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Abstract

Motion planning in uncertain environments is an essential feature of autonomous
robots. Partially observable Markov decision processes (POMDP) provides a princi-
pled approach for such planning tasks and have been successfully employed for various
robotic applications. Offline planning algorithms for POMDPs have proved to achieve
optimal policies. However, these algorithms are computationally very expensive and
are not often applicable to accomplish realistic robot motion planning scenarios. As
an alternative to offline planning Monte Carlo algorithms for online planning were
developed, e.g. DESPOT and POMCP are implemented for public use within a set
of open-source POMDP libraries. The aim of this master thesis is to explore applica-
bility of available open-source POMDP libraries to real-time robot motion planning
tasks. We adopt these libraries for the POMDP models proposed in the literature
and replicate a number of realistic benchmark experiments.

Thesis Supervisor: Almas Shintemirov
Title: Associate Professor
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Chapter 1

Introduction

Autonomous robots have greatly advanced in a wide range of tasks that involve sens-

ing, manipulation and navigation. Usually, they operate in stable and structured

environments and perform precisely defined tasks. Such tasks involve only known

objects and mostly have a repetitive character, so they can be solved by a sequence of

small, predetermined subroutines. However, we would like them to be able to accom-

plish more complex tasks, not only in environments with perfect settings. To carry

out the tasks, robots may have to deal with not only dynamic and uncertain envi-

ronments, but also manipulate objects with unknown properties. Object’s properties

that can be unknown are its appearance, weight, location, number, partial occlusion,

etc.

Despite the imperfect knowledge about their environment, autonomous robots

are still expected to operate reliably, therefore motion planning under uncertainty is

considered an essential capability though challenging. Without direct awareness of

its own current state, a robot has to decide on the best action to take based on the

set of all probable states consistent with observed information. Partially observable

Markov decision processes (POMDP) is found suitable for such planning tasks as it

provides a principled and general decision-making framework to capture uncertainties

and estimate system states.

In a POMDP to meet the partial observability, a given problem is modelled us-

ing probabilities for all the uncertainties. The model obtains observations from its
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environment that can be uncertain or incomplete. The interaction between the en-

vironment and the agent also includes a reward and penalty system. Observations,

rewards/penalties and history of previously received information all take part in de-

cision making and selecting actions to successfully complete the given task [23].

Offline planning algorithms such as value iteration and policy iteration are tradi-

tionally used to find the optimal policy in POMDPs. In worlds where the state space,

the action space, the observation space and the planning horizon are all finite, offline

planning algorithms for POMDPs have proved to achieve optimal policies. However,

these algorithms are computationally very expensive and are not often applicable to

accomplish realistic robot motion planning scenarios. Online planning algorithms de-

veloped as an alternative to offline planning are shown to handle different POMDP

domains efficiently [29].

Two state-of-the-art online planning solvers, POMCP (Partially Observable Monte

Carlo Planning) [26] and DESPOT (Determinized Sparse Partially Observable Trees)

[28], use the Monte Carlo method which is based on repeated random sampling.

POMCP performs Monte Carlo sampling both for sampling states from the current

belief and sampling histories with a black-box simulator. DESPOT is a sparsely

sampled belief tree determined by a number of scenarios sampled randomly, which is

used for searching of a good enough policy. Both POMCP and DESPOT achieved a

high level of performance in solving large planning tasks.

1.1 Project goals

Despite the success of different algorithms in solving POMDPs, it is still an open

question which robotic motion planning tasks with some level of uncertainty benefit

from the explicit modeling as a POMDP. One of the aims of this master thesis is

to explore real world problems modeled and solved as POMDPs. We discover that

POMDP has found use and improved performance in various robotic tasks such as

navigation, localization, grasping and target tracking [12].

Defining a POMDP model for a particular task is a demanding process, as it
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requires a thorough prior analysis to produce an appropriate model that integrates all

the uncertainties. We learn how to build an appropriate POMDP model on the basis

of two benchmark problems, namely Laser Tag and Rock Sample. These benchmark

problems represent different types of robotic tasks, have their own distinct uncertainty

and contrasting domains.

Additionally, this master thesis focuses on exploring applicability of available

open-source POMDP libraries to real-time robot motion planning tasks. For this

purpose, we test the performance of two state-of-the-art online solvers, POMCP and

DESPOT, implemented by the APPL toolkit, on Laser Tag and Rock Sample. We

connect the solvers to an external simulator to approximate their performance in the

real world.

The above stated thesis goals aim, in general, to initiate, for the first time, the-

oretic and experimental research on POMDP framework applications to developing

intelligent robotics systems at Nazarbayev University and Kazakhstan. The theoret-

ical foundations developed as a result of this thesis work are planned to be continued

as part of a funded research project on developing an autonomous multi-purpose mo-

bile robot-manipulation system of the thesis supervisor and would ultimately result

in developing a fully functioning intelligent mobile robot prototype.

1.2 Thesis outline

Chapter 2 starts with the literature review on robotic tasks with some degree of

uncertainty modeled as POMDPs. It follows with a formal definition of a POMDP

and its challenges. The chapter is concluded with a general approach to solving

POMDPs and description of two existing solvers.

In Chapter 3 first two benchmark problems and their POMDP models are intro-

duced. Next the APPL toolkit for POMDP planning is described. The experiments

setup and the results conclude the chapter.

