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Abstract. In this research, we study the Penrose instability analysis in the Hirota equation,
which is a higher-order version of Nonlinear Schrödinger equation. We apply the Wigner function
to Hirota equation in order to obtain Wigner-Hirota equation.
We take the ansatz as W (x, k, t) = W0(k) + εei(Kx−Ωt). For W0(k) we consider two different
functions: Dirac-delta functional and Landau damping function. Finally, depending on the Im(Ω)
we seek to find instability intervals for K.
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1. INTRODUCTION

Consider the Hirota equation (HE) introduced by R. Hirota in [10]

(1) i∂tψ + iα|ψ|2∂xψ + β∂2
xψ + iγ∂3

xψ + θ|ψ|2ψ = 0,

where ψ = ψ(x, t), x, t ∈ R, and α, β, θ, γ are positive constants. This equation has been used to
solve problems in optics [6], oceanography. Observe that when we take in the HE (1) the parameters
α = γ = 0 and β = 1 we are reduced to the Nonlinear Schrödinger equation (NLSE) (2).

(2) i∂tψ + ∂2
xψ + λ|ψ|2ψ = 0,

where ψ = ψ(x, t), x, t ∈ R, and λ ∈ R is a fixed constant. Moreover the choice β = θ = 0,
α = γ = 1 and ψ a real function give us the mKdV (3).

(3) ∂tψ + ∂3
xψ + ψ2∂xψ = 0,

where ψ = ψ(x, t), x, t ∈ R.

Recently, Hirota equation has been used to describe different wave phenomena, and certain re-
sults obtained in [1] show that the Hirota equation, being a modified version of Nonlinear Shrödinger
equation, gives more accurate descriptions of phenomena in oceans, particularly, rogue waves [5]. In
this research presented by A. Ankiewicz, M. Soto-Crespo and N. Akhmediev the goal was to find ex-
plicit shapes for the lower-order solutions. They concluded that modified Darboux transformation
methods help to find rational solutions of lower orders, moreover, numerical analysis showed that
second order rational solution is a good approximation of a rogue wave produced by Hirota equation.

Other results were obtained in [4]. In their research rogue waves phenomena is studied with the
Hirota system, which consists of two coupled Hirota equations. They try to connect rogue waves
with modulation instability and support it by examining the connection with numerical simulations.

In most papers Hirota equation appears with specific relation between constants, the most com-
mon is θ = 2β and α = 6γ. However, in [10], R. Hirota, after whom the equation is named,
proposed the most general form of the equation, considering coefficients as constants from real
numbers space. In our paper we also use the most general case of Hirota equation, allowing coeffi-
cients to be positive constants.

Let us introduce the Wigner function (eq. (5)), which was introduced in [11], that we use to
transform the Hirota equation into the Wigner-Hirota equation (10). It is important to empha-
size that the latter equation represents an alternative description of the problem that is formally
equivalent to the Hirota equation. This is in the Wigner function framework, which is widely used
in optics to study the Linear Schrödinger equation. Thus, wave function approach and Wigner
function approach are equivalent.

In order to perform the Penrose instability analysis, as a next step we propose the ansatz for the
equations (10) as follows:

W (x, k, t) := W0(k) + εei(Kx−Ωt).

Thus, the ansatz consists of the single variable function W0(k), which is a solution to Wigner-
Hirota equation, and oscillatory perturbation with parameters Ω and K. The idea of the Penrose
instability analysis is to find interval for K ∈ R such that Im(Ω) > 0, since then e−iΩt is a positive
exponential, which allows the solution to diverge as t→∞, and this is what we mean by instability
in our paper. This approach was introduced by O. Penrose in [12] in 1960.

As we insert the above ansatz to the equation we seek to find a relation betweenW0(k), Ω and K
such that it is a solution to Wigner-Hirota equation. In order to simplify the problem, we linearize
in ε, assuming that ε is small enough, and this results in the dispersion relation (13).
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Similar procedure was used to study the instability in the NLSE in the paper [9] by B. Hall, M.
Lisak, D. Anderson, R. Fedele, V. Semenov. They propose two different spectra for W0(k):

(1) W0(k) = ψ2
0δ(k), which is Dirac delta function for some constant ψ0.

(2) W0(k) =
ψ2

0
π

p0

k2+p2
0
, the so called Landau damping function for some constant ψ0 and p0 > 0.

Both spectra represent different physical situations: The first spectra (1) is extensively used in the
standard instability analysis and corresponds to a free plane wave, whereas the second spectra (2)
can be interpreted as a the solution characterized by the Landau damping, where p0 determines
the strength of the damping.

Each spectra was inserted into the above mentioned dispersion relation resulting in an explicit
relation between Ω and K. Similar work for NLSE was also done in [3] by A. Athanassoulis, G.
Athanassoulis and T. Sapsis.

In our paper, we perform a similar analysis on Hirota equation. As Hirota equation is a higher
order NLSE with additional nonlinearity we expect a more involved and interesting result.

So, for Dirac delta functional, we obtain an improved expression for Ω (eq. (18)), which we also
call as instability growth rate

Ω = iβK2
( θψ2

0

πβK
− 1
)1/2

− γK3 +
αψ2

0K

2π
.

However, the Im(Ω), which is the unstable part, is absolutely the same as in the NLSE case.
We focus on Im(Ω), because from this we can find the instability interval for K, which is the main
goal of our project. Thus, for the Dirac delta functional, instability interval for K is the following:

K ∈
[
−

√
ψ2

0θ

πβ
,

√
ψ2

0θ

πβ

]
.

In order to compare Wigner function approach with the wave function approach, we tried to
work directly with Hirota equation. However, we obtained a highly nonlinear equation (see (20)),
which cannot be solved explicitly. While in the Wigner function approach we arrived at quadratic
equation in Ω (see (19)), solution of which is trivial.

For Landau damping function, as a first step we consider the simpler Hirota equation with γ = 0
(see Subsection 3.2). The case γ 6= 0 is discussed in Section 5. Now, the instability growth rate Ω:

Ω =
αψ2

0K

2π
+ 2ip0βK ± iβK2

√
ψ2

0

πβK2
(θ − ip0α)− 1.

In order to find the instability interval for K, we again impose Im(Ω) > 0. However, in this
expression we do not see the Im(Ω) clearly. Thus, using the method of polar representation of
complex numbers we find that (see Theorem 3.9):

K ∈

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ,

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0

]
.

In the case of NLSE (when α = 0 ), the interval for K is:

K ∈

[
−

√
ψ2

0θ

πβ
− 4p2

0 ,

√
ψ2

0θ

πβ
− 4p2

0

]
.
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If we look at the instability intervals for K, in the case of Dirac delta function, Hirota equation
is the same as NLSE. Thus, approximation with Dirac delta function does not show the influence
of highly nonlinear term with α, whereas Landau damping function shows the role of this nonlinear
term with α. This means that Landau damping function is a better approximation than Dirac delta
function, as nonlinearity with α shows its influence only when we use Landau damping function.
See more details in Section 4.

