points that are outside the region of interests (RoI) that can be specified as a configuration
for the algorithm beforehand. In our experimental robot pick-and-place setup, we have a conveyor belt
in the middle of the frame that we set as RoI. To reduce the number of points further we then apply the
VoxelGrid filtering algorithm. The VoxelGrid filtering is a downsampling algorithm that reduces the
number of points by constructing a 3D voxel array over the input cloud. For each voxel, it computes
centroids of points that belong to it. Although computation of the centroid is computationally more
expensive than using the center of the voxel, it produces a more accurate representation of the surface.
The parameters for the VoxelGrid filter were chosen through trial-and-error such as to reduce the
number of points, but at the same time preserve the overall physical shape of a point cloud. The size
of the grid is set to 5 mm, which reduced the number of points by five times on average.

The nature of the problem allows us to assume that objects lay on a surface such as a table. As the
next stage of the proposed framework, we find the biggest plain in the scene that corresponds to the
table using PCL’s implementation of Planar Segmentation. We employ the Random Sample Consensus
algorithm (RANSAC) to estimate the points that belong to the table (inliers). RANSAC randomly
selects a subset of points and calculates parameters for any given model (model of a plane in our case).
These parameters are called a hypothesis. Repeating these steps for a fixed number of iterations the
best hypothesis is found. At the end of the loop, the algorithm returns the best hypothesis and all
inliers that belong to the best model. By rejecting all the inliers from the scene only the points belonging
to objects on the table are left.

Following the pipeline diagram in Figure 2 the remaining points are clustered together to form
individual objects. We use the Euclidean Clustering Extraction algorithm to divide points into clusters
based on their proximity to each other. The algorithm uses Euclidean distance to determine if points
belong to the same cluster. The points are considered to be in the same cluster if they are in the
radius r from each other. Radius r is set as a parameter. By changing its value, we can control
the size of the clusters. It has to be noted that in our case r has to be larger than the size of the
voxel that was used in the Voxel Grid downsampling step. An iterative search of the point in the
radius is computationally expensive, thus the PCL uses a KD-tree structure to optimize the algorithm.
The modified version constructs a KD-tree from all the input points. The tree is used to find the closest
points and check their relative distance. This eliminates the need for checking all points in the set.
In the end, the algorithm extracts a set of clusters that contain points for every object on the table.

Due to the nature of RANSAC and noisy information from the camera, there can be present
artifacts, i.e., several clusters with a small number of points that have a negative effect on the
further steps. We have to filter clusters by their sizes. The minimal size of the cluster can be set
as a parameter of the Euclidean Clustering Extraction algorithm. To estimate the object’s position
we calculate its centroid. For all points in the cluster, we compute the mean with respect to three
coordinates. This represents the relative center of the object. Example segmentation results of the
3 different shape objects are shown in Figure 3.

Robotics 2020, 9, 63 6 of 16

(a) (b) (c)

Figure 3. Point cloud object segmentation: (a) original point cloud, (b) downsampled and segmented
point cloud, (c) corresponding object segments in a 2D image.

3.2. Object Classification

As indicated in Figure 2, in parallel to the object clustering using 3D point cloud data, the both RBG
and depth images acquired from the Asus Xtion Pro RGB-D camera are preprocessed for further object
classification with CNN. Using point cloud clusters of the objects described in the previous subsection,
it is possible to map 3D points to the 2D RGB and depth images to extract regions that contain objects.
These regions are then passed to the neural network for classification.

Object classification is performed using CNN. CNNs are able to learn how to extract features from
images effectively for image classification. We use both RBG and depth images acquired from the Asus
Xtion Pro RGB-D camera. Using point cloud clusters of the object described in the previous section,
it is possible to map 3D points to the 2D RGB and depth images to extract regions that contain objects.
These regions are passed to the neural network for classification.

The presented in this paper network was inspired by the work of [16]. The main idea is
to reduce the number of parameters in the network, thus decreasing the computational cost for
real-time applications. As in the original work, we use two different streams to process RGB and depth
information separately and combine two sets of features for classification. In addition, we have trained
the network without pre-trained weights. The architecture of our network is presented in Figure 1.
The network consists of two streams that perform feature extraction. The first stream takes an RGB
image as an input and outputs a feature vector of size 512. The second stream is similar to the first,
the only difference is that it takes depth grayscale image as an input and outputs a feature vector of
size 512. Two vectors are concatenated to a single 1024 vector and passed through fully connected
layers for classification.

