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Abstract 

The thesis explores the status quo of the Kazakh language in terms of corpus 

linguistics. The project aims to survey the currently existing corpora of the Kazakh 

language and contribute to the existing body through a more flexible and more 

automatic way of corpus building and annotation. Upon the examination of the field, 

it was determined that while there are some efforts to digitize the Kazakh language, 

those projects are largely still being developed. They are conducted on various 

scales — from small student projects to the projects led by Mozilla and big research 

groups, like Apertium. Therefore, this project set out to attempt to build a corpus of 

journalistic Kazakh language using neural networks for part-of-speech tagging. In 

order to construct the corpus, news websites were used as a source, as they provide 

a decent vocabulary range while remaining easily accessible. The project utilized a 

series of small-scale Python programs to create the body of data to be annotated via 

obtaining the text from the web pages. The final stage of the study involves using the 

neural networks in order to assign the words their respective parts of speech. Neural 

networks provide an automatable way of doing part-of-speech tagging that is faster 

compared to humans, with an accuracy that can be almost equal to that of humans. 

In addition, while using the neural networks is a known way to approach the tagging 

and annotation, it has not seen use in Kazakh corpus linguistics as of yet. The final 

model was able to assign the correct parts of speech to words with a reasonable 

degree of accuracy, which could still be improved by providing a bigger sample of 

training data.  The project can be later utilized to build a more extensive corpus with 

a high degree of automation, lowering the time expenses.  
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Chapter 1: Background 

Introduction 

Corpus linguistics, as part of applied linguistics, has seen lots of development, 

thanks to technological development. Corpus linguistics, according to the consensus 

on the definition, is a method of studying languages that involves quantitative 

assessment of a collection of texts known as corpus1. A corpus is a collection of 

machine-readable texts which are sampled to be representative of a particular 

language or language variety2. As the possible computational and processing power 

of the machines grows, so grows the scientific significance of corpus linguistics. Its 

possible applications are rather diverse, but perhaps, two of the most outstanding 

fields are machine translation, and, somewhat less obviously, the judicial system – 

forensic linguistics is a field that relies on corpus, among other options. The former is 

discussed in an article by Bekbulatov et al. (2014), titled “A Study of Certain 

Morphological Structures of Kazakh and Their Impact on the Machine Translation 

Quality”. While the application of corpus linguistics is not the main topic of the paper, 

it is shedding light on one of the applications of corpus linguistics, which is machine 

translation — using content analysis to translate the content automatically. Still, the 

authors do highlight that improving the existing systems for Kazakh language 

translation could bring significant benefits, such as better software adaptation, etc. 

The benefits to the judicial system, which might not be as evident, have been 

described by several authors. The article “Advancing Law and Corpus Linguistics: 

Importing Principles and Practices from Survey and Content Analysis Methodologies 

 
1 Norbert, 2010 
2 McEnery et al, 2006 
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to Improve Corpus Design and Analysis”3 showcases precisely that —  the 

application and methodology for use of corpus linguistics. The authors argue that the 

introduction of broadly social science and humanities’ methods, including linguistics, 

into the judicial system will allow for greater clarity alongside better rigor and 

improved transparency. They start out with the general application of HSS 

methodologies and then move to the next chapter which talks about content analysis 

and coding methodologies, which is what corpus linguistics uses as well. Alongside 

its practical point of view, the article also offers a more theoretical part, which reveals 

the appropriate methodologies when applying corpus linguistics. The authors select 

four approaches to code the information — minimalist, dictionary-driven approach, 

grounded theory, and register selectivity, and each of those is different in terms of 

goals, and methods used: while some concentrate on one particular form of a verb, 

others attempt to analyze the corpus and come up with a theory based on the results 

Still, the theory outlined above falls short of providing a real-life example for 

the use of corpus linguistics, but there are still studies that showcase specific court 

cases and the ways corpus linguistics helped the judicial system. One of those 

articles, called “Ordinary Meaning and Corpus Linguistics”, explores the legal cases 

within the United States jurisdiction that saw the impact of corpus linguistics. One of 

those is defining what an ordinary meaning is based on a corpus4, which could help 

define if a person means something less obvious with the words based on what the 

ordinary meaning is. Another set of examples is given in a different book, “Advancing 

Law and Corpus Linguistics: Importing Principles and Practices from Survey and 

Content-Analysis Methodologies to Improve Corpus Design and Analysis”5, which 

 
3 Philips et al, 2015 
4 Gries et al, 2017 
5 Phillips, 2017 
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goes into the details on where the corpus linguistics could help with the evidence 

verification and testimony assessment. Starting from determining whether a 

particular person read off of a script or said the words themselves, and whether or 

not the words belong to a particular person. The society in Kazakhstan can benefit 

from those advancements greatly, with increased transparency in the judicial system. 

In addition, the lack of development in the corpus linguistics area creates a 

technological void in terms of voice-assistive technologies in Kazakh language. 

Some of the voice-assistive technology applications rely heavily on speech synthesis 

– using the vocabulary according to the situation. Granted, it is possible to create 

pre-recorded responses for some situations (for example, the currently implemented 

voice notification system at the traffic lights for vision-impaired people), yet when it 

comes to different situations (such as reading messages out loud) that require a 

wider range of responses, the technologies are falling short still. Kazakhstan is a 

new prospective market for the voice assistants. In 2013, Kazakhstan had 6 major 

smartphone OS companies6, featuring iOS and Android as some of the most popular 

operating system choices. Both Apple and Google have their own voice assistants — 

Siri and Google Assistant, respectively. Therefore, there is a ready foundation of the 

devices that can be used for the deployment of voice assistants. However, currently 

neither Siri or Google Assistant offers a solution for Kazakh language-speaking voice 

assistants. The efforts have been made by the Russian company Yandex7, yet they 

are still to come to fruition. While Kazakhstan might not constitute a significant 

portion of the market share for the big IT companies in the sphere, there can be 

other reasons that make the Kazakh language a less attractive option than others. 