Moreover, our future plans (see Section 5 for more details) are to deal with γ 6= 0 case with
Landau damping function and to investigate the emergence of rogue waves.
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2. WIGNER DESCRIPTION

In this section our main goal is to apply the Wigner function to the Hirota equation. To do so,
we firstly state Lemma 2.1, Lemma 2.2 and Lemma 2.3, which will be helpful to apply the trans-
formation. Then, in Proposition 2.4 we use these lemmas to finally find the Wigner-Hirota equation.

The Fourier transform [8, p. 213] for an integrable function u on R is defined by

(4) û(ξ) :=

∫
R
e−iξxu(x)dx.

The Wigner function of two functions u, v : R× (0,∞) −→ C is defined by

(5) W [u, v](x, k, t) :=

∫
R
e−iky u

(
x+

y

2
, t
)
v
(
x− y

2
, t
)
dy, x, k ∈ R, t > 0.

Lemma 2.1. For functions u, v : R× (0,∞) −→ C we have that

(6) W [u, v] = W [v, u] and W [∂xu, v] =
(
ik +

1

2
∂x

)
W [u, v].

Proof. We have that

W [v, u] =

∫
R
e−ikyv(x+

y

2
, t)u(x− y

2
, t)dy =

∫ ∞
−∞

eikyu(x− y

2
, t)v(x+

y

2
, t)dy

=

∫ ∞
−∞

e−ikyu(x+
y

2
, t)v(x− y

2
, t)dy = W [u, v].

Moreover, note that

∂xW [u, v] = W [∂xu, v]− 2W [u, ∂yv] = W [∂xu, v] + 2W [∂yu, v]− 2(ik)W [u, v]

= W [∂xu, v] +W [∂xu, v]− 2(ik)W [u, v]

= 2W [∂xu, v]− 2(ik)W [u, v],

which implies the second identity.
�

Lemma 2.2. For u : R× (0,∞) −→ C and V : R× (0,∞) −→ R we have that

W [V u, u]±W [u, V u] =
1

2π

∫
R

∫
R
e−iλy

(
V (x+

y

2
, t)± V (x− y

2
, t)
)
dy

×W [u, u](x, k − λ, t) dλ.(7)

Proof. Let’s use definition of the Wigner function and the following property of the Fourier trans-
form (see for example [8, Property 8, p. 223])

(8) f̂g(ξ) =
1

2π
f̂ ∗ ĝ(ξ),

where ∗ refers to the standard convolution, which is defined as

f ∗ g(x) =

∫
R
f(x− y)g(y)dy.

We obtain that

W [V u, u]±W [u, V u] =

∫
R
e−ikyV (x+

y

2
, t)u(x+

y

2
, t)u(x− y

2
, t)dy

±
∫
R
e−ikyu(x+

y

2
, t)V (x− y

2
, t)u(x− y

2
, t)dy

=

∫
R
e−iky[V (x+

y

2
, t)± V (x− y

2
, t)]u(x+

y

2
, t)u(x− y

2
, t)dy

=
([
V (x+

·
2
, t)± V (x− ·

2
, t)
]
u(x+

·
2
, t)u(x− ·

2
, t)
)∧(

k
)

=
1

2π

(
V (x+

·
2
, t)± V (x− ·

2
, t)
)∧ ∗ (u(x+

·
2
, t)u(x− ·

2
, t)
)∧(

k
)
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=
1

2π

∫
R
e−iλy

[
V (x+

y

2
, t)± V (x− y

2
, t)
]
dy

∫
R
e−i(k−λ)yu(x+

y

2
)u(x− y

2
)dy dλ

=
1

2π

∫
R

∫
R
e−iλy

[
V (x+

y

2
, t)± V (x− y

2
, t)
]
dy ×W [u, u](x, k − λ, t)dλ.

�

Lemma 2.3. For function u : R× (0,∞) −→ C we observe that

(9)
∫
R
W [u, u](x, k, t)dk = 2π|u(x, t)|2.

Proof. By (5) we have that∫
R

∫
R
e−ikyu(x+ y/2, t)u(x− y/2, t)dkdy

=

∫
R
u(x+ y/2, t)u(x− y/2, t)

∫
R
e−ikydkdy

= 2π

∫
R
u(x+ y/2, t)u(x− y/2, t)δ(y)dy

= 2πu(x, t)u(x, t) = 2π|u(x, t)|2.
�

Finally, we can apply the Wigner function to the Hirota equation using lemmas stated above
and obtain a new PDE in the proposition below.

Proposition 2.4. Let u be a solution of the Hirota equation (1) and W := W [u, u]. Then, we
obtain Wigner-Hirota equation for W (x, k, t)

∂tW =
(
− 2βk + 3γk2

)
∂xW −

1

4
γ ∂3

xW

+
1

2π

∫
R

∫
R

(
iθ − iα(k − λ)

)
e−iλy

{
Z
(
x+

y

2
, t
)
− Z

(
x− y

2
, t
)}

dyW (x, k − λ, t)dλ

− α

4π

∫
R

∫
R
e−iλy

{
Z
(
x+

y

2
, t
)

+ Z
(
x− y

2
, t
)}

dy ∂xW (x, k − λ, t)dλ(10)

with

(11) Z(x, t) :=
1

2π

∫
R
W (x, k, t) dk.

Proof. We have that

∂tW [u, u] = W [∂tu, u] +W [u, ∂tu]

= W [−α|u|2∂xu+ iβ∂2
xu− γ∂3

xu+ iθ|u|2u, u]

+W [u,−α|u|2∂xu+ iβ∂2
xu− γ∂3

xu+ iθ|u|2u]

= −α
(
W [|u|2∂xu, u] +W [u, |u|2∂xu]

)
+ iβ

(
W [∂2

xu, u]−W [u, ∂2
xu]
)

− γ
(
W [∂3

xu, u] +W [u, ∂3
xu]
)

+ iθ
(
W [|u|2u, u]−W [u, |u|2u]

)
.

We treat each term separately. Using (6) repeatedly we deduce

W [∂2
xu, u]−W [u, ∂2

xu] = W [∂2
xu, u]−W [∂2

xu, u]

=
(
ik +

1

2
∂x

)2
W [u, u]−

(
− ik +

1

2
∂x

)2
W [u, u]

=
[(
ik +

1

2
∂x

)2
−
(
− ik +

1

2
∂x

)2]
W [u, u]
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= 4(ik)
(1

2
∂x

)
W [u, u] = 2ik ∂xW [u, u],

and similarly,

W [∂3
xu, u] +W [u, ∂3

xu] = W [∂3
xu, u] +W [∂3

xu, u]

=
[(
ik +

1

2
∂x

)3
+
(
− ik +

1

2
∂x

)3]
W [u, u]

=
[
6(ik)2

(1

2
∂x

)
+ 2
(1

2
∂x

)3]
W [u, u]

=
(
− 3k2∂x +

1

4
∂x

3
)
W [u, u].

On the other hand, an application of (7), taken with V = |u|2, give us

W [|u|2u, u]−W [u, |u|2u] =
1

2π

∫
R

∫
R
e−iλy

{
|u(x+ y/2, t)|2 − |u(x− y/2, t)|2

}
dy

×W [u, u](x, k − λ, t) dλ

=
1

2π

∫
R

∫
R
e−iλy

{
Z(x+ y/2, t)− Z(x− y/2, t)

}
dy

×W [u, u](x, k − λ, t) dλ,
where

Z(x, t) :=
1

2π

∫
R
W [u, u](x, k, t) dk = |u(x, t)|2

and we used the marginal property (9).