The two streams have the same structure except for the first layer. One operates on three-channel
input (RGB) and the second on one (depth grayscale). Each stream consists of three convolutional layers,
two pooling layers, and one fully connected. The first convolutional layer has 32 filters with a kernel of
size 5 by 5 followed by a max-pooling layer with a kernel size of 2 by 2. The second convolutional layer
has 64 filters with a kernel of size 5 by 5 followed by a max-pooling layer with a kernel size of 2 by 2.
The third convolutional layer has 128 filters with a kernel of size 5 by 5 followed by a fully connected
layer with 10,368 neurons and 512 output neurons. After the concatenation of two streams, the output
is passed to two fully connected layers. First with 1024 input neurons and 512 output neurons.
The second is with 512 input neurons and the number of classes as the number of output neurons
followed by a softmax layer. We use ReLU as the activation function in our network.

Robotics 2020, 9, 63 7 of 16

3.3. Image Pre-Processing

Since our neural network expects input images of size 64 by 64, we apply several image
preprocessing steps. First, we rescale the region that was passed from the segmentation step
using nearest-neighbor interpolation. It was shown by Eitel et al. [16] that stretched images,
produced simple rescaling, negatively affect the performance of the classification. Thus we use
the same approach of rescaling the image. We rescale the input image preserving the original ratio
to the size of 64 by N or N by 64 depending on the orientation of the image, where N is less than 64.
If the shape of the input image is not square we apply the tiling method. A 64 by N or N by 64 image
is placed in the middle of a new 64 by 64 image. Then the algorithm repeats border pixels along the
longer side for the shorter side axis. The example of the results of such rescaling is shown in Figure 4.
This rescaling applied for both RGB and depth segments.

(a) (b) (c) (d)

Figure 4. Example of rescaling. (a,b): original rescaled images with preserved size ratio. (c,d): tiled
representation. 0—region is the original image, 1—regions are tiled from borders.

For the depth segment-first, we normalize all values to lie between 0 and 1. We do the same for
all three channels of the RGB segment. Then using precalculated mean and standard deviation for
the dataset to convert values for all channels of RGB and depth to have a mean of 0 and a standard
deviation of 1. Mean and standard deviation values of the RGB are mean_rgb = (0.5446, 0.5227, 0.4804),
std_rgb = (0.2094, 0.2139, 0.2612) and for depth mean_depth = 0.5106, std_depth = 0.3380. This flattens
the data distribution and helps the neural network converge faster.

3.4. Network Training

The training was done on a dataset containing both RGB and depth images and image labels in a
one-hot encoding vector of size N, where N is the number of classes in the dataset. The training was
split into two steps.

The first step is to train two streams (RGB and depth) separately. The initial per stream network is
modified by placing a fully connected layer and softmax classifier at the end of the stream. The modified
network is shown in Figure 5. The initialization of all parameters of the network (weights and biases) is
done randomly. The Stochastic Gradient Descent (SGD) algorithm is used as an optimizer to minimize
the loss function.

Let D = {(r1, d1, t1), (r2, d2, t2), ..., (rN , dN , tN)} be the training dataset, where ri denote RGB image,
di is depth image and ti is a one-hot encoded label. Let yI(ri) and yD(di) be the output of the last fully
connected layer for the RGB and depth streams, respectively, in relation to the inputs ri and di. As the
loss function a negative log-likelihood function is employed:

L(xi, ti) =
C

∑
i

log(so f tmax(y(xi)), ti), (1)

where xi = ri and y = yI if RGB stream or xi = di and y = yD if depth stream.

Robotics 2020, 9, 63 8 of 16

Figure 5. Modified network for a single stream. The two streams of the network are trained separately
in the first step. Partial networks that perform feature extraction are modified by adding another fully
connected layer, followed by a softmax layer.

The softmax function is formulated as below:

so f tmax(xi) =
exi

∑C
j exj

, (2)

where C is the number of classes. By minimizing the negative log-likelihood function (1) the algorithm
finds optimal parameters for the network.

After successful training of the two streams, they are combined as follows. In each stream, we
replace the last fully connected layer and softmax classifier. Outputs of the remaining layers for both
channels are concatenated into a single 1024 dimensional vector and passed to the fusion part of the
network (the gray part in Figure 1). The last part of the network is trained using the same algorithm
as above.