Chapter 4 summarizes the thesis work and provides an outlook on future work.
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Chapter 2

Background

2.1 Modeling robotic tasks under uncertainty as

POMPDs

Robotic tasks have been formulated as POMDPs in many different studies. One of the

areas POMDP has found application in is robotic grasping. Hsiao et al. [9] proposed

a method for partitioning the configuration space into a set of regions that further

constitute the states in a partially observable Markov decision process (POMDP).

They applied the method on the problem of performing pick-and-place operations

by robotic arm and hand. In their setup, position of the robot, task dynamics and

sensors were well known, and the uncertainty came from the robot’s configuration

and the state of the objects such as their shapes and relative pose.

The authors built their work on the ideas of one of the early approaches to plan-

ning in the presence of uncertainty [16]. This early approach was computationally

complex and susceptible to failures since it tried to produce a plan that would work

for all possible configurations. Hsiao et al. modeled the uncertainties using a prob-

ability distribution opposed to a set, which allowed to make trade-offs in order to

deliver a feasible plan rather than an optimal one. This computational simplification

was achieved by reducing the state and action space using abstraction. Such repre-

sentation of the task allowed to focus on those parts of the space that had higher
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probability to be encountered. In this study a planning algorithm named heuris-

tic search value iteration (HSVI) presented in [27] was used. HSVI combines two

well-known techniques: 1. attention-focusing search heuristics to sample belief states

with a relatively high probability of being encountered; 2. piecewise linear convex

representations of the value function to choose from those parts of the belief space.

More research works on planning for robotic grasping with uncertainty are pre-

sented in [5], [8], [13] and many others.

POMDPs have also been applied to robotic navigation problems. Ross et al. [24]

adopted a Bayesian approach to a simple robot navigation task modeled as a POMDP.

The robot moved in an open 2D area and tried to arrive at a specific goal location.

In Bayesian reinforcement learning framework, given a prior distribution over model

parameters, the posterior distribution is updated as the robot interacts with the

environment. Optimal action is selected according to the posterior distribution over

model parameters. Normal-Wishart distribution was chosen to represent the posterior

distribution as it is more suitable for cases with continuous spaces. In their work

authors used an extended POMDP model, BACPOMDP, which stands for the Bayes-

Adaptive Continuous POMDP. In BACPOMDP the belief update operation includes

the Normal-Wishart parameters as well as the state of the system, making the value

of learning information about the environment an integral part of the planning. Also,

during the belief update a particle filter based on Monte Carlo sampling methods is

used to approximate the belief states.

Additional examples on navigation tasks modeled as POMDPs can be found in

[4] and [13].

Object manipulation is another area where POMDPs are widely used. Pajarinen

et al. [19] worked on the problem of manipulating unknown objects in a cluttered

environment. In their study they considered different possible object compositions

in decision making, rather than trying to find a single best object composition. In

their experiments RGB-D data of the current scene is available to the robot, which is

segmented and for each segment the probability of the segment belonging to an object

is estimated. Based on these probabilities and past grasp attempts a probability
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distribution over possible object compositions is created. For belief estimation they

used an online POMDP method that computes probabilities of successfully grasping

an object and observing its attributes based on the level of object’s occlusion. Failed

past grasps on the other hand are assumed to succeed only if the occlusion on the

object changes. The last step is choosing the best long-term action for the current

object distribution (with the highest grasp probability for an action) using POMDP

and performing that action.

Li et al. [14] also studied the problem of object’s search in clutter, specifically

the task of finding a drink can in the jam-packed fridge. They prove that a multi-

step POMDP planning has a clear advantage over simple greedy approaches. These

findings agree with results of Pajarinen [19]. By multi-step planning they mean to

find a sequence of actions to move objects in the cluttered environment to uncover

the occluded target object. However, contrary to Pajarinen [19] who manipulated

unknown objects, Li uses six known in advance different types of objects for their

model with the maximum of eight objects on the shelf.

Li also states that moving objects inside the confined space rather than taking

them out is preferable, but this poses a new problem of determining where exactly

objects to be moved. The state space and the action space for this problem of place-

ment are condemned to be large, since the model has to explicitly represent object

poses in the coordinate system, which leads to over 1000 possible actions and around

1032 states. They used an approximate online POMDP algorithm, DESPOT (Deter-

minized Sparse Partially Observable Tree) [28], which searches a sampled belief tree.

DESPOT is able to handle large state spaces, but to make the search in DESPOT

more efficient, authors reduced the number of actions by exploiting the spatial con-

straints.

POMDPs have been successfully employed for other robotic manipulation tasks

such as sorting objects [17], [18], object detection [1], [3] and so on.

19



2.2 Partial Observable Markov Decision Process

(POMDP)

A partially observable Markov decision process can be described as a tuple [11]

⟨𝑆,𝐴, 𝑇,𝑅,Ω, 𝑂⟩

where

• S, A, T, and R describe a Markov decision process:

– S is a set of states of the world. The number of states can be finite,

countably infinite, or continuous.

– A is a set of actions. The number of actions may be finite, countably

infinite, or continuous.

– 𝑇 : 𝑆 × 𝐴 → Π(𝑆) is the state-transition function, giving for each world

state and agent action, a probability distribution over world states. Due

to uncertainty in action effect, the world has a certain probability of tran-

sitioning into any state in S. 𝑇 (𝑠, 𝑎, 𝑠′) denotes the probability of ending

in state s’, given that the agent starts in state s and takes action a.