On the other hand, we can also write

W [|u|2∂xu, u] +W [u, |u|2∂xu]

=

∫
R
e−iky

∣∣∣u(x+
y

2
, t
)∣∣∣2 ∂xu(x+

y

2
, t
)
u
(
x− y

2
, t
)
dy

+

∫
R
e−iky

∣∣∣u(x− y

2
, t
)∣∣∣2 u(x+

y

2
, t
)
∂xu

(
x− y

2
, t
)
dy.

Here, by Fourier transform definition (4) the above expression becomes( ∣∣∣u(x+
y

2
, t
)∣∣∣2 ∂xu(x+

y

2
, t
)
u
(
x− y

2
, t
))∧

(ξ)

+
( ∣∣∣u(x− y

2
, t
)∣∣∣2 u(x+

y

2
, t
)
∂xu

(
x− y

2
, t
))∧

(ξ).

Applying Fourier transform property (8) we obtain
1

2π

( ∣∣∣u(x+
y

2
, t
)∣∣∣2)∧ ∗ ( ∂xu(x+

y

2
, t
)
u
(
x− y

2
, t
)))∧

(ξ)

+
1

2π

( ∣∣∣u(x− y

2
, t
)∣∣∣2)∧ ∗ (u(x+

y

2
, t
)
∂x u

(
x− y

2
, t
))∧

(ξ).

Again, by (4) the above is transformed into
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x+
y

2
, t
)∣∣∣2dy ∫

R
e−i(k−λ)

(
∂xu

(
x+

y

2
, t
)
u
(
x− y

2
, t
))
dydλ

+
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x− y

2
, t
)∣∣∣2dy ∫

R
e−i(k−λ)

(
u
(
x+

y

2
, t
)
∂xu

(
x− y

2
, t
))
dydλ.

Here, by Fubini’s theorem [13, pp 164-165] and Wigner function definition (5) we simplify further
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x+
y

2
, t
)∣∣∣2 dyW [∂xu, u](x, k − λ, t)dλ

+
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x− y

2
, t
)∣∣∣2 dyW [u, ∂xu](x, k − λ, t)dλ.
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Using properties from Lemma 2.1 (6) we find that
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x+
y

2
, t
)∣∣∣2 dy

×
(
i(k − λ) +

1

2
∂x

)
W [u, u](x, k − λ, t)dλ

+
1

2π

∫
R

∫
R
e−iλy

∣∣∣u(x− y

2
, t
)∣∣∣2 dy

×
(
− i(k − λ) +

1

2
∂x

)
W [u, u](x, k − λ, t)dλ.

Using (11) we have that
1

2π

∫
R

∫
R
e−iλy Z

(
x+

y

2
, t
)
dy

×
(
i(k − λ) +

1

2
∂x

)
W [u, u](x, k − λ, t)dλ

+
1

2π

∫
R

∫
R
eiλy Z

(
x− y

2
, t
)
dy

×
(
− i(k − λ) +

1

2
∂x

)
W [u, u](x, k − λ, t)dλ.

Collect the terms with W [u, u] and ∂xW [u, u] separately to obtain the following
1

2π

∫
R

∫
R
i(k − λ)e−iλy

{
Z
(
x+

y

2
, t
)
− Z

(
x− y

2
, t
)}

dyW [u, u](x, k − λ, t)dλ

+
1

4π

∫
R

∫
R
e−iλy

{
Z
(
x+

y

2
, t
)

+ Z
(
x− y

2
, t
)}

dy ∂xW [u, u](x, k − λ, t)dλ.

In conclusion, calling W (x, k, t) := W [u, u](x, k, t), by summing up all the obtained terms, we
arrive at

∂tW =
(
− 2βk + 3γk2

)
∂xW −

1

4
γ ∂3

xW

+
1

2π

∫
R

∫
R

(
iθ − iα(k − λ)

)
e−iλy

{
Z
(
x+

y

2
, t
)
− Z

(
x− y

2
, t
)}

dyW (x, k − λ, t)dλ

− α

4π

∫
R

∫
R
e−iλy

{
Z
(
x+

y

2
, t
)

+ Z
(
x− y

2
, t
)}

dy ∂xW (x, k − λ, t)dλ

with
Z(x, t) :=

1

2π

∫
R
W (x, k, t) dk,

as we wanted. �
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3. PENROSE INSTABILITY ANALYSIS

In this section we aim to perform Penrose instability analysis. The idea of the Penrose instability
analysis in our paper is as follows: we aim to find instability intervals for K, such that Im(Ω) > 0,
since for these conditions our ansatz, which we introduce in Proposition 3.1, diverges, as t → ∞.
In other words, oscillations grow exponentially and waves get bigger as time passes, so that the
amplitude of the wave goes to ∞ as t→∞.

Thus, we follow the process:
• Propose and insert a general ansatz W0(k) to the Wigner-Hirota equation linearizing in ε,
which results in a dispersion relation (13) (see Proposition 3.1).
• Insert the Dirac delta function W0(k) = ψ2

0δ(k) into the dispersion relation, find explicit
formula for instability growth rate Ω and then find instability intervals for K (see Theorem
3.2).
• Show why Wigner function is better method than directly working with Hirota equation
(see Remark 3.3).
• Then we insert Landau damping function W0(k) =

ψ2
0
π

p0

k2+p2
0
into the dispersion relation

(with γ = 0) and as before we seek for Ω and instability interval for K (see Theorem 3.9).

So, in the proposition below we suggest an ansatz for Wigner-Hirota equation in such a way that
W0(k) is a solution that we begin with and the rest is a plane wave perturbation. We assume that
ε is small enough so ε2 can be neglected, allowing the ansatz to approximate the solution of the
equation.

Proposition 3.1. If we introduce the ansatz as

(12) W (x, k, t) :=
(
W0(k) + ε ei(Kx−Ωt)

)
,

in equation (10) and linearize in ε, then we obtain the dispersion relation:
(13)

1 +
1

2π

∫
R

(αk − θ)
(
W0(k +K/2)−W0(k −K/2)

)
+ αK2

(
W0(k +K/2) +W0(k −K/2)

)
Ω + 1

4γ K
3 − 1

2παKψ
2
0 +

(
− 2βk + 3γk2

)
K

dk = 0.

Proof. Let’s introduce bounds for k in such a way that the ansatz is now:

(14) W (x, k, t) :=
(
W0(k) + ε ei(Kx−Ωt)

)
1[−M,M ](k)

Substituting (14) in (10) we get, for −M ≤ k ≤M ,

− iεΩ ei(Kx−Ωt) =
(
− 2βk + 3γk2

)
iεK ei(Kx−Ωt) +

1

4
γ iεK3 ei(Kx−Ωt)

+
1

2π

∫
R

∫
R

(
iθ − iα(k − λ)

)
e−iλy

{
Z
(
x+

y

2
, t
)
− Z

(
x− y

2
, t
)}

dy

×
(
W0(k − λ) + ε ei(Kx−Ωt)

)
dλ

− α

4π
iεK ei(Kx−Ωt)

∫
R

∫
R
e−iλy

{
Z
(
x+

y

2
, t
)

+ Z
(
x− y

2
, t
)}

dy dλ,

where

Z(x, t) :=
1

2π

∫ M

−M
W0(k) dk +

M

π
ε ei(Kx−Ωt)

and we define

ψ2
0 :=

∫ M

−M
W0(k) dk.