4. Experiments

4.1. Network Training and Evaluation

The quantitative evaluation of the proposed object classification and position estimation pipeline
was done using the Washington RGB-D object dataset [18]. The dataset contained a total of 300 different
instances of common household objects divided into 51 separate classes. Each instance was placed
on a turntable and captured from three different angles. The images were taken every frame for
one complete rotation of the turntable. The total number of RGB-D images in the dataset was
250,000. Objects were organized by classes and instances, which was different from other datasets
such as ImageNet. In the Washington RGB-D object dataset, two different instances of the same class
represented two different physical objects. This was in contrast to the ImageNet database, where it was
impossible to determine if two images were from the same object. The example of different instances
of the same category is shown in Figure 6.

The proposed model was evaluated following the procedure described by Lai et al. [18]. RGB and
Depth frames are subsampled every fifth frame to get the total 41,877 images for evaluation.
The category recognition task in the dataset has 10 different cross-validation splits. Each split has
one instance per category (51 instances) for testing and the remaining 249 instances are for training.
For every split, the number of RGB-D images for testing is approximately 35,000 and 7000 for testing.
The dataset also has an approximated segmentation mask for every image that is used to retrieve the
region of interests.

As described above, our pipeline has two streams, three convolutional layers, two max-
pooling layers, and two fully connected layers per stream, with two fully connected layers as classifiers
at the end. During training, we added several batch normalization layers after every convolutional
layer but before their activation. We added a dropout layer with probability 0.2 after the second

Robotics 2020, 9, 63 9 of 16

max-pooling layer and with probability 0.4 after the third convolutional layer in each stream. We also
added a batch normalization layer after the first fully connected layer in the fusion part of the network
and add a dropout layer afterward with probability 0.5. As a result, we observed that adding batch
normalization and dropout layers increased both the learning speed and performance of the network.

Figure 6. Example of the Washington RGB-D dataset. Four different instances that belong to the same
category: comb.

The network training was performed in stages. First, we trained RGB and depth streams
independently using a batch size of 64. Both streams were trained for 50 epochs using the Stochastic
Gradient Descent (SGD) algorithm as optimizer during training with a momentum equal to 0.9
and learning rate set to 0.01, which we changed to 0.001 after 30 epochs. After two streams had
been trained we replaced their last fully connected layers with concatenation and proceeded to the
next stage, i.e., the training of a full combined network. We used SGD with a momentum of 0.9 and
a learning rate of 0.01 as in the previous stages. The network was trained for 50 epochs with the
learning rate being reduced to 0.001 after 30 epochs. Two different approaches were compared in
the last stage. The first was freezing RGB and depth streams while training the last layers and the
second approach was to propagate the gradient throw the entire network. We observed that the stream
freezing gives better performance. We also experimented with skipping the first stage and trained
everything at once. This also showed a decrease in performance compared to the primary method.
To increase the performance we augmented the data set with random horizontal flips during training.
The number of epochs and training parameters were chosen from preliminary tests. The training of
the single-stream on a PC workstation with Intel Xeon CPU and NVIDIA 1080 Ti GPU graphics card
required approximately one hour.

4.2. Experimental Robot-Manipulation Setup

The experimental validation of the presented object classification and position estimation
pipeline was conducted on a pick-and-place laboratory setup consisting of a 6-DOF Universal Robots
UR10 industrial robot-manipulator controlled in real-time from the Robot Operating System (ROS)
programming environment on a control PC by streaming URScript language commands via TCP/IP
communication [30,31]. The robot-manipulator was equipped with a custom 3D printed 3-finger
adaptive gripper [32] for flexible object picking and was placed near a commercial shop conveyor
installation as shown in Figure 9 in Section 5.3. The shop conveyor thus formed a robot working table
surface for object grasping, that can be used for implementing static and dynamic (as future work)
object picking task scenarios. An Asus Xtion Pro RGB-D sensor was fixed on a holder mounted on
the conveyor system (not seen in the figure) for visual and depth data acquisition of the conveyor
table scene.