  

 
6  Galiev, Alexander. June 25, 2013. 
7  Kodachigov, Valerii September 2, 2018.  
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Importance of the research 

My research project is going to focus on the adaptation of the existing corpus 

analysis methodology to the Kazakh language and attempting to bring neural 

networks into a set of approaches that have been used. Kazakhstan is a particularly 

good setting for this type of research. There are several reasons for that, however, 

the most important one is that while the Kazakh language appears to be largely on 

track in terms of being digitized, it is still somewhat understudied in terms of the 

corpus methodology. This is a rather serious hindrance both in terms of applied 

technology and scientific research. In the scope of this thesis, language being 

“digitized” essentially means that it has been sufficiently covered by the corpus 

research, enabling both scientific research via corpus studies to be conducted, and 

commercial projects to be carried out.  

 Corpus linguistics has various applications in daily life. The first application of 

the methodology is the voice processing technology. Programs like Cortana, Siri, 

and others rely on corpora, among other things, to “understand” human speech and 

respond to it correctly. As a side note, speech synthesis directly benefits from the 

advances made in corpus linguistics. Voice-assistive technology can help various 

groups of the society: for example, visually impaired people will be able to access 

much more than they are currently able to do; smartphone and laptop users will be 

able to interact with their devices more efficiently, and those are just 2 examples. A 

particularly good example of the application of corpus methodology outside of the 

academic research is the use of corpus in the judicial practices, as outlined in 

“Advancing Law and Corpus Linguistics: Importing Principles and Practices from 

Survey and Content Analysis Methodologies to Improve Corpus Design and 
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Analysis”8. With the sufficient development of the corpora, it is possible to assess 

whether the witness is reading off a script, or speaking for themselves, which opens 

a new way of forensic analysis. Granted, this type of evidence will still need to gain 

legal trust before being admitted in court in Kazakhstan, however, it has to start at 

some point. 

The status quo of the corpus methodology for the Kazakh language is that not 

much has been done for it. First, overall the research on the Kazakh language using 

corpus methodology has not been particularly advanced. There is a corpus of 

Kazakh language that has been built several years ago, and the “unofficial” 

headquarters of the corpus is located in Almaty9. The corpus is in digital form, and 

the search tools are available to the public for use; however, the body of the corpus 

cannot be accessed by the public freely through the website. The authors of the 

corpus claim to have gathered millions of words across various texts. However, it 

appears that the corpus is mostly focusing on the literary Kazakh language. While 

such a corpus is useful to a certain extent, it falls short of showing real-life examples 

of Kazakh language use patterns. The corpus can be used for researching literary 

Kazakh language. Still, another problem with the Almaty corpus is that it is not being 

maintained regularly. The website indicates that it is receiving some updates from a 

group of researchers, however, the latest changes date back to 2015, which is a 

relatively long time when it comes to the corpus studies. While the older text will not 

change, and thus don’t require updating, a corpus that is not being updated does not 

include newer texts, and therefore might not be representative of the newer trends, 

changes in the language. In addition, given that there were no updates to the corpus 

 
8 Philips et al (2015) 
9 http://web-corpora.net/KazakhCorpus/search/?interface_language=ru 
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in 6 years, it is highly likely that the corpus search system has not been updated 

either, which makes the research all the more troublesome. There is also another 

corpus, affiliated with Eurasian National University, and National Laboratory Astana, 

called Kazcorpus10; it contains 135 million words from 445078  annotated documents 

– to quote, “KLC is designed to be a large scale corpus containing over 135 million 

words and conveying five major stylistic genres (domains): literary, publicistic, 

official, scientific and informal”. Finally, a Universal Dependencies corpus11 is 

currently in the works for the Kazakh language. All the projects mentioned above 

demonstrate that while the Kazakh language is definitely making a strong case for 

becoming a digitized language, there is still a lot to be done.  In addition to that, there 

have been several attempts to build a corpus by some universities as part of their 

students’ projects, however, those have either not resulted in a finished corpus or 

one that is readily available. 

At the moment, there is no ready Kazakh language corpus that focuses on the 

spoken language that is available to the public, but some are in the works at the 

moment.  Some of the more recent developments in this area include QazCorpus12, 

which is a new corpus, available online, that does have the subcorpus of spoken 

Kazakh. Another effort comes from the CommonVoice13 project by Mozilla – it has 

recently gathered enough oral data in the Kazakh language to start working. Finally, 

ISSAI14 has launched a Kazakh speech corpus project quite recently, and the project 

is currently in the data collection stage. While all those projects are a welcome 

contribution to the studies of the Kazakh language using corpus methodology, at the 

 
10 http://kazcorpus.kz/klcweb/en/ 
11 https://github.com/UniversalDependencies/UD_Kazakh-KTB 
12 qazcorpus.kz 
13Mozilla CommonVoice 
14 ISSAI, Kazakh Speech Corpus 
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moment, none of those offer an opportunity for the researchers to download the 

corpus data and work on it; some of the projects are still in the early stages and do 

not have enough data yet. Yandex, a Russia-based web technology company, has 

announced its plans to develop voice recognition software for the Kazakh language 

as early as 201915, however, at this point nothing has been released. 

Aims and roadmap 

The project aims to answer several questions. The first question can partially 

be answered within the course of this literature review: what is the current state of 

Kazakh language corpora? What kinds of corpora exist, and how could one 

approach the creation of a Kazakh language corpus? In addition, how could one go 

about analysis of such a corpus? What kinds of tests and methodologies need to be 

employed? The next question concerns the software available for corpus analysis — 

what are the tools currently available for the corpus analysis? Following that, I am 

going to ask how well do those tools work with Kazakh language, and survey those 

that are able to do so, providing a general idea of the possible tools one could use 

even for future research in this area. I will take a particularly close look at Apertium, 

since it is freely available open-source, which means it can be analyzed and 

improved easily, unlike commercial products or corpus-specific tools, so the practical 

outcome of the project can be immediately implemented with no costs associated. 

The research concludes with the implementation of a neural network, the 

main task of which is to classify the input (the words) into the parts of speech after 

the training. The neural network is built as a multi-layered perceptron, which allows it 

to complete the classification as accurately as possible given appropriate training 

 
15 Kodachigov, Bryzgalova, 2019 
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data. In this case, the training data is the corpus prepared beforehand - an actual 

annotated body of text; for this research, it is a dictionary-styled body. Instead of 

using full sentences, I opted for sentences decomposed into words that have been 

annotated. The dictionary is a combination of the original data, which have been 

assigned their corresponding parts of speech semi-automatically, with the corpus 

data provided by Apertium, an open-source software that was already described in 

the paper. 