Linearizing in ε, one gets

−Ω =
(
− 2βk + 3γk2

)
K +

1

4
γ K3
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+
Mi

π2

∫
R

(
θ − α(k − λ)

){∫
R
e−iλy sin

(
Ky

2

)
dy
}
W0(k − λ)dλ

− 1

2π
αK ψ2

0,(15)

In order to show the above, we need further properties

(16)
∫
R

∫
R
e−iλy dy dλ = 2π

∫
R
δ(λ)dλ = 2π,

as stated in [2, p. 86]. Moreover,

Z
(
x+

y

2
, t
)
− Z

(
x− y

2
, t
)

=
1

π
iε2Mei(Kx−Ωt) sin

(
Ky

2

)
,

∫
R
e−iλy sin

(
Ky

2

)
dy = iπ

(
δ
(
λ+

K

2

)
− δ
(
λ− K

2

))

and
Mi

π2

∫
R

(
θ − α(k − λ)

){∫
R
e−iλy sin

(
Ky

2

)
dy
}
W0(k − λ)dλ

=
Mi

π2

∫
R

(
θ − α(k − λ)

)
iπ
(
δ(λ+K/2)− δ (λ−K/2)

)
W0(k − λ)dλ

= −M
π

∫
R

(
θ − α(k − λ)

)(
δ(λ+K/2)− δ(λ−K/2)

)
W0(k − λ)dλ

=
M

π

∫
R

(
α(k − λ)− θ

)(
δ(λ+K/2)− δ(λ−K/2)

)
W0(k − λ)dλ

=
M

π

(
α(k +K/2)− θ

)
W0(k +K/2)− M

π

(
α(k −K/2)− θ

)
W0(k −K/2)

=
M

π
(αk − θ)

(
W0(k +K/2)−W0(k −K/2)

)
+
M

π

αK

2

(
W0(k +K/2) +W0(k −K/2)

)
.

Finally, integrating in (15) we get

1 +
1

2π

∫ M

−M

(αk − θ)
(
W0(k +K/2)−W0(k −K/2)

)
+ αK2

(
W0(k +K/2) +W0(k −K/2)

)
Ω + 1

4γ K
3 − 1

2παKψ
2
0 +

(
− 2βk + 3γk2

)
K

dk = 0.

Therefore, letting M →∞, we conclude (13). �

In particular, when α = γ = 0, β = β′/2 we recover the dispersion relation for NLSE

1 +
θ

2π

∫
R

W0

(
k + K

2

)
−W0

(
k − K

2

)
β′kK − Ω

dk = 0.

which was established in [9, eq. (10)].

3.1. Dirac delta. In this subsection we suggest that W0(k) = ψ2
0δ(k) in (13) and find a relation

between Ω and K. Also, we look for instability interval for K such that Im(Ω) > 0, which
guarantees the instability of the solution W (x, k, t) in (12).

Theorem 3.2. If we start with the solution for Hirota equation

ψ(t) :=
ψ0√
2π
eiθ

ψ2
0

2π
t,

then we have that

(17) W [ψ,ψ](k) = ψ2
0 δ(k).
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Moreover, after inserting this into dispersion relation (13), we obtain the instability growth rate for
Ω

(18) Ω = iβK2
( θψ2

0

πβK2
− 1
)1/2

− γK3 +
αψ2

0K

2π
.

Furthermore, modulation instability is experienced when K is in the interval:

K ∈
[
−

√
θψ2

0

πβ
,

√
θψ2

0

πβ

]
.

Proof. So, let us prove (17) by using the definition of the Wigner function

W [ψ,ψ](k) =

∫
R
e−iky ψ(x+ y/2, t) ψ̄(x− y/2, t) dy

=

∫
R
e−iky

ψ0√
2π
eiθψ

2
0t
ψ0√
2π
e−iθψ

2
0t dy

= ψ2
0δ(k).

Now, introducing (17) in (13), we obtain the following relation

1 +
ψ2

0

2π

∫
R

(αk − θ)
[
δ(k +K/2)− δ(k −K/2)

]
+ αK/2

[
δ(k +K/2) + δ(k −K/2)

]
Ω + γK3/4− αψ2

0K/2π + (−2βk + 3γk2)K
dk = 0.

Separating integral into two parts, each containing a delta function will lead us to

1 +
ψ2

0

2π

∫
R

[ δ(k +K/2)[αk − θ + αK/2]

Ω + γK3/4− αψ2
0K/2π + (−2βk + 3γk2)K

]
dk

− ψ2
0

2π

∫
R

[ δ(k −K/2)[αk − θ − αK/2]

Ω + γK3/4− αψ2
0K/2π + (−2βk + 3γk2)K

]
dk = 0.

Using (16), we obtain

1 +
ψ2

0

2π

[
− θ

Ω + γK3 + βK2 − αψ2
0K/2π

+
θ

Ω + γK3 − βK2 − αψ2
0K/2π

]
= 0.

By simple algebraic operation we have that

2θβK2

(Ω + γK3 − αψ2
0K/2π + βK2)(Ω + γK3 − αψ2

0K/2π − βK2)
= −2π

ψ2
0

,

θβK2

(Ω + γK3 − αψ2
0K/2π)2 − (βK2)2

= − π

ψ2
0

,

(θβK2ψ2
0)/π = −(Ω + γK3 − αψ2

0K/2π)2 + (βK2)2,(19)

Ω + γK3 − αψ2
0K/2π = ±

√
(βK2)2 − (θβK2ψ2

0)/π,

Ω = ±iβK2
( ψ2

0θ

πβK2
− 1
)1/2

− γK3 +
αψ2

0K

2π
.

So, we obtained a relation for Ω, which we call instability growth rate.
Further, to find instability interval for K, we impose Im(Ω) > 0, which guarantees unstable

waves. In order to satisfy this condition, we need to have the expression under the squared root to
be positive, that is,

ψ2
0θ

πβK2
− 1 > 0,

which implies

K ∈
[
−

√
ψ2

0θ

πβ
,

√
ψ2

0θ

πβ

]
.

�
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In particular, when α = γ = 0 and β = β′/2, we obtain a similar relation as in [9, eq. 9]

Let us find the instability growth rate (18) working directly with the Hirota equation. In order
to do that, insert the following ansatz in (1)

ψ(x, t) :=
ψ0√
2π
eiθ

ψ2
0

2π
t
(
1 + ε ei(Kx−Ωt)

)
.

Linearizing in ε, we claim that a highly nonlinear equation in Ω will be obtained

(20) − Ω− ψ2
0

2π
+
αψ2

0K

2π
− βK2 + γK3 +

θψ2
0

π
+
θψ2

0

2π
e−2iKxe2iRe(Ω)t = 0.

Indeed, let’s verify (20) by inserting the ansatz directly to Hirota equation.