Robotics 2020, 9, 63 10 of 16

In order to transform points from the RGB-D camera frame to the robot base frame, a corresponding
transformation matrix was computed using the following experimental method. The use the RGB-D
camera sensor allows to acquire Cartesian coordinates of an arbitrary point is the robot workspace in
both the camera frame and the robot base frame. It is done by attaching a marker to the end effector
and moving the robot to the desired position. In order to compute the transformation, we define an
intermediate frame of reference W. The matrices RTW and CTW , denoting transformation from W to
the robot base and camera frames, R and C respectively. The RTW and CTW are computed using the
coordinates of four points a, b, c, d ∈ IR3 not lying on the same plane in the respective frames as follows:

vx =
a− b
||a− b|| ;

vy =
projvx (a− c)
||projvx (a− c)|| ;

vz =
projvx×vy(a− d)
||projvx×vy(a− d)|| ;

T =

[
vx vy vz a
0 0 0 1

]
. (3)

The transformation matrix from the camera to the robot base frame RTC is obtained as follows:

RTC =R TW ·C T−1
W . (4)

All system hardware components, data processing, and control algorithms were integrated
into ROS. Details of the robot motion planning and control implementations will be shortly reported
in the author’s future publication. In order to adapt the developed object classification algorithm to
the laboratory setup an additional subset of object images was manually collected. The network was
then retrained using transfer learning techniques.

5. Results and Discussion

5.1. Classification Accuracy

Table 1 presents a comparison of the classification accuracy results of the proposed framework
with several reported state-of-the-art techniques, that previously utilized the same Washington RGB-D
dataset [18]. The presented comparison demonstrates that the proposed model is comparable with
and in some cases outperforms the other approaches. Specifically, the model obtains 76.3% ± 3.8%
classification accuracy for RGB and 76.3% ± 2.1% for depth streams, separately. However, using both
RGB and depth streams together, its performance goes up to 86.2% with a standard deviation
of 1.3%. This is only 5% less than the most accurate model, VGG3D [29]. Although our framework
obtains slightly lower classification scores than VGG3D, CNN Features, and Fus-CNN, it requires
much fewer parameters. As a result, it uses less computational time for both inference and
training stages, thus, making it more suitable for implementations in real-time systems. Both CNN
Features and Fus-CNN are based on the CaffeNet architecture pre-trained on the ImageNet
dataset [27]. One stream of the Fus-CNN has five convolutional and two fully connected layers
requiring 213,469,216 parameters. In total, the two streams and the last fully connected layers
have 460,705,907 parameters. On the contrary, the proposed network reduces the number of
convolutional and fully connected layers to three and two, respectively, per stream, yielding a total
of 11,684,019 parameters, which is only 2.5% of the original architecture. Comparing the number of
parameters of the proposed model to VGG3D, we should note that VGG3D has two streams based on
VGGNet-16. The first stream has the same model as VGGNet-16, and the second stream changes the
first 2D convolutional layer to a 3D convolutional layer. Moreover, it has an additional stream that

Robotics 2020, 9, 63 11 of 16

is a 3D convolutional network, consisting of two convolutional layers of size 64 by 64 by 64 with a
kernel size 3 by 3 by 3 and two fully connected layers. Combined all three streams have more than
230 million parameters, which makes our model size around 5% of VGG3D.

Figure 7 demonstrates the per-call recall of all test splits. We can see that more than half of the
classes achieved a recall of more than 95%. The lowest recall of less than 50% showed classes peach,
mushroom, and pitcher. This can be explained by the difficulty of the dataset and that these classes
have widely different instances or fewer images per category in general. Analyzing the confusion
matrix, presented in Figure 8, we can notice that peach class is most often confused with garlic, and to
a lesser extent with a ball and orange, a mushroom is confused with garlic, and a pitcher is confused
with a coffee mug.

Table 1. Accuracy comparison of the proposed CNN with other reports on the Washington RGB-D
object dataset for a category recognition task (in percent).

Method RGB Depth RGB-D

Nonlinear SVM [18] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5
HKDES [33] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2

Kernel Desc. [19] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1
CKM Desc. [20] N/A N/A 86.4 ± 2.3
CNN-RNN [34] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

CNN Features [17] 83.1 ± 2.0 N/A 89.4 ± 1.3
Fus-CNN (jet) [16] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

VGG3D [29] 88.96 ± 2.1 78.43 ± 2.4 91.84 ± 0.89

Proposed model 76.3 ± 3.8 76.3 ± 2.1 86.2 ± 1.3

Figure 7. Per-class recall on all test splits. The network achieves a recall of more than 95% on more
than half of the classes. Classes peach, mushroom, and pitcher have the lowest recall of less than 50%.
This can be explained by the difficulty of the dataset. Some classes such as pitcher have only 3 instances
that are very different from one another. Some classes have fewer images in general, e.g., mushroom
category has 729 compared to 1780 images in ball category.