– 𝑅 : 𝑆 × 𝐴 → 𝑅 is the reward function, giving the expected immediate

reward gained by the agent for taking each action in each state. 𝑅(𝑠, 𝑎)

denotes the expected reward for taking action a in state s. The agent’s goal

is to maximize its expected total reward by choosing a suitable sequence

of actions.

• Ω is a finite set of observations the agent can experience of its world. In POMDP,

the agent is not directly aware of its current state. Instead, the agent takes in

an observation o ∈ Ω through its sensors after executing an action.

• O is the observation function, which gives a probability distribution over pos-

sible observations for each action and resulting state. 𝑂(𝑠′, 𝑎, 𝑠) denotes the
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probability of making observation o given that the agent took action a and

landed in state s.

There are also two other important components of POMDP models, which are

even included in the POMDP tuple in some literature [10][21]:

• 𝛾 is a discount factor. In some POMDP models, as in the "Light" environment

presented in [15], the agent may receive an unbounded series of positive rewards

by sitting in one state and executing a single action over and over again, never

reaching the goal. To avoid this problem a concept of discounting is introduced.

It is based on the idea that an infinite sequence of positive rewards is unrealistic,

and rewards received in the near future must be valued more than those received

in the distant future. The discount factor 𝛾 is commonly specified in the (0, 1)

range, which assures that even in an infinite horizon the total reward is finite

and the problem is well defined [10]. A reward r received at time t is contributed

as 𝛾𝑡𝑟 to the total reward.

In case when 𝛾 is equal to 1, no discounting occurs and the total reward is a

simple sum of all reward values. If 𝛾 is close to 1, with each time step the

contribution of future rewards to the total reward lessen exponentially. In case

when 𝛾 is close to 0, distant rewards drop to near-zero values, so only immediate

rewards are important. If 𝛾 is equal to 0, only reward at 𝑡0 is counted. Another

view on the discount factor is that it represents the probability that a trial will

be allowed to continue after each step [15].

• 𝑏0 is the initial belief.

In POMDP, observations can be partial and/or noisy. They depend on the

current state, as well as on the action taken, however they are not specific to a

single state and the same observation may occur in different states. On top of

that the observation function itself is probabilistic. Therefore, at any time an

agent usually cannot determine its current state. One possible solution for the

agent is to decide on its next action based on the complete history of actions
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and observations up to the current time step. However, storing complete history

is memory consuming. Instead, the agent stores a probability distribution over

the state space, where each value represents the likelihood of the agent to be

in each state. This probability distribution is called belief state [6]. Kaelbling

et al. [11] prove that storing such distribution rather than complete history

is a sufficient statistic and additional data about past actions or observations

neither improve knowledge about the current state nor increase the expected

total reward.

Thus, 𝑏0 is the initial state probability distribution at 𝑡 = 0. The distribution

𝑏0 mainly depends on the domain. If the agent has no knowledge about its

true state, the initial belief is usually uniform over the state space. Gaussian is

another commonly used distribution for initial belief. It is found most suitable

in robot localization problems, where the belief can be centered around the

robot’s actual location [29].

2.2.1 Tiger Problem

Let’s consider the well-known Tiger problem to better understand each component

of POMDP [11]:

Imagine an agent standing in front of two closed doors. Behind one of the doors

is a tiger and behind the other is a large reward. If the agent opens the door with

the tiger, then a large penalty is received (presumably in the form of some amount of

bodily injury). Instead of opening one of the two doors, the agent can listen, in order

to gain some information about the location of the tiger. Unfortunately, listening

is not free; in addition, it is also not entirely accurate. There is a chance that the

agent will hear a tiger behind the left-hand door when the tiger is really behind the

right-hand door, and vice versa.

When we present this problem as a POMDP, it has the following components:
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• Set of states S: There are two states of the world, 𝑠𝑙 for when the tiger is

behind the left door, 𝑠𝑟 for when it is behind the right door.

• Set of actions A: There are three actions LEFT, RIGHT, and LISTEN.

• Transaction function T: If the agent takes the LISTEN action, the state

of the world does not change. If the agent takes either LEFT or RIGHT ac-

tions, the state of the world changes to a respective 𝑠𝑙 or 𝑠𝑟 states with equal

probability of 0.5.

• Reward function R: There are two possible outcomes, the agent receives +10

reward for opening the correct door or -100 for opening the door with the tiger

behind it. The cost of listening is -1.

• Set of observations Ω: There are only two possible observations: to hear the

tiger on the left (TL) or to hear the tiger on the right (TR).

• Observation function O: When the world is in state 𝑠𝑙, the LISTEN action

results in observation TL with probability 0.85 and the observation TR with

probability 0.15; conversely for world state 𝑠𝑟.

• Initial belief 𝑏0: Uniform (i.e. [0.5, 0.5]), since tiger is on the left or on the

right with equal probability.

2.3 POMDP Challenges

Despite being an efficient tool with strong mathematical foundation for planning

under uncertainty, POMDP faces two computational difficulties known as the "curse

of dimensionality" and the "curse of history" [10][12]. "Curse of dimensionality"

has two sources. The first one is a possible large state space: with the number of

state variables the number of states grows exponentially. The second source is due

to the partially observable environment, planning uses the space of beliefs which

are probability distributions over the states. Thus the size of the belief space is
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approximated to grow exponentially with the number of states [28]. Hence, a task

with 1,000 states will have a 1,000-dimensional belief space [12].

The second challenge that POMDP faces, the "curse of history", arises from the

fact that in a planning task to reach its goal, an agent takes a long sequence of actions

which results in a long planning horizon. The number of action-observation histories

considered during planning grows exponentially with the planning horizon [28] [28].