Note that we linearize in ε, as before. So, all the higher order terms in ε we do not consider.
Firstly, simplify the term |ψ|2 as

|ψ|2 = ψ ∗ ψ

=

(
ψ0√
2π
ei
θψ2

0
2π

t +
εψ0√

2π
ei
θψ2

0
2π

tei(Kx−Ωt)

)(
ψ0√
2π
e−i

θψ2
0

2π
t +

εψ0√
2π
e−i

θψ2
0

2π
te−i(Kx−Ωt)

)

=
ψ2

0

2π
+
εψ2

0

2π
e−i(Kx−Ωt) +

εψ2
0

2π
ei(Kx−Ωt).

Now, let us calculate all the needed partial derivatives of ψ(x, t):

∂tψ =
iθψ3

0

2π
√

2π
ei
θψ2

0
2π

t + i
εψ0√

2π

(θψ2
0

pi
− Ω

)
ei
θψ2

0
2π

tei(Kx−Ωt),

∂xψ = iK
εψ0√

2π
ei
θψ2

0
2π

tei(Kx−Ωt),

∂2
xψ = −K2 εψ0√

2π
ei
θψ2

0
2π

tei(Kx−Ωt),

∂3
xψ = −iK3 εψ0√

2π
ei
θψ2

0
2π

tei(Kx−Ωt).

Moreover, the remaining terms of the Hirota equation are given by

|ψ|2∂xψ =

(
ψ2

0

2π
+
εψ2

0

2π
e−i(Kx−Ωt) +

εψ2
0

2π
ei(Kx−Ωt)

)(
iK

εψ0√
2π
ei
θψ2

0
2π

tei(Kx−Ωt)

)

= iK
εψ3

0

2π
√

2π
ei
θψ2

0
2π

tei(Kx−Ωt),

|ψ|2ψ =

(
ψ2

0

2π
+
εψ2

0

2π
e−i(Kx−Ωt) +

εψ2
0

2π
ei(Kx−Ωt)

)(
ψ0√
2π
ei
θψ2

0
2π

t +
εψ3

0

2π
√

2π
ei
θψ2

0
2π

tei(Kx−Ωt)

)

=
ψ3

0

2π
√

2π
ei
θψ2

0
2π

t +
εψ3

0

π
√

2π
ei
θψ2

0
2π

tei(Kx−Ωt) +
εψ3

0

2π
√

2π
ei
θψ2

0
2π

te−i(Kx−Ωt).

Finally, collecting all the terms with corresponding coefficients, we obtain a relation:

− θψ3
0

2π
√

2π
ei
θψ2

0
2π

t − εψ0√
2π

(θψ2
0

2π
+ Ω

)
ei
θψ2

0
2π

tei(Kx−Ωt) − αK εψ3
0

2π
√

2π
ei
θψ2

0
2π

tei(Kx−Ωt)

− βK2 εψ0√
2π
ei
θψ2

0
2π

tei(Kx−Ωt) + γK3 εψ0√
2π
ei
θψ2

0
2π

tei(Kx−Ωt)
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+
θψ3

0

2π
√

2π
ei
θψ2

0
2π

t +
εψ3

0

π
√

2π
ei
θψ2

0
2π

tei(Kx−Ωt) +
εψ3

0

2π
√

2π
ei
θψ2

0
2π

te−i(Kx−Ωt) = 0.

Cancelling the term εei
θψ2

0
2π

tei(Kx−Ωt), we conclude:

−Ω− ψ2
0

2π
+
αψ2

0K

2π
− βK2 + γK3 +

θψ2
0

π
+
θψ2

0

2π
e−2iKxe2iRe(Ω)t = 0,

as we claimed.

Remark 3.3. The equation (20) that we obtain here is highly nonlinear in Ω, so we cannot find Ω
explicitly. However, if we use the Wigner function, as we did before, we only deal with the quadratic
nonlinear equation (19), where it is trivial to find Ω. This justifies the use of the Wigner function
over an option of working directly with Hirota equation.

3.2. Landau damping. As a first step to deal with the Landau damping function, for simplicity
let us work with Hirota equation with γ = 0. In this subsection we aim to find instability growth
rate for Ω and instability intervals for K. In order to do so, we follow the involved process:

• Firstly, we show that a solution to Hirota equation under the Wigner function is a Landau
damping function in Lemma 3.4.
• Then, we insert the Landau damping function into the dispersion relation (21), where γ = 0
(see (21)).
• Further, in Lemma 3.5 we showed that we need to use Cauchy Residue’s Theorem to solve
the integral in (21).
• After that, Proposition 3.6 gives the instability growth rate for Ω in the case K < 0.
• To find instability interval for K < 0 we used Proposition 3.7.
• Finally, Lemma 3.8 shows the symmetry in the instability interval for K > 0, thus we
obtained the whole interval for K. In the end we state all the results in a Theorem 3.9

In the lemma below we again start with a solution of Hirota equation and transform via Wigner
definition. Note that in contrast with the Dirac delta case the solution also depends on the x-
variable.

Lemma 3.4. Let ψ be the incoherent wave and define it as:

ψ(x, t) :=
ψ0√
2π
eiθ

ψ2
0

2π
t+iφ(x),

where φ is chosen in such a way that

ψ(x+ y/2, t)ψ(x− y/2, t) = ψ0
2e−p0|y|,

for some p0 > 0 and ψ0 ∈ R, as it was suggested in [9, eq. (12)]. Then the Wigner function of this
wave is the Landau damping function

W0(k) :=
ψ2

0

π

p0

k2 + p2
0

.

Proof. Observe that

W [ψ,ψ](k) =

∫
R
e−ikyψ(x+ y/2, t)ψ(x− y/2, t)dy

=

∫
R
e−iky

|ψ2
0|

2π
e−p0|y|dy

=
ψ2

0

2π

∫
R
e−iky−p0|y|dy

=
ψ2

0

2π

(∫ 0

−∞
e−iky+p0y dy +

∫ ∞
0

e−iky−p0y dy
)
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=
ψ2

0

2π

(∫ 0

−∞
ey(p0−ik) dy +

∫ ∞
0

e−y(p0+ik) dy
)

=
ψ2

0

2π

( 1

p0 − ik
+

1

p0 + ik

)
=
ψ2

0

π

p0

k2 + p2
0

.

�

The dispersion relation with γ = 0 is given by

(21) 1 +
1

2π

∫
R

(αk − θ + αK/2)W0(k +K/2) + (αK/2− αk + θ)W0(k −K/2)

Ω− αKψ2
0/2π − 2βKk

dk = 0.

We insert a Landau damping function and obtain

1 +
ψ2

0

2π2

∫
R

(
αk − θ + αK/2

) p0

(k+K/2)2+p2
0

+
(
αK/2− αk + θ

) p0

(k−K/2)2+p2
0

Ω− αKψ2
0/2π − 2βKk

dk = 0.

After simple algebraic manipulations we get
(22)

1+
ψ2

0p0

4π2β

∫
R

αk2 − 2θk − α(p2
0 +K2/4)(

k − C
)(
k −

(
ip0 + K

2

))(
k −

(
ip0 − K

2

))(
k −

(
− ip0 + K

2

))(
k −

(
− ip0 − K

2

))dk = 0,

where C := Ω
2βK −

αψ2
0

4βπ .