5.2. Computation Performance

The next set of experiments was focused on measuring the execution time of the proposed and
the previous frameworks for the inference step. Table 2 shows the average execution time over
1000 iterations along with the number of parameters associated with each method. All models were
tested on the same PC workstation with Intel Xeon(R) E5-2620 v4 @ 2.10 GHz × 16 CPU and NVIDIA
1080Ti GPU card. According to the results, the proposed model takes 66.11%, 32.65%, and 28.77% less
time than VGG3D, Fus-CNN, and CNN Features, respectively using GPU. When the experiments are
conducted on CPU, our model takes 86.91%, 51.12%, and 50.15% less time than VGG3D, Fus-CNN,
and CNN Features.

Robotics 2020, 9, 63 12 of 16

Figure 8. The confusion matrix for all test splits shows that the vast majority of categories are
classified correctly. Analyzes the confusion matrix shows that peach class is most often confused
with garlic, and to a lesser extent with ball and orange, a mushroom is confused with garlic, and a
pitcher is confused with a coffee mug.

Table 2. Average execution time over 1000 iterations in ms of the proposed and other CNN models
running on a PC workstation with Intel Xeon(R) E5-2620 v4 @ 2.10 GHz × 16 CPU and NVIDIA 1080Ti
GPU card.

Method On GPU, ms On CPU, ms Parameters

VGG3D [29] 4.491 812.918 230× 106

Fus-CNN [16] 2.260 217.595 460.7× 106

CNN Features [17] 2.137 213.389 460.7× 106

Proposed model 1.522 106.369 11.7× 106

The speedup our model gains is attributed to two main features. One is the decreased number of
parameters used by the proposed model and the other is its input size. Namely, the proposed network
works with an input of size 64 by 64. In contrast, the CaffeNet and VGG3D both expect an input of size
224 by 224. These results represent the overall speedup gained by our framework despite the slight
drop (approximately 5%) in the classification performance due to the network simplification. Therefore,
the proposed model offers the performance-complexity trade-off between accuracy and speed. Namely,
the faster network is less accurate but suitable for real-time applications, while the more accurate
architectures are slower and thus not suitable for real-time.

5.3. Experimental Verification

The reported above comparative object classification accuracy and computation performance
evaluations of the developed object classification and position estimation pipeline confirmed its
potential applicability for designing real-time robotized object pick-and-place systems. This was

Robotics 2020, 9, 63 13 of 16

further experimentally verified through the development of the laboratory robot-manipulation setup
described in Section 4.2 and realization of a simplified static object pick-and-place task scenario with
the fixed top-down grasping of standing plastic bottle objects as demonstrated in Figure 9. The figure
presents a sequence of camera shots in which two 0.5-liter plastic bottle objects were placed on top
of the standing still shop conveyer belt. Initially, the robot was in its pre-defined home configuration
with an open gripper, as shown in Figure 9a. The system acquires RGB-D images and performs
object classification routine using the presented data processing framework. Subsequently, the system
determines positions for all identified objects of interest, generates the robot trajectory towards a closest
detected object on a scene, and executes the robot motion, as shown in Figure 9b,c. The conversion
of the estimated object positions from the camera frame to the robot base frame for the robot motion
planning is done using the transformation matrix (4), precalculated using the procedure described in
Section 4.2. Subsequently, the object is grasped by the robot gripper fixed in the top-down orientation
(Figure 9d) and is then transferred towards a bin, as demonstrated in Figure 9e–g. Once the object
is released to the bin, the robot returns to its home position (Figure 9h) and starts a new cycle again.
If no objects are detected in the working scene, the robot remains in its home position. The video
demonstration of this task accompanies this publication and is also available at the authors’ research
lab web-site https://www.alaris.kz and https://youtu.be/Dz-XoVHUdvw.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Video frames at eight different time instants during the autonomous bottle object picking-and-
placing test performed by the experimental robot setup.