We see that both curses result in exponential growth of computational complexity

and many believed POMDPs to be practical only on the simplest problems. How-

ever, in recent years many POMDP solvers emerged that produce approximate, but

computationally tractable solutions, rather than an optimal one. They are based on

the principle that in many applications a near-optimal strategy is ”good enough” to

accomplish a given task [7]. These advances made it possible to solve complex robotic

tasks modeled as large-scale POMDPs [28].

2.4 Solving POMDP

The solution to a POMDP is an optimal policy that maximizes the expected total

reward. A policy is an action strategy that specifies the action an agent should take

at every time step based on the available information [10]. For each POMDP, there

is at least one optimal policy that achieves maximizing the total reward [29].

To understand how POMDPs are solved, they can be viewed as a special case

of MDP over belief-state. As it is presented in Section 2.2, a belief state b is a

probability distribution over state space S. Therefore, b(s) denotes the probability

assigned to state s by belief state b. To comply with the axioms of probability, these

must always hold [11]:

1. 0 ≤ b(s) ≤ 1

2.
∑︀

𝑠∈𝑆 𝑏(𝑠) = 1

Then at time t given an old belief state 𝑏𝑡−1, an action 𝑎𝑡, and an observation 𝑜𝑡,

a new belief state 𝑏𝑡 is computed as a succeeding probability distribution using the
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Bayes theorem:

𝑏𝑡(𝑠
′) = 𝜂𝑂(𝑠′, 𝑎𝑡, 𝑜𝑡)

∑︁
𝑠∈𝑆

𝑇 (𝑠, 𝑎𝑡, 𝑠
′)𝑏𝑡−1(𝑠) (2.1)

where 𝜂 is a normalizing factor, that ensures that 𝑏𝑡(𝑠
′) is a well-defined proba-

bility distribution over states, i.e. the second requirement of axioms of probability is

satisfied [28].

Accordingly, solving a POMDP can be thought of as constructing a policy function

𝜋 that outputs an action 𝜋(𝑏) ∈ 𝐴 for every possible belief b. 𝜋(𝑏) specifies the

probability that the agent will execute any action in any given belief state [25]. The

value of this policy 𝜋 is the expected total discounted reward that the agent receives

by executing 𝜋:

𝑉𝜋(𝑏0) = 𝐸[
∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡, 𝜋(𝑏𝑡))] (2.2)

And the goal is to find a policy that maximizes its value, i.e. the optimal policy:

𝜋* = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉𝜋(𝑏0) (2.3)

The equation of an optimal policy (Equation 2.3) includes an expectation value of

an infinite sum, which makes it computationally infeasible. Therefore, finite-horizon

value functions are used instead [21]. Value iteration algorithm is such a function that

can be used to compute an optimal value function for a POMDP with a specified finite

horizon. This algorithm uses dynamic programming to recursively calculate values

for each belief state b. It starts with evaluating the value of a belief state for a horizon

length of 1 (𝑡 = 1). Next, at the second iteration of the algorithm, the value function

for a horizon length of 2 (𝑡 = 2) is computed, which uses the results of the first

iteration. Iterations continue until the value function for the desired horizon is found

[25].

As t increases, the complexity of the optimal value function grows fast, due to

the total number of linear functions needed to represent it. Calculating the optimal
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Figure 2-1: Belief tree

value function up to horizon H is estimated to require around 𝑂(|𝑆|2|𝐴|𝐻 |Ω|𝐻) work

[15] [21].

2.4.1 Belief Tree

Belief tree is another way to search for an optimal action. A belief tree consists of

nodes, where every node represents a belief. At the root of the belief tree is the initial

belief 𝑏0. Each node of the tree first branches into action edges, which represent

valid actions to the system whose current belief is represented by the node. Each

action edge in its turn branches into observation edges, which represent observations

received after applying the action [28]. Therefore, the children of a node are precisely

those beliefs derived using the Equation 2.1 [21]. Figure 2-1 illustrates a belief tree.

2.5 Online Algorithms

In general, POMDP solvers are categorized into two approaches: offline and online.

Offline algorithms find the best action to execute for all possible situations before the

execution. Even though these approximate algorithms result in an optimal policy,

it takes them a significant amount of time to finish. Moreover, even the smallest

changes in the environment cause recomputing the full policy. These limitations of
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Figure 2-2: Comparison between offline and online approaches

offline algorithms make them applicable to problems with small to mid-size domains

only [25].

Online algorithms are accepted as a better alternative to use in large POMDPs,

as they consider only belief states reachable from the agent’s current belief state and

try to find an optimal local policy for it. Hence, the computation is focused on a

small set of beliefs and is more feasible.

Figure 2-2 [25] illustrates the main difference between offline and online algorithms.

We see from the figure that both offline and online algorithms consist of planning and

execution phases. However, in offline algorithms the planning phase precedes the

execution phase entirely, whereas in online algorithms they alternate at each time

step.

Ross et al. [25] provide a general framework for online planning in their survey,

where they describe what is involved in both phases of online algorithms. The plan-

ning phase includes passing the current belief state to the algorithm and computing

the best action to execute in this belief. This is achieved by building an AND/OR

tree which is another representation of a belief tree presented in Section 2.4.1. In

an AND/OR tree, OR-nodes represent belief states reachable from the current belief

state. At these nodes action must be selected. Then AND-nodes represent all pos-

sible observations from taking that action that bring to the following beliefs. Value

27



estimates from the fringe nodes are propagated all the way up to the root, so that

the value of the current belief can be calculated using the Equation 2.3. Values of

fringe nodes are usually estimated using an approximate value function computed of-

fline. It is also quite common to keep not just a single value, but both a lower bound

and upper bound on the value of the nodes. The result of the planning state is the

best action identified for the current belief, which is then performed at the execution

phase. Executing the action in its turn requires the current belief to update and a

new belief tree obtained accordingly.