There is hardly a fixed size that can be deemed “exactly right” for the task - 

the more there is of the training data, the higher is the accuracy on the sample of test 

data. Still, there is a high possibility of diminishing returns past a certain point, when 

more words added to the training data will not greatly improve the accuracy, but will 

instead increase the training time. For example, a thousand words added to the 

corpus of two thousand will definitely improve the accuracy of the algorithm; while a 

thousand words added to a hundred million words worth of training data will not 

contribute significantly. 

Granted, the size of the training dataset is not a sole defining factor of 

accuracy – the quality of the data, its diversity, and the number of epochs all 

contribute to the output. Epoch in the context of machine learning and neural 

networks refers to the number of times the algorithm has been trained with a 

particular dataset – the higher the number of epochs, the more times the algorithm 

has been allowed to run, which means more precise tuning of the weight, which 

leads to more accurate outcomes. 
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Literature review 

Norbert et al. (2010), in the publication “Introduction to applied linguistics”, 

takes a brief detour into the history of corpus linguistics. Corpus linguistics, as a 

branch of applied linguistics, has developed in its current sense in the middle of the 

20th century; however, it has been used in its more rudimentary sense even before 

that, particularly in religious studies, by various scholars. However, for this project, I 

would refer to the modern sense of corpus. In its current meaning, according to 

McEnery et al. (2006:5), given in the book “English Language: Description, Variation 

and Context”, it is a collection of machine-readable texts which are sampled to be 

representative of a particular language or language variety16. Accordingly, corpus 

linguistics is a branch of science that studies the languages using the corpus. A 

detailed analysis of the definition is a good starting point towards developing the 

methodologies. First, a corpus should be readable by a machine. This outright rules 

out the use of printed materials as a corpus — unless they have been transcribed 

electronically, they cannot be used as a corpus. Authenticity means that the text 

should not be done specifically for corpus, but instead should be real-life texts. 

Finally, the texts should be sampled to be representative of the language or 

language variation. Corpus linguistics focuses on processing large amounts of data 

and using systems to break the language down into basic patterns that can be used 

later. In a sense, modern corpus linguistics draws on the notions introduced by 

Noam Chomsky in the mid-twentieth century. 

Chomsky advanced the idea of grammar as a set of rules that can be 

combined and changed using more rules, in his article “Three Models for the 

Description of Language”, published in 1956. The idea of describing languages via 

 
16 McEnery et al, 2006 
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what is called a “finite-state machine”, or a more abstract model, context-free 

grammar, was not revolutionary in and of itself, but it opened the ways to use the 

natural language in a different way. There is a misconception17 regarding Chomsky’s 

approach to language – initially, it was not the intent of Chomsky to use the language 

as a set of fixed rules, as he noted himself, saying that many languages do not 

adhere to a set of rules, no matter how complex. What he did, though, was laying the 

foundation for the study of language based on the patterns. Granted, finite-state 

machines are not the only way of describing language. 

Corpus linguistics does not limit itself purely to pattern discovery for the sake 

of pattern discovery. It has some practical applications as well, one of the most 

notable ones being its application to judicial practices, as forensic linguistics is a field 

that can definitively be aided by the developments made in corpus linguistics. While 

this is still largely a work in progress, it has been demonstrated that in many cases, 

corpus linguistics can determine certain patterns and help the experts decide 

whether or not a particular text exhibits features of a particular genre — for example, 

a terrorist threat, as was described by Gries (2017) and Phillips (2017). The same 

approach could also help detect if a particular speech excerpt is likely to be someone 

simply talking, or reading off of a script, or if those words belong to that person at all. 

The general approach employed by corpus linguistics, when combined with biology, 

psychology, criminal studies, etc, could change the way the justice system works, 

and not only the justice system, but also many different areas, like machine 

translation, voice assistive technologies, and others. 

The research project is on corpus research in Kazakh language. Kazakh 

language has not seen much attention in terms of computational analysis, and the 

 
17 Horgan, 2016 
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data on the language is not up to date with the modern standards. In addition, the 

corpora on Kazakh language are not systematized well18. While there are efforts to 

bring the corpora to a unified structure, ultimately, as of currently, the goal remains 

unachieved. In addition, there is no unified program that could deal with the Kazakh 

language: while the most popular Kazakh corpora do have their own tools19, they are 

largely unavailable outside the field, and they are not uniform in their nature, which 

makes it tough for scholars to use the resources available.  

Machine translation and speech synthesis/recognition are currently one of the 

bigger topics in computational linguistics — as the technology develops, the demand 

for voice-assistive technology will likely rise. However, not all languages enjoy equal 

representation in the field — some, like English, are on the forefront, while others, 

like Kazakh, are in the very early stages. Such a discrepancy can hardly be 

attributed to one particular issue — it’s likely there are several factors that make a 

certain language more prospective for voice-assisted technology. Aside from the 

market and popularity factors, the languages can suffer negligence due to the 

available data and approaches to the analysis, which hinders the effective 

development of technology. Such a drastic difference in terms of digitalization has 

even earned itself a name — “digital divide”, which refers to the unevenness of the 

world languages in terms of digital coverage. As mentioned before, some of the 

world languages with the largest number of speakers, or those located within a 

particular geopolitical border, enjoy cutting-edge technology (e.g. English, Russian, 

French), while others, smaller regional languages, are unavailable, or limited, within 

the currently present software. Kazakhstan is a new prospective market for voice 

 
18 http://kazcorpus.kz/klcweb/en/primary/ 
19 Алматинский корпус казахского языка (АККЯ) 

http://kazcorpus.kz/klcweb/en/primary/
http://web-corpora.net/KazakhCorpus/search/?interface_language=ru
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assistants. This is a rather problematic perspective for the development of corpus 

linguistics, especially for minor languages – if the scientific studies of language are 

dictated solely, or at least for the most part, by its marketability, the commercial 

interest may outweigh the scientific one, showing the bias towards more “popular” 

languages. This may also lead to the “digital death” of a language - lack of 

representation in the digital domain. 