Multiple test runs resulting in more than 50 picking trials with various distinctive shape objects
such as bottle, cup, ball, and others, confirmed the validity of the proposed object classification and
position estimation pipeline for the task of repetative real-time detection of selected objects and their
picking-and-placing with fixed gripper orientation. The average run-time required to classify and grasp
a single object with a robot was approximately 5 s, whereas a complete object pick-and-placing cycle
took about 20 s. The relatively slow system performance is explained by the fact that joint velocities of
the experimental UR10 robot were limited to 30% from its nominal values due to safety reasons for the
pilot testing of the developed object classification and position estimation pipeline. Despite of that,
the achieved system performance was, in general, comparable with the reported grasp planning
run-times ranging from 0.06 s to 40 s for a number of top-scoring pick-and-place robotic systems,
participated in the Amazon Picking Challenge competitions as reported in [12]. In approximately 95%
of test trials, the system was able to accurately position the robot over the detected objects of interest

https://www.alaris.kz
https://youtu.be/Dz-XoVHUdvw

Robotics 2020, 9, 63 14 of 16

in an automatic mode, ensuring stable cyclic execution with time delays. However, due to the use
of a simple custom-made 3D printed gripper, the rate of successful object grasps by the robot was
slightly lesser and equaled to approximately 80%. Optimization of the system run-time and object
grasping performance, that could include relaxing the imposed robot joint velocity constraints with
optimizing the robot motion planning algorithm in terms of implementing additional safety features
for accounting unexpected presence of human and other obstacles in the robot workspace as well as
implementation and testing of various object pose estimation and grasping strategies, was beyond the
scope of this work and will the subject of authors’ future research.

6. Conclusions and Future Work

In this paper, we have presented a novel unified framework for object detection/classification and
spatial position estimation using a combination of point cloud processing and deep learning techniques.
Experimental evaluation of the proposed CNN model including the comparison with the previous
works demonstrates its effectiveness and efficiency. Moreover, fewer parameters of the proposed model
compared to other multimodal neural networks make our model suitable for real-time applications.
In particular, the experiments performed on the Washington RGB-D object dataset [18] show that the
proposed framework has 97.5% and 95% fewer parameters compared to the previous state-of-the-art
multimodel neural networks Fus-CNN [16], CNN Features [17], VGG3D [29], respectively, with the
cost of approximately 5% drop in object classification accuracy. Moreover, experimental results show
that the proposed method significantly outperforms previous multimodel neural networks in terms
of the inference time. In comparison with the methods presented in [16,17,29], the proposed model
takes 66.11%, 32.65%, and 28.77% less time on GPU and 86.91%, 51.12%, and 50.15% less time on
CPU respectively. This allowed us to successfully implement the presented framework for real-time
object classification and position estimation in the experimental robot pick-in-place setup.

The proposed pipeline is trained using the training subset selected from the Washington RGB-D
object dataset. As future work, instead of training the proposed model from scratch, we plan to
start the training process from a pre-trained network such as the ones trained on ImageNet [28] or
Microsoft COCO [35]. In addition, the network will be modified to overcome the limitation of having
all objects located on a plane. Using bounding box object detection techniques, we plan to generalize
our framework to detect objects that are not necessarily placed on a single plane.

The experimental robotized pick-and-place system that is presented in this paper is in its early
stage of development. Conducted feasibility tests were limited to grasping spherical and vertically
standing cylindrical shape objects due to the simple design of the employed robotic gripper in a
fixed top-down orientation. Further work will be focused on implementation more sophisticated and
realistic operations such as picking occluded objects and placing objects on the shelves. The next step
is adopting the approach of the [36,37] in pose estimation and combining it with advanced object
grasping while archiving lower system run-times. One of the ideas for further development is a
combination of the suction end-effector with the gripper for more reliable object picking. Picking the
operation of the moving objects is also planned to be studied.

Author Contributions: Conceptualization, S.S., M.F.D. and A.S.; Data curation, S.S.; Formal analysis, S.S.
and M.F.D.; Funding acquisition, A.S.; Investigation, S.S., A.O. and A.S.; Methodology, S.S., M.F.D. and A.S.;
Project administration, A.S.; Resources, A.S.; Software, S.S. and A.O.; Supervision, M.F.D. and A.S.; Validation,
S.S., A.O. and A.S.; Visualization, S.S.; Writing—original draft, S.S. and A.S.; Writing—review and editing, A.O.
and M.F.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded under the Nazarbayev University faculty development grant project
“Development of an Intelligent Assistive Robot Manipulation System for Improving the Quality of Life of Disabled
People in Kazakhstan” (grant no. 090118FD5340) and the Kazakhstan Ministry of Education and Science’s young
researchers grant project “Development of an Autonomous Skid-Steering Based Mobile Robot-Manipulation
System for Automating Warehouse Operations in Kazakhstan”(Project IRN AP08052091).