Online algorithms can be classified into three categories: Branch-and-Bound Prun-

ing, Monte Carlo Sampling and Heuristic Search. They generally differ on either how

they choose nodes of a belief tree to explore or how tree expansion is implemented.

At the end they all aim to limit the number of explored nodes.

In the following sections two different online algorithms are presented. They are

considered state-of-the-art online planning solvers and use Monte Carlo Sampling.

2.5.1 POMCP

As it has been already mentioned, both POMCP and DESPOT are examples of

Monte Carlo algorithms. Monte Carlo algorithms try to overcome the problem of fully

expanding the search tree over a large set of observations to find the best action. The

idea behind these algorithms is to sample a subset of observations at each expansion

and only consider beliefs reached by these sampled observations. This allows for

deeper search, as it reduces the breadth of the search tree [25].

In Monte Carlo methods sampling happens from multiple random simulations,

rather than a single one. They use a so-called black-box simulator as a generative

model of the POMDP, which makes a fully defined model unnecessary. Such a sim-

ulator takes a state and an action as an input, and outputs a sample of a successor

state, observation and reward. It is able to update the value function with no looking

inside the black box that describes the dynamics of the model [26].

Partially Observable Monte-Carlo Planning (POMCP) was first introduced by

Silver et al. [26] as a combination of a Monte Carlo update of the agent’s belief state
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with a Monte Carlo tree search from the current belief state.

Monte Carlo tree search (MCTS) uses Monte Carlo simulations to build a search

tree. Each iteration of MCTS starts with sequentially selecting a node for expansion

in best-first order according to the statistics stored in the nodes. In the next step

children of the selected node are added to the tree, i.e. it gets expanded. If the node

does not correspond to the terminal state, a random simulation is initiated starting

from the state the node corresponds to. Simulation stops when it reaches a terminal

state, and its outcome is backpropagated to the root. The iterations complete when

a certain condition is met, and an action at the root gets selected [29].

In contrast to MCTS, POMCP constructs a search tree of histories instead of states

by incorporating observations. POMCP tree contains two types of nodes: history

nodes and sequence nodes. History nodes represent a possible history of actions and

observations. Sequence nodes represent a sequence of the previous history and the

action chosen at the previous history node. Edges from history nodes to sequence

nodes represent the selected actions, and edges from sequence nodes to history nodes

represent received observations [26].

The second component of POMCP is a Monte Carlo update of the agent’s belief

state instead of the usual Bayes theorem (Equation 2.1). POMCP uses an unweighted

particle filter to approximate the belief state, and apply the Monte-Carlo method to

update particles based on sample observations, rewards, and state transitions. Black

box simulator provides an efficient implementation for unweighted particle filters, thus

excellent scalability for larger problems [26].

2.5.2 DESPOT

Somani et al. [28] introduce Determinized Sparse Partially Observable Trees (DESPOT)

as a sparse approximation of a standard belief tree. Instead of capturing the execu-

tion of all policies under all possible scenarios, a DESPOT captures the execution of

all policies under a fixed set of K sampled scenarios. A DESPOT contains all the

action branches, but not all the observation branches, only those observed under the

sampled scenarios. Considering all the observation branches is found unnecessary to
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produce an approximately optimal policy, since ultimately they get averaged in the

Equation 2.3. As a result we get a tree of size 𝑂(|𝐴|𝐻𝐾), which is significantly smaller

than 𝑂(|𝐴|𝐻 |Ω|𝐻), and brings to dramatic improvement in computational efficiency

for moderate K values.

A scenario is an abstract simulation trajectory with some start state 𝑠0. It is

formally defined as an infinite random sequence for a belief 𝑏, 𝜑𝑏 = (𝑠0, 𝜑1, 𝜑2, ...),

where 𝑠0 is a state sampled according to 𝑏 and each 𝜑𝑖 is a real number sampled

independently and uniformly from the range [0, 1]. To construct a DESPOT tree,

a deterministic simulative model is applied to all possible action sequences under K

sampled scenarios. For each action under a scenario we get a simulation trajectory,

which traces out a path of actions and observations from the root of the standard

belief tree. All the nodes and edges on this path are added to the DESPOT tree,

each node of which stores a set of all scenarios that it encounters. The DESPOT tree

is complete, when the above process is applied for every action sequence.

Next, the value function for a belief is determined as the average total discounted

reward obtained by simulating the policy under each scenario. Somani [28] show in

their work that as K increases, the value function converges to the optimal value

function.
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Chapter 3

Experiments

We applied two algorithms presented in Sections 2.5.1 and 2.5.2 to two benchmark

problems: Laser Tag and Rock Sample. In the following sections we first present the

problems and their POMDP models. Next the toolkit used for POMDP planning is

presented, followed by the experiments setup and the results.