In the Lemma below, we state the Cauchy Residue theorem can be used to solve the above
intergal.

Lemma 3.5. Let C ∈ C such that Im(C) < 0 and define f as

(23) f(k) :=
αk2 − 2θk − α(p2

0 +K2/4)(
k − C

)(
k −

(
ip0 + K

2

))(
k −

(
ip0 − K

2

))(
k −

(
− ip0 + K

2

))(
k −

(
− ip0 − K

2

))dk.
Then we get ∫

R
f(k)dk = 2πi

[
Res(f, ip0 +

K

2
) +Res(f, ip0 −

K

2
)
]
.

Proof. In the Figure 1 we have the contour in the counterclockwise direction as ΓR = Γ1
R ∪ Γ2

R,
where Γ1

R is half of the circle centered at (0, 0) with radius R and Γ2
R is a line from (−R, 0) to

(R, 0). Observe that

(24)
∫

ΓR

f(z)dz =

∫
Γ1
R

f(z)dz +

∫
Γ2
R

f(z)dz.

Also, by the Cauchy Residue theorem in [7, Theorem on p. 235] we have that∫
ΓR

f(z)dz = 2πi
[
Res(f, ip0 +

K

2
) +Res(f, ip0 −

K

2
)
]
.

In order to find desired integral from (22), we consider each integral from (24) separately. Let
us consider the absolute value of the integral along the curve Γ1

R where |z| = R and Im(z) > 0.∣∣∣∣∣
∫

Γ1
R

αz2 − 2θz − α(p2
0 +K2/4)(

z − C
)(
z −

(
ip0 + K

2

))(
z −

(
ip0 − K

2

))(
z −

(
− ip0 + K

2

))(
z −

(
− ip0 − K

2

))dz∣∣∣∣∣
≤
∫

Γ1
R

α|z|2 + 2θ|z|+ α(p2
0 +K2/4)∣∣z − C∣∣∣∣z − (ip0 + K

2

)∣∣∣∣z − (ip0 − K
2

)∣∣∣∣z − (− ip0 + K
2

)∣∣∣∣z − (− ip0 − K
2

)∣∣dz
≤
∫

Γ1
R

αR2 + 2θR+ α(p2
0 +K2/4)(

R− C
)(
R−

(
ip0 + K

2

))(
R−

(
ip0 − K

2

))(
R−

(
− ip0 + K

2

))(
R−

(
− ip0 − K

2

))dz
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=
αR2 + 2θR+ α(p2

0 +K2/4)(
R− C

)(
R−

(
ip0 + K

2

))(
R−

(
ip0 − K

2

))(
R−

(
− ip0 + K

2

))(
R−

(
− ip0 − K

2

)) ∫
Γ1
R

dz

=
πR
(
αR2 + 2θR+ α(p2

0 +K2/4)
)(

R− |C|
)(
R−

∣∣ip0 + K
2

∣∣)(R− ∣∣ip0 − K
2

∣∣)(R− ∣∣− ip0 + K
2

∣∣)(R− ∣∣− ip0 − K
2

∣∣)
Taking the limit of the above expression as R→∞, we find that the integral in Γ1

R is 0.
Now, we have that

lim
R→∞

∫
Γ2
R

f(z)dz =

∫
R
f(k)dk.

Therefore, we conclude∫
R
f(k)dk = 2πi

[
Res(f, ip0 +

K

2
) +Res(f, ip0 −

K

2
)
]

as required.

2

p0

−p0

y

K
2−K

2 R−R x

∗1∗2

∗3∗4

∗C

−→

↖↙

Γ2
R

Γ1
R

Figure 1. Poles of the function f(k).

�

In the proposition below we find Ω for K < 0. So, in general, we solve the contour integral using
the Cauchy Residue theorem.

Proposition 3.6. If we insert W0(k) =
ψ2

0
π

p0

k2+p2
0
into (22), then for K < 0 we obtain the instability

growth rate:

(25) Ω =
αψ2

0K

2π
+ 2ip0βK ± iβK2

√
ψ2

0

πβK2
(θ − ip0α)− 1.

Proof. As we showed in Lemma 3.5,∫
R
f(k)dk = 2πi

[
Res(f, ip0 +

K

2
) +Res(f, ip0 −

K

2
)
]
.

Thus, we need to find the residues separately. So,

Res
(
f, ip0 +

K

2

)
=
α
(
ip0 + K

2

)2 − 2θ
(
ip0 + K

2

)
− α

(
p2

0 + K2

4

)(
ip0 + K

2 − C
)
K
(
2ip0

)(
2ip0 +K

)
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=
α
(
2ip0 +K

)2 − 8θ
(
ip0 + K

2

)
− 4α

(
p2

0 + K2

4

)(
2ip0 +K − 2C

)
2K
(
2ip0

)(
2ip0 +K

)
=
α
(
− 4p2

0 +K2 + 4ip0K
)
− 8ip0θ − 4θK − 4αp2

0 − αK2(
2ip0 +K − 2C

)
2K
(
2ip0

)(
2ip0 +K

)
=

−8αp2
0 + 4ip0αK − 8ip0θ − 4θK(

2ip0 +K − 2C
)
2K
(
2ip0

)(
2ip0 +K

)
=

4ip0α(2ip0 +K)− 4θ(2ip0 +K)

(2ip0 +K − 2C)4ip0K(2ip0 +K)

=
ip0α− θ

(2ip0 +K − 2C)ip0K
,

and

Res
(
f, ip0 −

K

2

)
=
α
(
ip0 − K

2

)2 − 2θ
(
ip0 − K

2

)
− α

(
p2

0 + K2

4

)(
ip0 − K

2 − C
)(
−K

)(
2ip0

)(
2ip0 −K

)
= −

α
(
2ip0 −K

)2 − 8θ
(
ip0 − K

2

)
− 4α

(
p2

0 + K2

4

)(
2ip0 −K − 2C

)
2K
(
2ip0

)(
2ip0 −K

)
= −

α
(
− 4p2

0 +K2 − 4ip0K
)
− 8ip0θ + 4θK − 4αp2

0 − αK2(
2ip0 −K − 2C

)
2K
(
2ip0

)(
2ip0 −K

)
= − −8αp2

0 − 4ip0αK − 8ip0θ + 4θK(
2ip0 −K − 2C

)
2K
(
2ip0

)(
2ip0 −K

)
= − 4ip0α(2ip0 −K)− 4θ(2ip0 −K)

(2ip0 −K − 2C)4ip0K(2ip0 −K)

= − ip0α− θ
(2ip0 −K − 2C)ip0K

.

Then (22) yields that

1 +
ψ2

0p0

4π2β
2πi

(
ip0α− θ

(2ip0 +K − 2C)ip0K
− ip0α− θ

(2ip0 −K − 2C)ip0K

)
= 1 +

ψ2
0ip0

2πβ

(
ip0α− θ

(2ip0 +K − 2C)ip0K
− ip0α− θ

(2ip0 −K − 2C)ip0K

)
= 1 +

ψ2
0

2πβK

(
ip0α− θ

(2ip0 +K − 2C)
− ip0α− θ

(2ip0 −K − 2C)

)
= 1 +

ψ2
0

2πβK

(
2ip0αK + 2θK

(2ip0 − 2C +K)(2ip0 − 2C −K)

)
= 1− ψ2

0

πβ

(
ip0α− θ

4C2 − 8ip0C −K2 − 4p2
0

)
= 0.