Acknowledgments: The authors would like to thank Roman Kruchinin and Anton Kim for their technical support
in developing the experimental robot pick-and-place setup and validation experiments.

Robotics 2020, 9, 63 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hossain, D.; Capi, G.; Jindai, M.; Kaneko, S.I. Pick-place of dynamic objects by robot manipulator based on
deep learning and easy user interface teaching systems. Ind. Robot. Int. J. 2017, 44, 11–20, . [CrossRef]

2. Shi, J.; Koonjul, G.S. Real-Time Grasping for Robotic Bin-Picking and Kitting Applications.
IEEE Trans. Autom. Sci. Eng. 2017, 14, 809–819, . [CrossRef]

3. Hutchinson, S.; Hager, G.; Corke, P.I. A Tutorial on Visual Servo Control. IEEE Trans. Robot. Autom.
1996, 12, 651–670. [CrossRef]

4. Hager, G.D.; Chang, W.C.; Morse, A.S. Robot Hand-Eye Coordination Based on Stereo Vision.
IEEE Control Syst. Mag. 1995, 15, 30–39, .

5. Tsai, C.Y.; Wong, C.C.; Yu, C.J.; Liu, C.C.; Liu, T.Y. A Hybrid Switched Reactive-Based Visual Servo Control
of 5-DOF Robot Manipulators for Pick-and-Place Tasks. IEEE Syst. J. 2015, 9, 119–130. [CrossRef]

6. Bellandi, P.; Docchio, F.; Sansoni, G. Roboscan: A combined 2D and 3D vision system for improved speed
and flexibility in pick-and-place operation. Int. J. Adv. Manuf. Technol. 2013, 69, 1873–1886. [CrossRef]

7. Saudabayev, A.; Khassanov, Y.; Shintemirov, A.; Varol, H.A. An Intelligent Object Manipulation Framework
for Industrial Tasks. In Proceedings of the 2013 IEEE International Conference on Mechatronics and
Automation, Takamatsu, Japan, 4–7 August 2013; pp. 1708–1713.

8. Rennie, C.; Shome, R.; Bekris, K.E.; De Souza, A.F. A Dataset for Improved RGBD-Based Object Detection
and Pose Estimation for Wirehouse Pick-and-Place. IEEE Robot. Autom. Lett. 2016, 1, 1179–1185, . [CrossRef]

9. Wurman, P.R.; Romano, J.M. The Amazon Picking Challenge 2015. AI Mag. 2016, 37, 97. [CrossRef]
10. Correll, N.; Bekris, K.E.; Berenson, D.; Brock, O.; Causo, A.; Hauser, K.; Okada, K.; Rodriguez, A.;

Romano, J.M.; Wurman, P.R. Analysis and Observations from the First Amazon Picking Challenge.
IEEE Trans. Autom. Sci. Eng. 2018, 15, 172–188, [CrossRef]

11. He, R.; Rojas, J.; Guan, Y. A 3D object detection and pose estimation pipeline using RGB-D images.
In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Macau, China, 5–8 December 2017; pp. 1527–1532.

12. Zeng, A.; Song, S.; Yu, K.T.; Donlon, E.; Hogan, F.R.; Bauza, M.; Ma, D.; Taylor, O.; Liu, M.; Romo, E.; et al.
Robotic Pick-and-Place of Novel Objects in Clutter with Multi-Affordance Grasping and Cross-Domain Image
Matching. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 3750–3757.

13. Schwarz, M.; Milan, A.; Periyasamy, A.S.; Behnke, S. RGB-D object detection and semantic segmentation for
autonomous manipulation in clutter. Int. J. Robot. Res. 2018, 37, 437–451. [CrossRef]

14. Rusu, R.B.; Cousins, S. 3D is Here: Point cloud library (PCL). In Proceedings of the 2011 IEEE International
Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011.

15. Aldoma, A.; Marton, Z.C.; Tombari, F.; Wohlkinger, W.; Potthast, C.; Zeisl, B.; Rusu, R.B.; Gedikli, S.;
Vincze, M. Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation.
IEEE Robot. Autom. Mag. 2012, 19, 80–91. [CrossRef]

16. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal Deep Learning for Robust
RGB-D Object Recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 681–687.