In 2013, Kazakhstan had 6 major smartphone OS companies, featuring 

operating systems by Apple and Google as some of the most popular options. Both 

of those companies have their own voice assistants — Siri and Google Assistant, 

respectively. Therefore, there is a ready foundation for the devices that can be used 

for the deployment of voice assistants. However, currently neither Siri or Google 

Assistant offers a solution for Kazakh language-speaking voice assistants. Moreover, 

even if there was a corpus of the Kazakh language that is comprehensive enough to 

work well with voice-assistive software, there is very little that can be done to 

expedite the process if the software companies mentioned above do not actively 

take the steps. Given that, some scientists have pushed for “Open Language 

Technology”20 – essentially, having equal access to the standards, interfaces and 

resources for the languages. Some efforts have been made by the Russia-based 

company Yandex, yet they are still to come to fruition21.  

One software that is capable of working with the Kazakh language is called 

Apertium (the module that works specifically with the Kazakh language is called 

Apertium-kaz). Apertium is a “free/open-source platform for rule-based machine 

translation”, and anyone can contribute to it, use it, study how it works, or modify it, 

 
20 Sjur et al, 2019 
21 Kodachigov, Valerii, September 2, 2018. 
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which is why this platform was chosen as the basis of research. The philosophy of 

the open-source, as laid out by GNU, is that for a program to be considered truly free 

and open-source, the program has to be able to be run by anyone, has to be able to 

be modified by anyone (having an open-source code is a natural condition for it), its 

copies have to be able to be freely distributed, as well as the copies of the modified 

versions22. By analyzing the current data sources of Apertium and the methodology 

of morphological transducers used, this research project will attempt to create a 

more optimal Kazakh language mophologizer, and improve the database used by 

Apertium-kaz. Apertium is free software, currently available online, which is capable 

of machine translation and morphological analysis of words. There are 2 versions of 

any given Apertium package — a stable, non-beta version, and a beta version. The 

Kazakh language is represented in both of those categories — while currently only 

the Kazakh-Tatar version has been deemed “stable”, Kazakh is nonetheless 

represented in other translation pairs as well. While only 1 language pair with 

Kazakh is stable at the moment, more are currently being worked on, and given the 

attention Turkic languages receive23, it is a matter of time before the coverage of 

Kazakh language becomes substantial in the open-source domain. Given the current 

tools, the Kazakh analyzer used in Apertium is capable of breaking down most words 

and indicating the possible part of speech it belongs to based on the morphology, 

even though there may be ambiguous cases. 

 However, while Apertium is a great open-source tool, it also has its 

shortcomings, which, while not immediately visible to the end user, are still present 

and can affect the overall quality of the tool. Turning back to the lexc file, some of the 

 
22 https://www.gnu.org/philosophy/free-sw.en.html 
23 Washington et al, 2019 
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areas that can be improved are immediately noticeable. The software creators 

acknowledge the fact that some parts of the parser are still not done, and the ways 

to implement the solutions are not feasible as of yet. For example, at the moment the 

parser is unable to deal with the superlatives that have been created by partial 

reduplication of the first syllable, such as “qap-qara”, it does not differentiate 

between the negative pronouns, instead putting them all into a single category. By 

and large, while the integral components of the system are functioning very well, 

even as a beta/non-stable version, there are still some points that would require 

work, such as the ones described above. 

Chapter 2: Theoretical foundation 

 Finite-state machines and context-free grammar are rather important 

concepts in the context of natural language processing. Essentially, they are abstract 

models of language — it is through them that many languages can be broken down 

into a set of generalizations for rule-based parsing, among other tasks. 

 

Finite-state machines 

 The first notion to be discussed is a finite-state machine (FSM). A finite-state 

machine is a model of computation that can be represented as a graph with the 

possible states of the machine as its nodes, and the transitions between the states 

as the vertices connecting the corresponding states24. The number of states is also 

limited, hence the name “Finite-State Machine." At any given moment in time, the 

model can only be in one state, so there is no ambiguity in that regard. The 

machines may stop at any state which is deemed to be a “final state”. 

 
24 James et al, n.d. 
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Let’s take the figure above as an example of a finite state machine, with a 

simple example — a door. According to the scheme above, a door can only be in a 

state A (closed) or state B (open). Those two states cannot be manifested at the 

same time within the same finite state machine (the same door) — the door is either 

open or closed, not both or neither at the same time. The transitions between the two 

states are the actions — pushing and pulling, for example. In order to change the 

state of the door from closed to open (from A to B), someone has to pull the door — 

the action of pulling is Transition 1, and the door changes state, as reflected by the 

finite-state machine. To make the door closed again, Transition 2 has to take place 

— pushing the door makes it close, and the finite-state automaton changes its state 

once again from B to A. 

Now, let’s consider a more intricate example that is related more to linguistics 

rather than a physical object. One of the mnemonic devices of English language 

states “i before e except after c”, describing the distribution of ie/ei digraphs in 

English spelling. This can also be represented with a finite-state machine, which 

would look more complicated25. 

 
25 Stanford, n.d. 
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The state A in the machine symbolizes “not after c or e — anything but ei”. 

This is the very first state, and nothing special has occurred yet to change the 

machine to a different state. As long as neither c nor e occurs, but instead something 

else (the “i, other” transition in the picture, the machine will stay in that state. 

However, as soon as there is e in a word, the machine changes its state to state B, 

which is “no i, we have an e”. If e keeps occurring, the machine will keep staying in 

that state, which is indicated by the “e” transition in the picture. From this state, the 

machine may either return to state A (if anything other than c, e, or i occurs) or shift 

to state C, which is what happens when the machine encounters the letter c in a 

word. Once it does, the machine changes its state via “c” transition to state C, which 

is “anything goes after c”. The machine may stay in this state as long as more c’s are 

encountered right after the initial one; it may return to state A once it encounters 
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anything else, however, it may not return to state B, which is “we have an e, so we 

cannot have i”, because the rule permits it, therefore, the transition from C to B is 

unavailable. Returning to state A, the system may immediately change back to state 

C instead of B, which is the first route described above, if the machine encounters c. 

Finite state machines are used in computational linguistics for analyzing 

morphology and phonology. The same concepts can be applied also to syntactic 

analysis, however, their use in this domain is more limited. 