3.1 Laser Tag

Laser Tag is an expanded version of Tag, a standard benchmark problem presented

by Pineau et al. [22]. Tag is based on the game of lasertag. There are two robots

on a grid with 29 positions, where one robot searches and tries to tag another robot,

who is trying to escape being tagged. Initially they start at random positions. The

chasing robot is always aware of its own position, but not of its opponent’s unless

they happen to be in the same grid cell. Both robots can only move to four adjacent

cells, and the chasing robot pays a cost of -1 for each move. The chasing robot aims

to tag its target, and if it is in the same cell with the opponent during the attempt,

it is rewarded +10. In case it is not successful, it is penalized -10.

In Laser Tag the goal remains the same as in Tag, but there are several significant

differences. First, the grid in Laser Tag is a rectangular of the size 7 × 11 with eight

randomly placed obstacles. Second, the chasing robot is unaware of its own position.

Third and most importantly, it is equipped with a laser that returns the distances to
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the nearest obstacles in eight directions as observations.

3.1.1 Laser Tag as a POMDP

A POMDP model for Laser Tag has the following components:

• Set of states S: A state is characterized by positions of the robots, which can

take values {(0,0), (1,1), ..., (6, 10)} excluding the coordinates occupied by the

obstacles.

• Set of actions A: There are 5 actions available to the robot: {𝑁𝑜𝑟𝑡ℎ, 𝑆𝑜𝑢𝑡ℎ,

𝐸𝑎𝑠𝑡, 𝑊𝑒𝑠𝑡, 𝑇𝑎𝑔}. The first four as their names suggest are deterministic

motion actions. The 𝑇𝑎𝑔 action attempts to tag the opponent robot at the

current position of the robot.

• Transaction function T: A successful 𝑇𝑎𝑔 action terminates the simulation.

The simulation continues in all other action-outcome cases. Since the robot does

not know its own position on the grid, it keeps a vector of transition probabilities

for every possible state and action pair. It also stores a distribution of laser

readings for each state. Both transition probabilities and reading distributions

get updated after any action, which does not lead to the terminal state.

• Reward function R: For every motion action the agent receives a penalty

of -1. If the action 𝑇𝑎𝑔 is successful, it is rewarded +10, and penalized -10 if

unsuccessful.

• Set of observations Ω: An observation includes eight integers, each integer

is a laser reading in one of the possible directions. The laser reading in each

direction is generated from a normal distribution centered at the true distance

of the robot to the nearest obstacle in that direction, with a standard deviation

of 2.5.

• Observation function O: Probability for an observation is taken directly from

the reading distributions which has been introduced in the transition function.
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• Initial belief 𝑏0: The initial belief contains all the states with equal probabil-

ities that add up to 1.

3.2 Rock Sample

Rock Sample, first developed by Smith and Simmons [27], is a well-established bench-

mark that models rover’s scientific exploration. 𝑅𝑜𝑐𝑘𝑠𝑎𝑚𝑝𝑙𝑒(𝑛, 𝑘) describes an in-

stance of the Rock Sample problem, where the rover explores a grid map of size 𝑛×𝑛

containing 𝑘 rocks. Some of the rocks have a scientific value, i.e. they are consid-

ered "good", and the rover receives reward by sampling such rocks. The rover is

penalized for sampling "bad" rocks. There is an exit at the right side of the map,

the rover is also rewarded upon reaching it. At the beginning, the robot is aware of

its own position and the positions of the rocks, however unaware of their scientific

value. Since sampling a rock is risky, the robot is equipped with a noisy long-range

sensor which allows it to check whether a rock is good or not, so that it can decide on

either approaching or avoiding it. The accuracy of the sensor depends on the distance

between the robot and the rock being checked. Overall, the robot’s goal is to sample

good rocks and exit when it’s finished.

3.2.1 Rock Sample as a POMDP

Components of a POMDP model for 𝑅𝑜𝑐𝑘𝑠𝑎𝑚𝑝𝑙𝑒(𝑛, 𝑘) are described as follows:

• Set of states S: A state is characterized by 𝑘+1 features: the rover’s position,

which can take values {(1,1), (1,2), ..., (𝑛,𝑛)}, and one binary feature for each

of 𝑘 rocks, which can take values {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}. There is also a terminal state,

which is reached when the rover moves to the exit.

• Set of actions A: There are 𝑘 + 1 actions available to the robot: {𝑁𝑜𝑟𝑡ℎ,

𝑆𝑜𝑢𝑡ℎ, 𝐸𝑎𝑠𝑡, 𝑊𝑒𝑠𝑡, 𝑆𝑎𝑚𝑝𝑙𝑒, 𝐶ℎ𝑒𝑐𝑘1, ..., 𝐶ℎ𝑒𝑐𝑘𝑘}. The first four actions are

deterministic single-step actions. The 𝑆𝑎𝑚𝑝𝑙𝑒 action samples the rock at the

robot’s current position. Each 𝐶ℎ𝑒𝑐𝑘𝑖 action senses the rock 𝑖 and returns either
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𝐺𝑜𝑜𝑑 or 𝐵𝑎𝑑 observation, depending on the distance and the efficiency value.

This will be discussed later in Set of observations.

• Transaction function T: Move actions deterministically affect only the rover’s

current position. 𝐶ℎ𝑒𝑐𝑘𝑖 actions, on the other hand, leaves the agent’s position

unaffected, but changes the probability of the 𝑟𝑜𝑐𝑘𝑖 being good.

• Reward function R: For sampling a good rock, the agent receives a reward of

10, and the rock’s value is changed to bad. For sampling a bad rock, it receives

a penalty of -10. The robot also gets a reward of 10, if it reaches the exit area.

No other cost or reward can be obtained from taking other available moves.