Thus, we arrive at a simple quadratic equation in terms of C:

C2 − 2ip0C −
K2

4
− p2

0 −
αψ2

0

4πβ
ip0 +

θψ2
0

4πβ
= 0.

Since C = Ω
2βK −

αψ2
0

4πβ , we further introduce the notations a := Ω
2βK , b :=

αψ2
0

4πβ and c :=
θψ2

0
4πβ , so

the above equation becomes

a2 + b2 − 2ab− 2ip0(a− b)−K2/4− p2
0 = ip0b− c,

a2 − a(2b+ 2ip0) + b2 + ip0b−K2/4− p2
0 + c = 0,
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which we will solve in the variable a.

By the method of discriminant, we find the following

D = (2b+ 2ip0)2 − 4b2 − 4ip0b+K2 + p2
0 − 4C

= 4ip0b+K2 − 4C

= ip0
αψ2

0

πβ
− θψ2

0

πβ
+K2

= K2 − ψ2
0

πβ
(θ − ip0α)

= (iK)2
( ψ2

0

πβK2
(θ − ip0α)− 1

)
.

Thus,

a =
αψ2

0

4πβ
+ ip0 ± i

K

2

√
ψ2

0

πβK2
(θ − ip0α)− 1.

Now substitute back a = Ω
2βK and obtain the following relation

Ω

βK
=
αψ2

0

2πβ
+ 2ip0 ± iK

√
ψ2

0

πβK2
(θ − ip0α)− 1,

which implies (25). �

In Proposition 3.6, we obtained an explicit expression for Ω; however, we cannot clearly see what
is its imaginary part. Proposition 3.7 shows the analysis, which explains how to find explicitly the
imaginary part of Ω for K < 0.

Proposition 3.7. If in (25) Im(Ω) > 0, we obtain the instability interval for K < 0

K ∈

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 , 0

]
.

Proof. In (25) we have complex expression under the square root

(26)

√
ψ2

0

πβK2
(θ − ip0α)− 1,

which we need to rewrite in the form A+ iB.

In order to bring the (26) to this shape, we need to use polar representation of complex numbers.
Thus, define a :=

ψ2
0θ

πβK2 − 1 and b := − ψ2
0

πβK2 p0α. Then

√
a+ bi =

√
r cos

µ

2
+ i
√
r sin

µ

2
, where µ = arctan

b

a
and r =

√
a2 + b2.

If we substitute the obtained trigonometric combination into (25) we get

Ω =
αψ2

0K

2π
+ 2ip0βK ± iβK2

(√
r cos

µ

2
+ i
√
r sin

µ

2

)
,

which can be rewritten as

Ω =
αψ2

0K

2π
± βK2√r sin

µ

2
+ i
(

2p0βK ± βK2√r cos
µ

2

)
.
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Since
ImΩ = 2p0βK ± βK2√r cos

µ

2
,

then we are interested in the expression
√
r cos µ2 .

Let µ ∈ [0, 2π] and

b

a
=
− ψ2

0
πβK2 p0α

ψ2
0

πβK2 θ − 1
.

We have two cases a > 0 and a < 0, in which b < 0 always.

Case 1: a < 0, then K2 >
ψ2

0θ
πβ , and K ∈ (−∞,−

√
ψ2

0θ
πβ ].

We have that µ ∈ [π, 3π/2], and µ/2 ∈ [π/2, 3π/4]. Therefore, recalling that

r =
√
a2 + b2,

cos
ω

2
=

√
1 + cosω

2
,

cos(arctan b/a) = ± 1√
1 + (b/a)2

,

We continue with the above mentioned cos term as
√
r cos

µ

2
= −
√
r

√
1 + cosµ

2
= −

√
r

2

√
1− 1√

1 + (b/a)2
= −

√
r

2

√
1− |a|

r

= −
√
r

2

√
r − |a|
r

= − 1√
2

√
r − |a| = − 1√

2

√
r + a, since a < 0.

Thus,

Im(Ω) = ±βK
2

√
2

√
r + a+ 2p0βK = βK(± K√

2

√
r + a+ 2p0) > 0.

Since, K < 0, then we must have K√
2

√
r + a+ 2p0 < 0

K√
2

√√
a2 + b2 + a < −2p0,

K2

2
(
√
a2 + b2 + a) > 4p2

0.

Substituting back expressions for a and b we obtain

8p2
0 < K2

(√( ψ2
0

πβK2

)2
θ2 + 1− 2

( ψ2
0

πβK2

)
θ +

( ψ2
0

πβK2

)2
p2

0α
2 +

ψ2
0θ

πβK2
− 1

)

=

√
ψ4

0θ
2

π2β2
+K4 − 2ψ2

0θ

πβ
K2 +

ψ4
0

π2β2
p2

0α
2 +

ψ2
0θ

πβ
−K2.

Then, we have the following inequality:

8p2
0 +K2 − ψ2

0θ

πβ
<

√
ψ4

0θ
2

π2β2
+K4 − 2ψ2

0θ

πβ
K2 +

ψ4
0

π2β2
p2

0α
2,
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8p2

0 +K2 − ψ2
0θ

πβ

)2

<
ψ4

0θ
2

π2β2
+K4 − 2ψ2

0θ

πβ
K2 +

ψ4
0

π2β2
p2

0α
2,

K4 +

(
ψ2

0θ

πβ
− 8p2

0

)2

− 2K2

(
ψ2

0θ

πβ
− 8p2

0

)
<
ψ4

0θ
2

π2β2
+K4 − 2ψ2

0θ

πβ
K2 +

ψ4
0

π2β2
p2

0α
2,

64p4
0 − 16

ψ2
0θ

πβ
p2

0 + 16K2p2
0 <

ψ4
0

π2β2
p2

0α
2,

64p2
0 − 16

ψ2
0θ

πβ
+ 16K2 <

ψ4
0α

2

π2β2
,

16K2 < 16
ψ2

0θ

πβ
+
ψ4

0α
2

π2β2
− 64p2

0,

K2 <
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0,

K > −

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0.

Initially, we had that K ∈ (−∞,−
√

ψ2
0θ
πβ ].

Combining this with the above result, we have an interval for K < 0

K ∈

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ,−

√
ψ2

0θ

πβ

]
.

Case 2: a > 0, then K2 <
ψ2

0θ
πβ , and then K ∈ [−

√
ψ2

0θ
πβ , 0].

We have that µ ∈ [3π/2, 2π], and µ/2 ∈ [3π/4, π]

√
r cos

µ

2
= −
√
r

√
1 + cosµ

2
= −

√
r

2

√
1 +

1√
1 + (b/a)2

= −
√
r

2

√
1 +
|a|
r

= −
√
r

2

√
r + |a|
r

= − 1√
2

√
r + |a| = − 1√

2

√
r + a, since a > 0.