In this project, finite-state machines are used for morphological analysis. They 

are the most optimal tool for this kind of task — morphemes, or a group of 

morphemes, can all be represented as nodes, and the rules, like the vowel harmony, 

can be represented accordingly on the transitions. This way, it is possible to 

represent the vocabulary of the Kazakh language via a finite set of models. 

 

Context-free grammar 

 A context-free grammar is a tool often used to describe formal languages, 

such as a programming language. A context-free grammar is a set of rules that can 

describe all the grammatically possible sentences in a language; the language 

generated via context-free grammar is called a context-free language. In its simplest 

form, context-free grammar describes how a language can be constructed from 

blocks, and if those simple blocks can be deconstructed further to the level of 

individual words. 

For example, let’s take a simple unit - a sentence, and represent it by S. S 

can be broken down into 2 S’s (when 2 sentences are combined into one complex 

sentence). This can be represented as S→ S+S. S can also be a noun phrase+verb 

phrase- a very simple sentence. This is S→ NP+VP. A noun phrase can be a single 
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noun (NP→ N), or an adjective+noun phrase (NP→ Adj+NP). A verb phrase, in turn, 

can be a single word (VP→ V), or 2 verbs, if one of them is auxiliary (VP→ V+V). It 

can also be an adverb plus verb phrase (VP→ Adv+VP). Therefore, a brief example 

of the context-free grammar from this paragraph would be  

S→ S+S 

S→ NP+VP 

NP→ N 

NP→ Adj+NP 

VP→ V 

VP→ V+V 

VP→ Adv+VP 

Using those “rules”, we could construct all the possible “sentences” allowed 

by this context-free grammar. This is helpful when it’s needed to describe a language 

to the machine as a set of production rules on what is acceptable and what is not on 

a sentence level. 

 

Kazakh language 

 Before any attempts to study the language can be made, it’s vital to gather 

some background information on the language. For this, I am going to use the 

previously mentioned WALS.info website alongside a book by Muhamedowa (2018) 

to establish the relevant background for Kazakh language. Such a background is 

necessary to advance further in terms of machine recognition. “World Atlas of 

Language Structures” can give a good general starting idea of the language family 

Kazakh language belongs to. WALS is a database that accumulates information 

about 2,679 languages and their features, such as grammar, phonetics, morphology 
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and even lexical categories. Still, it is not written by a native Kazakh speaker, and 

the aspects of language it lists are not exhaustive. To be precise, WALS, which 

relies on sources between 1962 and 1998, which indicates it’s rather outdated, lists 9 

features of Kazakh language: three of those relate to nominal categories, 3 are 

lexical, 1 phonological feature, 1 feature of simple clauses and 1 verbal category. 

While all those categories are useful for typological perspective, they would serve 

very little purpose for corpus studies. In particular, a feature like the word “tea” being 

derived from a particular Chinese dialect would do very little for this project. On the 

other hand, a feature like “Associative same as additive plural” could help in 

differentiating between various structures in Kazakh language.  While it does not 

excel in describing Kazakh language specifically, it gives a good overview of Turkic 

language family. Overall, though, the quality of descriptive literature on Kazakh 

language is not on par with the literature available, that is written by native Kazakh 

speakers. 

Given the state of WALS on details regarding the Kazakh language, it would 

be appropriate to study some sources coming from native Kazakh speakers; the 

body of literature on the Kazakh language written by Kazakh authors in English is not 

particularly rich, but there are still some books that are available. One of the best 

overviews of Kazakh language has been written by Raihan Muhamedowa, titled: 

"Kazakh: A Comprehensive Grammar". The author provides a thorough overview of 

several aspects of Kazakh language, which are: phonology, morphology, with an 

emphasis on verbs, and phonology. Still, some aspects of the Kazakh language are 

overlooked in this book: for example, the superlative via initial syllable reduplication 

is not listed as a possible option. 
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 Phonology is not particularly useful for the purposes of corpus research, as it 

is unlikely to be reflected anywhere; therefore, I will only use the book for its 

description of Kazakh morphology and syntax, as those will be helpful in later stages 

of the project. However, phonology should not be dismissed outright; the author 

mentions that it could be used during transcribing speech. While this project does not 

deal with the transcription issues, phonetics could help make the data more uniform 

by encoding it using some phonological features. The encoding will not constitute a 

transcription, but rather a piece of metadata. In terms of metadata, it could prove to 

be a useful tool for the creation of metadata to help with the analysis. While 

transcription using phonetics could be disputable, since the same text can be read 

differently by the speakers with different accents, thus producing conflicting data, if 

the phonetic transcription can be treated as “metadata”, those disputes can be 

avoided.  

For the purposes of this project, phonological classification and features of 

Kazakh language present little value, as they are unlikely to be reflected during the 

creation of corpus. On the other hand, syntactic and morphological features would 

be important here. Muhamedowa places an emphasis on the fact Kazakh is an 

agglutinative language; this same fact has been emphasized by Bekbulatov et al as 

one of the features that makes machine translation problematic. Therefore, this is 

one of the issues that could make machine recognition harder: agglutinative 

morphology. In terms in of syntax, however, Kazakh language follows the structure 

common to all Turkic languages26, with the same SOV structure, which should not 

prove too challenging for machine processing, as the authors note. 

 
26 WALS.info; Muhamedowa, 2016 
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One of the more practical considerations in terms of morphological analysis is 

the expanded inventory of “parts of speech”. The “traditional” inventory, which is 

described commonly in various textbooks, does provide a solid foundation, however, 

it is precisely that – the foundation to build upon. In this sense, the lexical file of 

Apertium, available on GitHub, offers a peek into some of the practices commonly 

used for creating a parser. Aside from the commonly established parts of speech 

(nouns, verbs, adjectives, adverbs etc), the morphological parser should be able to 

distinguish between proper and regular nouns. To be more precise, the nouns 

marked as “proper”, can potentially present a challenge, as they should be treated 

separately. At the moment, Apertium-kaz distinguishes 6 types of proper nouns in 

Kazakh: toponym (which is a name of a place), anthroponym (name of a person), 

cognomen (last name of a person), patronym (middle/father’s name), organization 

and other. This kind of information should be presented in the metadata about the 

text, so that the morphologizer is able to process those correctly. 