17. Schwarz, M.; Schulz, H.; Behnke, S. RGB-D Object Recognition and Pose Estimation Based on Pre-Trained
Convolutional Neural Network Features. In Proceedings of the 2015 IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1329–1335.

18. Lai, K.; Bo, L.; Ren, X.; Fox, D. A Large-Scale Hierarchical Multi-View RGB-D Object Dataset. In Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 1817–1824.

19. Bo, L.; Ren, X.; Fox, D. Depth Kernel Descriptors for Object Recognition. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011;
pp. 821–826.

http://dx.doi.org/10.1108/IR-05-2016-0140
http://dx.doi.org/10.1109/TASE.2017.2671434
http://dx.doi.org/10.1109/70.538972
http://dx.doi.org/10.1109/JSYST.2014.2358876
http://dx.doi.org/10.1007/s00170-013-5138-z
http://dx.doi.org/10.1109/LRA.2016.2532924
http://dx.doi.org/10.1609/aimag.v37i2.2659
http://dx.doi.org/10.1109/TASE.2016.2600527
http://dx.doi.org/10.1177/0278364917713117
http://dx.doi.org/10.1109/MRA.2012.2206675

Robotics 2020, 9, 63 16 of 16

20. Blum, M.; Springenberg, J.T.; Wülfing, J.; Riedmiller, M. A Learned Feature Descriptor for Object Recognition
in RGB-D Data. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation,
Saint Paul, MN, USA, 14–18 May 2012; pp. 1298–1303.

21. Bo, L.; Ren, X.; Fox, D. Unsupervised Feature Learning for RGB-D Based Object Recognition. In Experimental
Robotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–402.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: Dutchess County, NY, USA, 2012;
pp. 1097–1105.

25. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich,
A. Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

26. Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning Rich Features From RGB-D Images for Object
Detection and Segmentation. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014;
pp. 345–360.

27. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.
Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

28. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115,
211–252. [CrossRef]

29. Zia, S.; Yuksel, B.; Yuret, D.; Yemez, Y. RGB-D Object Recognition Using Deep Convolutional Neural
Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 896–903.

30. Rubagotti, M.; Taunyazov, T.; Omarali, B.; Shintemirov, A. Semi-Autonomous Robot Teleoperation With
Obstacle Avoidance via Model Predictive Control. IEEE Robot. Autom. Lett. 2019, 4, 2746–2753. [CrossRef]

31. Andersen, T.T. Optimizing the Universal Robots ROS Driver; Technical University of Denmark, Department of
Electrical Engineering: Kongens Lyngby, Denmark, 2015.

32. Telegenov, K.; Tlegenov, Y.; Shintemirov, A. A Low-Cost Open-Source 3-D Printed Three-Finger Gripper
Platform for Research and Educational Purposes. IEEE Access 2015, 3, 638–647. [CrossRef]

33. Bo, L.; Lai, K.; Ren, X.; Fox, D. Object Recognition With Hierarchical Kernel Descriptors. In Proceedings of
the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 1729–1736.

34. Socher, R.; Huval, B.; Bath, B.; Manning, C.D.; Ng, A.Y. Convolutional-Recursive Deep Learning for 3D
Object Classification. In Proceedings of the Advances in Neural Information Processing Systems 25, Stateline,
NV, USA, 3–8 December 2012; pp. 656–664.

35. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:
Common Objects in Context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014;
pp. 740–755.

36. Xu, H.; Chen, G.; Wang, Z.; Sun, L.; Su, F. RGB-D-Based Pose Estimation of Workpieces with Semantic
Segmentation and Point Cloud Registration. Sensors 2019, 19, 1873. [CrossRef]

37. Ten Pas, A.; Gualtieri, M.; Saenko, K.; Platt, R. Grasp Pose Detection in Point Clouds. Int. J. Robot. Res.
2017, 36, 1455–1473. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/LRA.2019.2917707
http://dx.doi.org/10.1109/ACCESS.2015.2433937
http://dx.doi.org/10.3390/s19081873
http://dx.doi.org/10.1177/0278364917735594
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Recent Works with RGB-D Data
	Deep Learning Approach

	Proposed Unified Framework
	Object Segmentation Pipeline
	Object Classification
	Image Pre-Processing
	Network Training

	Experiments
	Network Training and Evaluation
	Experimental Robot-Manipulation Setup

	Results and Discussion
	Classification Accuracy
	Computation Performance
	Experimental Verification

	Conclusions and Future Work
	References