• Set of observations Ω: There are three possible observations: 𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑

and 𝑁𝑜𝑛𝑒. Observation 𝑁𝑜𝑛𝑒 is produced for moving and sampling. Sensing a

rock produces a noisy observation from {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑}. The noise in the sensor

depends on the efficiency 𝜂, which decreases exponentially as a function of

Euclidean distance between the rover and a rock. The probability of sensor’s

accuracy is calculated as (1 + 𝜂)/2, where 𝜂 is equal to 2−𝑑/𝑑0 . Here 𝑑 is the

euclidean distance between the positions of the rover and the rock checked, and

𝑑0 is a constant specifying the half efficiency distance.

• Observation function O: The probability of receiving observation 𝑁𝑜𝑛𝑒,

given any of the motion actions or the action 𝑆𝑎𝑚𝑝𝑙𝑒 is equal to 1, and of

receiving either 𝐺𝑜𝑜𝑑 or 𝐵𝑎𝑑 is 0. For the action 𝐶ℎ𝑒𝑐𝑘𝑖 the probability of

getting 𝑁𝑜𝑛𝑒 is 0, and of getting a correct observation from {𝐺𝑜𝑜𝑑, 𝐵𝑎𝑑} is

equal to the efficiency 𝜂, which was introduced above.

• Initial belief 𝑏0: The initial belief state includes the initial position of the

robot, which is known, and a set of 𝑘 probabilities. These probabilities represent

the probability of each rock being good, and are initially equally set to 0.5.
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3.3 Approximate POMDP Planning Software

There are several available open-source POMDP libraries written in different lan-

guages and implementing a range of POMDP solvers. The pomdp_py framework

[30] written in Python provides implementations for POMCP, POUCT, and basic

value iteration. POMDPs.jl [2], a framework written in Julia, has implementations

for POMCP, DESPOT and SARSOP.

To evaluate the performance of POMCP and DESPOT we have used Approxi-

mate POMDP Planning Software (APPL)1, as it includes implementations to both

algorithms of our interest and it provides an easy and clear integration with simulated

environments. APPL is a C++ toolkit that implements a wide range of algorithms for

POMDP planning, offline and online. Specifically, the APPL Online package includes

implementation to both POMCP and DESPOT that we are interested in.

The APPL Online package can be used to solve a problem in the following three

steps specified in documentation of the package [20]:

1. Define a POMDP model of the problem: POMDP can be represented either in

POMDPX format or in C++ by inheriting the DSPOMDP class. Even though

it requires more programming, we selected the latter as it can represent large

problems and allows to integrate the solvers with external systems. DSPOMDP

interface requires a representation of states, actions and observations; the de-

terministic simulative model; functions related to beliefs and starting states;

bound-related functions, and memory management functions.

2. Setup an interface for communication between the model and an external system:

The package provides the World abstract class to be inherited to create a custom

world and to serve as such interface. If no communication with an external

system is needed, the POMDP model can be used as a simulated world in a

built-in implementation of World. This way the same model is shared by the

solver for planning.

1https://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php
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3. Initialize the solver and execute the planning pipeline: At this step the actual

planning is performed through the Planner class, where the solver and problem-

specific parameters are initialized.

3.4 Experiments Setup

For the experiments we considered instances of a Rocksample(11, 11) (i.e. a map of

size 𝑛×𝑛 containing 11 rocks) and a Laser Tag scenarios in a simulated environment,

designed on the Gazebo simulator2. Figure 3-1 illustrates the simulated Gazebo

environment for Laser Tag, composed of a 7×11 rectangular grid surrounded by gray

walls and containing eight obstacles and two robots. The target robot is colored red,

and the chasing robot is green.

Figure 3-1: Laser Tag in Gazebo simulator

The simulated environment for Rocksample(11, 11) is illustrated on Figure 3-2.

The map of Rock Sample is also surrounded by gray walls and of actual size of 11×12

2http://gazebosim.org/
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with extra grids for the exit, which is located at the far right and marked in red. Good

stones that have scientific value are colored blue and bad stones are red. The robot’s

and the rocks’ positions stay unchanged on every simulation, but the scientific values

of the rocks are randomized on each run, so that there are always five good rocks out

of eleven. This implies that the maximum value for total undiscounted reward is 60.

Figure 3-2: Rocksample(11,11) in Gazebo simulator

Our experimental setup includes several components: a POMDP planner, two

ROS3 (Robot Operating System) nodes and a Gazebo simulated environment. The

POMDP planner provides actions to be executed by the robots in the simulated

environment. The ROS nodes handle the communication among the modules. Actions
3https://www.ros.org/
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generated by the planner are sent out by the node at the planner side in the custom

world. They are received by another node run by the interface of the robot, which

maps them to actual motor commands.

For each benchmark we ran each algorithm 10 times and recorded such perfor-

mance measures as total discounted/undiscounted reward, number of steps taken to

complete, and for Rock Sample also the number of rock checks performed.

3.5 Results

We compared the performance of a POMCP planner and a DESPOT planner on

two benchmark problems, Laser Tag and Rock Sample. Discount factor in all the

experiments was equal to 0.95, which is the typical value for the discount factor. All

the experiments were conducted on the same experimental platform.

Laser Tag Rocksample(11,11)
|S| 4,830 247,808
|A| 5 16
|Ω| ∼1.5 × 106 3

POMCP -8.271 18.604
DESPOT -5.088 21.652

Table 3.1: Performance comparison of POMCP and DESPOT for two benchmark
problems. Average total discounted reward is reported for the algorithms.