It’s necessary to note, though, that the topic of morphological features of the 

Kazakh language with regards to machine translation has been addressed before, 

but the articles on the topic are scarce. One of the articles on the Kazakh language 

and its challenges for machine interpretation is called “A Study of Certain 

Morphological Structures of Kazakh and Their Impact on the Machine Translation 

Quality”, published in 2014 by Bekbulatov et al. The authors acknowledge there is a 

body of research regarding machine translation and language processing, but point 

out there is one paper that deals with Turkish-English language pair — while Turkish 

is a language closely resembling Kazakh, some of its aspects are still different. The 

article provides a very brief overview of Kazakh language from a morphological 

standpoint, specifically highlighting agglutinative morphology. The agglutinative 
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morphology of the Kazakh language created some problems for the segmentation of 

the raw corpus. In order to correct the segmentation, the researchers used a mix of 

several algorithms, including Naive Bayes classification, and leaving the 

unsegmented portions to finite state machines. Their selection of morpheme 

separation methodologies sheds light on the possible problems regarding the corpus 

approach towards Kazakh —  as was noted before, it is essential that a machine can 

process the corpus, and the problems with the processing can be battled using their 

methodologies. This project presents a hands-on approach towards the quantitative 

study of Kazakh language and offers a set of helpful strategies for those who wish to 

improve upon the existing knowledge. This, combined with the previously mentioned 

methodologies of studying interlanguage/code-switching, will guide my own creation 

of methodologies for corpus analysis. 

 

Chapter 3: Methodology 

Research methods background 

Before any discussion about corpus analysis may take place, it’s imperative to 

establish how one can go about the creation of a corpus. Some of the general 

guidelines for corpus assembly methodologies can be found in “Research Methods 

in Linguistics”27, by Litosseliti et al (2010), and most of those are echoed by Norbert 

(2010), in “An Introduction to Applied Linguistics”. The authors establish three basic 

criteria of a good corpus: machine readability, authenticity, representativeness. 

Those criteria set a wide set of possibilities for exploring the language quantitatively. 

The authors provide practical recommendations on how to build a good corpus. 

 
27 Litosseliti et al, 2010 
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While the book does not extensively cover the ways to make the text readable by 

machine, it goes into details on making the corpus authentic and representative. 

Gries (2017), in the book ““Ordinary Meaning and Corpus Linguistics” highlights the 

steps needed to make a good corpus: making a corpus first requires determining the 

language variation to be studied: whether it is web, natural spoken language, official 

papers — this needs to be clarified, otherwise the corpus risks becoming an 

unsystematized assembly of texts. Litosseliti et al. do note, though, that there are 

corpora that attempt to encompass as much as possible — English has several such 

corpora. While this could make for an interesting project, it is beyond the scope of 

this work; as such, I will focus on one field, which is going to be online medium, or 

Internet. One of its advantages is its diversity —the Internet has a wide variety of 

texts, and virtually any kind of corpus can be assembled through it. However, when 

doing so, it’s important to keep representativeness in mind — the texts must be 

balanced. In other words, there should be equal amounts of all the types of text. In 

the case of Kazakh language, one could argue that texts using Cyrillic and Latinized 

alphabet should be included in equal measures, among other things. This is 

justifiable, as corpus has to be representative of a particular language or language 

variety, and excluding an alphabet from a corpus may violate that principle. 

However, given the current uncertainties with the Latinized alphabet, it is not feasible 

to include that alphabet just yet; instead, this task shall be relegated to future 

research. 

I chose the news articles on the Internet as the research medium because it is 

one of the most convenient and diverse resources available. However, working with 

the Web requires its own special set of assembly methodologies that go beyond 

what was outlined before. The ways of creating a corpus based on the Web are 
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described in the book “The Web as Corpus: Theory and Practice” by Gatto (2014). 

As the Internet developed, it created new mediums for interaction, which brought 

about new language variations. Therefore, it is necessary to start considering online 

interactions as a source of corpus which can be analyzed. The author covers the 

early arrival of the web as a corpus tool, and possible issues arising from its use. 

They address the problems of using the web as a corpus, including its authenticity, 

representativeness, size, composition, and copyright. The authors also list some of 

the tools and the engines available to systematize the web and compile a list of 

possible tools that would help make the web corpus more systematic in nature. The 

authors argue its size is its advantage — because it’s constantly growing, it presents 

a unique opportunity to study an ever-increasing authentic body. The issue of 

multilingualism is also addressed in the book via the case of Web 2.0 Wikipedia, 

which is, essentially, a perfect example of a multilingual corpus that is uniform, large 

and fairly representative. Overall, the book explores the potential of the web as a 

linguistic medium for quantitative analysis. An issue the book does not address, 

however, is the issue of a language that has more than 1 writing system — which is 

the case of the Kazakh language, especially online. Given the recent push for 

Romanization of the Kazakh language, the Kazakh Internet saw a divide, with some 

of the materials written in Latinized alphabet and its variations, while others 

maintained Cyrillic variation. This raises the question — how should those variations 

be treated as a single language, or 2 different language variations?  

Corpus analysis software 

At the moment, there are many corpus analysis programs available. However, 

they are often very specialized in terms of the data they can work with. It’s often the 

case that software requires some special processing of raw texts to make sense of 
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them, but the conventions for each program are different, which makes it tougher to 

use the same annotated corpora with a different program if the need arises. Some 

corpora use their own tools, such as British National Corpus, or the corpora of 

Kazakh language. Those built-in tools are often difficult or impossible to access, so 

the researcher only has access to the output data, but not the source ones. In 

addition, it is often the case they can’t be used with a different corpus, because it 

was not made for it. There are a lot more versatile programs28 available nowadays, 

yet they all fall to the same issue of demanding some unity of data. As discussed 

before, it would be more challenging for Kazakh language, given the variation in 

writing system, although this can be overcome with proper annotation, as mentioned 

before. 

This highlights the need for a unified system of annotation. However, as noted 

before, Kazakh language has certain structures that could be unique to it, or only 

occur within the language family/branch of Kazakh language, which is Turkic 

language family. Therefore, the new system of annotation could be implemented in a 

new software that would be ready to deal with the peculiarities of Kazakh language, 

both in terms of its grammatical and morphological structure. 