Thus,

Im(Ω) = ±βK
2

√
2

√
r + a+ 2p0βK = βK(± K√

2

√
r + a+ 2p0) > 0,

which is exactly the same as in Case 1, therefore, the computations are the same, which leads us
to the expression

K > −

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0.

However, in this case we had that K ∈ [−
√

ψ2
0θ
πβ , 0].

Combining this with the above result, we obtain another interval for K < 0

K ∈

[
−

√
ψ2

0θ

πβ
, 0

]
.
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Summing up both cases a < 0 and a > 0, we finally obtain the full interval for K < 0

K ∈

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 , 0

]
.

�

This lemma below is quite useful, which allows us to skip previous computation for K > 0. It
shows that instability interval is symmetric around 0.

Lemma 3.8. Let K > 0. If Im(Ω) > 0, then the instability interval for K is written as

K ∈

[
0,

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0

]
.

Proof. Remember that

C :=
Ω

2βK
− αψ2

0

4βπ
.

We start with Im(C) > 0, which is the second case of the contour integral that we solved above,
and use that Im(C) < 0 is equivalent to Im(C) > 0.

C =
Ω

2βK
− αψ2

0

4πβ
=
Re(Ω)

2βK
− iIm(Ω)

2βK
− αψ2

0

4βπ
.

Thus Im(C) = − Im(Ω)
2βK = Im(Ω)

2β(−K) .

Call L = −K, and obtain that Im(C) = Im(Ω)
2βL .

Now, we insert L into the interval that we had for negative K

−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ≤ L ≤ 0,

−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ≤ −K ≤ 0.

Then 0 ≤ K ≤

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0.

�

Lemmas 3.4, 3.5 and 3.8 together with Propositions 3.6 and 3.7 imply the theorem below.

Theorem 3.9. If we start with the solution of the Hirota equation

ψ(x, t) :=
ψ0√
2π
eiθ

ψ2
0

2π + iφ(x),

then, with the property that

ψ(x+ y/2, t)ψ(x− y/2, t) = ψ2
0e
−p0|y|,

we have

W [ψ,ψ](k) =
ψ2

0

π

p0

k2 + p2
0

.

Moreover, after inserting this into the dispersion relation (21) we obtain the instability interval for
K

K ∈

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ,

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0

]
.
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4. CONCLUSIONS

Our main goal was to find intervals of instability for K in two different spectra:
• Dirac delta function W0(k) := ψ2

0δ(k), where ψ0 is constant.
• Landau damping function W0(k) :=

ψ2
0
π

p0

k2+p2
0
, where ψ0 is constant and p0 > 0.

All the analysis was performed for Hirota equation with exception for Landau damping function,
where we let γ = 0 for simplicity.

Before we summarize the results, note that Landau damping has a more realistic shape. Both
Landau damping and Dirac delta functions are solutions to Wigner-Hirota equation, and they both
represent the model for a rogue wave phenomena. However, Dirac delta function is not really a
wave, since it is infinity at one point (in our case at the origin) and zero everywhere else. On the
other hand, Landau damping depending on p0 shows different phenomena. For example, when p0

is very small, then the shape of the function is similar to a rogue wave, and if p0 tends to 0, then
Landau damping function is almost the same as Dirac delta function. Though, if p0 tends to +∞,
then Landau damping is just a straight line on x-axis. Thus, Landau damping function is a better
model of a wave and approximation is expected to be more precise, moreover, if one seeks for a
rogue wave, taking p0 small would be enough.

Figure 2. Landau damping at p0 = 1 (green), p0 = 0.5 (blue), p0 = 0.25 (red) and
ψ0 =

√
π.

The obtained intervals for K as mentioned in Theorems 3.2 and 3.9 are:

Idelta =

[
−

√
ψ2

0θ

πβ
,

√
ψ2

0θ

πβ

]
,

ILandau =

[
−

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0 ,

√
ψ2

0θ

πβ
+

(
ψ2

0α

4πβ

)2

− 4p2
0

]
.

It is surprising that the Dirac delta case annihilates the action of α, which corresponds to a
highly non-linear term in the Hirota equation. However, apriori expected that this α term should
play an important tole in the instability analysis. For these reasons Dirac delta approximation is
not accurate. Furthermore, we see that Landau damping brings us more information about the
instability interval for K. Next, we present different cases.

(i) If p0 → 0, ILandau =

[
−

√
ψ2

0θ
πβ +

(
ψ2

0α
4πβ

)2

,

√
ψ2

0θ
πβ +

(
ψ2

0α
4πβ

)2
]
.
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(ii) If p0 =
ψ2

0α
8πβ , then ILandau =

[
−
√

ψ2
0θ
πβ ,

√
ψ2

0θ
πβ

]
.

(iii) If p0 >
ψ2

0α
8πβ , then ILandau ⊆ Idelta,

(iv) If p0 → +∞, then ILandau = ∅.

Thus, in (i), if p0 is small, then we have bigger interval of instability.

Also, in case (ii) we have the same interval as in Dirac delta case, which tells us that the behavior
of Dirac delta is equivalent to Landau damping with p0 = ψ0α

8πβ .

Moreover, in (iii) for big p0 we have smaller interval of instability.

In the last case (iv) we have the empty interval, which means that we observe stability.

In general, this shows that the Landau damping function with Wigner-Hirota equation illustrates
a bigger picture about intervals of instability. Also, note that the Wigner function was useful ap-
proach to solve this problem. Remember that working directly with Hirota equation, even with
the Dirac delta function is struggling (see Remark 3.3), while Landau damping situation would be
much more complicated.

Finally, we state that the obtained results are new and significant for oceanography field in study-
ing rogue wave phenomena. We developed a theory of Penrose instability analysis by performing
it on Hirota equation and working with Landau damping function.



PENROSE INSTABILITY ANALYSIS IN THE HIROTA EQUATION 23

5. FUTURE PLANS

The results that we obtained in this paper are new and significant. However, we have further
plans to continue these investigations. Since for simplicity we did not consider the full Hirota
equation (with γ 6= 0), then this problem is still an open question.

If we undergo the same process as before, i.e. inserting the ansatz (12) with W0(k) =
ψ2

0
π

p0

k2+p2
0

into the dispersion relation (13) and linearizing in ε we could deduce that

1 +
ψ2

0Kp0

2π2

∫
R

−αk2 + 2θk + α(p2
0 +K2/4)(

3γKk2 − 2βKk + Ω + γK3/4− αKψ2
0/2π

)(
k −

(
ip0 + K

2

))
× 1(

k −
(
ip0 − K

2

))(
k −

(
− ip0 + K

2

))(
k −

(
− ip0 − K

2

)) dk = 0.

Now, this integral is very involved and if we use Cauchy Residue’s theorem, then we will need
to identify the poles, i.e. to say whether they have positive or negative imaginary part. However,
from this expression it is very hard to find out.

Thus, we plan to solve this problem with computer software Mathematica. A different approach
would be to use Taylor expansion in γ in order to approximate the above problematic integral.

Another plan for future is to study the emergence of rogue waves in our Hirota setting. In the
paper [3] this aspect was treated for NLSE with Dirac delta function. Our goal is to continue the
same approach and to investigate the rogue wave phenomena both for Dirac delta and Landau
damping functions.
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