The summarized results for both benchmarks are reported in Table 3.1. More

detailed results for each problem are presented in Tables 3.2 and 3.3.

Performance measure DESPOT POMCP
Average total discounted reward -5.088 -8.271

Average total undiscounted reward -4 -10
Average # of steps 15 21

Average time (seconds) 72.032 111.865

Table 3.2: Performance comparison of POMCP and DESPOT for Laser Tag

From Table 3.1 we can also see how Laser Tag and Rock Sample compare in terms

of their state space and observation space. Despite having the smaller state space

(4,830 vs. 247,808), the observation space of Laser Tag is extremely large, whereas the
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observation space of Rock Sample is small and has only three possibilities. The results

indicate that both algorithms can scale up to large domains and solve efficiently the

presented problems. However, in terms of average total discounted reward DESPOT

outperforms POMCP in both problems.

Performance measure DESPOT POMCP
Average total discounted reward 21.652 18.604

Average total undiscounted reward 52 44
Average # of steps 39 33

Average time (seconds) 134.632 108.782
Average # of rock checks 12 10

Table 3.3: Performance comparison of POMCP and DESPOT for Rock Sample

Table 3.2 illustrates that POMCP not only has a smaller average total discounted

reward in the Laser Tag problem, but also takes more steps, hence time to complete.

Table 3.3 presents different results for the Rock Sample problem. There POMCP

spent less time on average to complete, it took less steps and performed less checks

on the rocks. However, this had a negative impact on the total reward and POMCP

received substantially lower rewards than DESPOT. These results are comparable

with the nature of the problems, specifically their reward systems. In Laser Tag each

move that does not lead to the terminal state brings a penalty, therefore the more

steps the robot makes, the less reward it receives. In Rock Sample a greater number

of rock checks, hence a greater number of steps too, correlate with a larger reward,

as the chances of finding good rocks increase and reaching a rock to sample requires

additional steps. Therefore, the statistics on the average number of steps serve as

additional evidence that DESPOT achieved better results than POMCP.
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Chapter 4

Conclusion

4.1 Summary

In this thesis we have extensively introduced Partially observable Markov decision

processes (POMDP). POMDP offers a rich mathematical model for framing plan-

ning problems with uncertainties. Uncertainties can be of various origins: motion,

actuation, sensors and environment. As a result, the agent has to anticipate that

its own state and/or the state of the environment it operates in may not be fully

observable. In a POMDP these uncertainties are presented as conditional probability

functions and the state of the system is approximated as probability distributions

over the belief state. The interaction between the system and the agent is carried

out through exchanges of actions from the agent to the system and observations in

backward direction. Solving a POMDP is finding an optimal policy which maximizes

the expected long-term reward by reasoning over belief states. Unfortunately, solving

a POMDP exactly is impossible in the worst case and impractical in general due to

two difficulties known as "curse of dimensionality" (exponential growth of beliefs)

and ”curse of history” (exponential growth of action-observation histories).

However, there has been great progress in developing approximate methods, espe-

cially online algorithms have been successful in solving POMDPs efficiently and they

even scale up to problems with extremely large domains. Two state-of-the-art online

solvers, POMCP and DESPOT, use Monte Carlo method which relies on repeated
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sampled simulations to find the best action for the current belief.

In order to illustrate the potential of a POMDP model we investigated two bench-

mark problems, Laser Tag and Rock Sample. These are standard problems widely

used in POMDP research as test domains with large sizes. Laser Tag has a large

observation space, and Rock Sample has a large state space. We see from these

problems the importance of defining an accurate POMDP model to correctly capture

uncertainties and transition dynamics, and produce a valid policy.

We employ the same benchmark problems to assess functionality of an open-

source POMDP toolkit, named APPL, and study performance and behaviour of on-

line solvers, POMCP and DESPOT. The APPL Toolkit provides a powerful and

flexible interface for modeling even extremely large problems and easy integration

with external systems using ROS. It has a clear documentation and the development

of the toolkit is ongoing.

Both Laser Tag and Rock Sample have been extended to the Gazebo robotic

simulator to approximate a real world scenario. The communication between the

planners and the simulator is handled by ROS nodes. We compare POMCP and

DESPOT under such metrics as total discounted reward, number of steps and time

taken by the algorithm to complete. From our experimental evaluation we observe

that POMCP and DESPOT both manage to scale up to both problems and produce

a good solution to them. Even though both algorithms demonstrate comparable

results, overall DESPOT has achieved stronger performance.

4.2 Future Work

The most immediate direction for future work is to design more complicated and

realistic tasks, model them using a POMDP and solve with available solvers. The

problems we considered can be easily modified to a range of real-world robot ap-

plications such as sensing and target tracking in hazardous environments that are

naturally partially observable.

We have already mentioned that to obtain correct policies for a given task it is
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essential to define a POMDP model appropriately. The model heavily depends on

the assumptions we put in. Thus the real-world tasks can be too complex to the

model, which implies they are longer to solve, perhaps even infeasible in real-time.

Manipulating objects unknown to the model is another major problem, even insoluble

if the model is not trained to predict for objects unseen before. However, there is

already a ground work in tackling problems of these sorts. One of the approaches is to

use deep neural networks to learn and generalize those policies generated by POMDP

solvers[21]. Another data-driven approach uses visual camera images as inputs to a

deep recurrent neural network model to enable a robot to push objects of unknown

physical properties [10]. We think this a promising direction to turn the research to.
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