Annotating a corpus by hand is a very time-consuming task which is not 

feasible. Therefore, there needs to be a software that would be able to recognize the 

words and annotate them according to morphological and syntactic features. For this 

task, it’s going to be useful to turn to artificial language processing tools that are 

commonly included in almost every single development environment — 

lexers/tokenizers, which are conventionally part of compilers. The book “Compilers, 

Principles, Techniques, and Tools” by Aho, Alfred V., Ravi Sethi, and Jeffrey D. 

 
28 https://corpus-analysis.com/ 

https://corpus-analysis.com/
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Ullman (1986) is one of the most well-known books that covers the basic principles 

and practices of creating compilers. The authors define a lexer/tokenizer as a 

program that breaks down the input stream into units, and then assigns a category to 

them based on a set of rules. There can be different ways to break down an input 

stream (text, in our case), and assign categories to the individual units, but one of 

the most widespread methods of doing it is via pattern matching. Pattern matching, 

as the authors say, is when the current token (in our case, word) is matched against 

the patterns of characters, which are generally written as regular expressions, it gets 

assigned that category. While this approach works very well for highly formal 

languages, such as programming languages, languages with less formal rules and 

more flexibility, which natural languages are, can be more problematic to process. 

Still, the main idea of using preset patterns to define what some pieces of text are is 

going to be useful. Another point worth considering is that the analysis will have to 

be done in 2 parts: for individual words on syntactic level, and for groups of symbols 

on morphological level, because the morphology of the word has to be kept in mind 

when parsing; otherwise, we may get inaccurate parsing results. A similar approach, 

albeit more morphemic in nature, was employed by Munday et al. in the “Corpus-

Based Translation Studies: Research and Applications”, which highlighted how the 

input stream can be broken down into morphemes for accurate translation, and then 

merged back into one word. This kind of approach runs slightly contrary to what Aho 

et al. did with the artificial languages, but it’s important to keep in mind that natural 

languages are a lot more flexible, as the authors say, and the principles that are 

used for the artificial language might not work in the same way for the natural 

languages. In particular, one of the big differences is likely to be expressed in the 

methodology of reading the words due to the properties of Kazakh as an 
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agglutinative language – while artificial languages can be read as a human would 

(that is, left to right), the words from natural agglutinative language, while still being 

“read” from left to right, will have to be processed from right to left, symbol by 

symbol, via a string, which is essentially a char array. Since the affixes in Kazakh 

language are conventionally attached to the end of the word, and given there is no 

way to certainly tell where the root ends and affixes begin, it is more expedient to 

start reading from the end. Each character that has been read will be added to a 

token, which is a smaller array, and once that smaller array corresponds to a 

particular suffix (plural -lar, or past tense -di, for example), that suffix will be 

considered parsed, and the information about it ready to be displayed. The parser 

will proceed until a token grows to a size of 5, which is when the rest of the string will 

be considered a root. The number 5 is taken because according to the Apertum-kaz 

lexicon and Muhamedowa, there are no individual suffixes in Kazakh language that 

exceed 5 symbols. Therefore, at token length 5 the remaining characters can be 

considered a root. 

Corpus analysis methodology 

Before further discussion may take place, some ground rules and principles of 

corpus analysis need to be established. Corpus is understood as a collection of 

natural texts representative of a language or a language variety that can be 

processed by a machine29. A machine, in this case, a computer, cannot understand 

the text the same way humans do in terms of semantics. A text is not much more 

than a collection of characters to the computer, there is no “meaning”. It is up to 

humans to make it readable and meaningful for the machines. In part, we could 

 
29 McEnery, 2012 
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borrow some ideas from the artificial language processing tools -- compilers30. While 

there are definitely differences between natural and formal, artificial languages, such 

as programming languages, one of the biggest ones being ambiguities, some 

principles would still apply. One of the principles that is generally considered a good 

practice for natural and artificial languages alike would be using a token system and 

reading the text character-by-character, instead of trying to read the whole word as a 

string of characters. 

 There are several approaches to text processing for part-of-speech tagging 

via morphological analysis and syntactic parsing using computers. One of the widely 

used ways is rule-based analysis31, which is one of the ways to represent a language 

through a context-free grammar, which shall be discussed later. Rule-based 

analysis, as follows from the name, uses an extensive set of rules to analyze the 

text. The “rules” in this context may refer to a variety of skeleton structure of a 

language. Say, if we know the sentence structure in Kazakh language is SOV32, then 

the rule for the parsing would be “For any sentence we encounter, the subject will be 

before the object, and the object shall come before the verb”. Of course, this is not 

how one would actually write that rule in their code, but this is the general idea 

behind it. So, when the machine encounters the sentence “Men qalamdy syndyrdym” 

(“I broke a pen”), it will know according to the rule, the first sequence of letters before 

the space is the subject (and hence, a noun or a pronoun), the second sequence is 

the object (likely a noun or a pronoun as well), and the final sequence is the verb. 

Like this, through the set of rules, the machine can make sense of the text. 

 
30 Aho, 1986 
31 Kennedy, 2014 
32 Muhamedowa, 2016 
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 Text analysis should start with a parsing stage33. At this stage, the text will be 

read and processed by the machine according to the rules set by the researcher. 

Depending on the goals of the project, we may parse the text symbol by symbol, 

word by word, or sentence by sentence even. Parsing allows the machine to 

organize the text for more convenient processing, as was described above. After 

parsing, the text should be annotated -- additional linguistic information that will 

provide the machine and the researcher with a set of identifiers within the text, 

making the work easier. There are different types of the annotation, depending on 

the needs of the researcher. 

One of the approaches to natural language processing is using neural 

networks. The idea of using machine learning and neural networks to perform part-

of-speech tagging, among other tasks, is not foreign to the field of corpus linguistics. 

The approach has already seen its use in some projects, such as part of speech 

annotation of social media texts34, done by Meftah et al (2020). However, the use of 

this approach is mostly done in the domain of the languages that have already been 

studied extensively. This is a rather logical development, as it stems from the fact 

that a neural network has to be trained before it can be used; and in order to train the 

network for part-of-speech tagging, the researcher has to have a corpus that has 

been already tagged. As mentioned before, while there are corpora for the Kazakh 

language, not all of them offer the researchers a possibility to download the corpus; it 

is often only accessible via the search tools on the website of the corresponding 

corpus. Therefore, neural networks have not seen application in Kazakh language 

processing thus far. 

 
33 McEnery, 2012 
34 Meftah et al, 2020. 
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Corpus analysis in practice 

One of the methods of corpus analysis is pattern recognition; these patterns 

are a lot wider than the patterns described in the section on software. Here, patterns 

refer to the patterns of word usage in text. “Applications of Pattern-driven Methods in 

Corpus Linguistics”, edited by Joanna Kopaczyk and Jukka Tyrkko, describes one of 

the ways, which is, likely, the most appropriate for this type of research. Similar 

approaches are described in other works. The authors review corpus methodologies 

and analysis techniques, and draw an important distinction about corpus-based and 

corpus-driven studies. Overall, the studies utilizing corpus-based approach use it as 

a tool to deny or confirm their assumptions; in a sense, this is a traditional way to use 

the data when the theory has already started developing. On the other hand, a 

corpus-driven approach makes use of the corpus as a starting point, approaching it 

with as few preliminary theories and assumptions as possible, and working on 

creating theories based on the analysis results. Such an approach would be 

beneficial for the study of Kazakh language, given it enjoyed little to no attention in 

terms of quantitative studies to this point. Having made the difference clear, the 

authors advance to present some case studies that illustrate possible pitfalls of 

corpus-driven approach, but also showcase its advantages. 

While patterns can provide a great way to systematize the language, those 

patterns need to be first discovered. This is where the morphological parsing comes 

into play. There are several ways and practices to analyze natural languages: simple 

morphological parsing, word vectors, and others. For this research project, the focus 

is on the methodologies of natural language processing using morphological parsers. 

Some of the practices for the study could be adapted from artificial language 

processing. As mentioned before, one of the most comprehensive guides on the 
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topic is a book by Aho et al. “Compilers, Principles, Techniques, and Tools”. The 

basic technique offered by the authors is using finite-state machines, that come from 

the regular expressions, in order to break down the text into smaller pieces that are 

used in the later stage in order to construct a token. That token later can be 

processed more in-depth. However, Kazakh as an agglutinative language demands 

a different type of approach, as was noted by Bekbulatov et al.; given that, it appears 

that a sensible approach would be to still break down natural text into segments 

according to punctuation, but then parse the segments from end to start of the word. 

That way, morphological constructions such as plurals, cases etc can be defined via 

feeding characters into tokens, and once a token exceeds a certain length, or the 

word ends, but it doesn’t match any of the defined morphological constructions, that 

could be called a root of the word. The root can then be analyzed further according 

to various needs, but that goes outside the scope of the current project. On average, 

according to Apertium lexicon files and Muhamedowa, a typical suffix does not 

exceed 5 characters, so once the token stream exceeds that, it can be called a root, 

saving some time. Granted, this approach works well in most cases, but it would still 

be unable to deal with the “qap-qara”. For this case, a separate morphologizer 

instance can be used, which reads the words from the start to check for this specific 

type of prefix and define it. 

Corpus methodologies can be useful across multiple layers of the language, 

not just one. In particular, semantics, that studies word meaning and usage patterns, 

can benefit from the corpus linguistics approach. The book “Corpus Methods for 

Semantics: Quantitative studies in polysemy and synonymy” by Glynn and 

Robertson (2014) explores the ways in which the meaning of words can be studied 

using the corpus approach. The book compiles several major works on semantics 
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and corpus linguistics. The authors of the studies survey a wide variety of languages, 

not just English, explaining how semantics can benefit from corpus studies. In this 

sense, the book is beneficial to this research because it doesn't limit itself to purely 

English. While there are no languages from Turkic language family, the same 

methods could be applied to semantic analysis, only with some minor adjustments. 

In addition, some studies even go in-depth on how one should approach mixed 

languages: it is not an uncommon phenomenon to encounter 2-3 languages within 

the same sentence, and it’s necessary to create a way of dealing with those. 

There is a body of scholarly literature showcasing the ways in which corpus 

linguistics can be utilized for the benefit of the society. In particular, some of the 

widest prospects are open in the judicial expertise area.  The article “Advancing Law 

and Corpus Linguistics: Importing Principles and Practices from Survey and Content 

Analysis Methodologies to Improve Corpus Design and Analysis” (Phillips and 

Egbert, 2017) sets out to explore the ways in which corpus linguistics as a judicial 

methodology can be improved and used in legal cases. The main argument is that 

the introduction of social science methodologies will allow for more rigorous case 

examinations and increased transparency. The main value of the article lies in 3 

points: methodological application, content analysis and coding, and finally, the 

methodologies themselves. The authors first showcase the shortcomings of the 

current judicial system, and offer the ways in which introduction of other 

methodologies could help improve it. While the judicial systems of Kazakhstan and 

the United States are rather different, the local system could use the same benefits, 

without a doubt. 

Next, the authors study the appropriate ways to analyze and encode the 

content, demonstrating how it can be used in the judicial system using corpus. 
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Finally, they discuss 4 coding methodologies and how they are used. They highlight 

minimalist approach, dictionary-driven approach, grounded theory and register 

selectivity, discussing the ways in which those methods are different, and how they 

can be used together. Some of the methods focus on a particular word form, while 

other methods analyze corpora as a whole and try to uncover patterns, which goes 

in line with previously mentioned book on pattern-driven research. 

The actual body of judicial cases presented so far is not particularly 

impressive, though, but the specific cases highlighted illustrate that corpus linguistics 

can benefit society. One of the best examples is an article "Ordinary Meaning and 

Corpus Linguistics" by Gries and Slocum (2014), talked about the ways in which 

semantics of common words can be redefined as time goes by, and what 

implications that has for linguistic expertise. The number of cases so far is not very 

sizable, but nonetheless, the article provides a glance into various uses of corpus 

linguistics.  

Empirical considerations 

One of the first issues that needs addressing is the issue of derivational 

morphology. As mentioned before, at this point the neural network will not consider 

the derivational suffixes as part of the morphology. This is a rather salient problem, 

however, at this stage, it does not appear to be particularly relevant, since the goal of 

this stage is to break down the words to their parts of speech. The etymology of a 

given word, like “satuwi” (seller/cashier), is not relevant as of yet. What matters is the 

fact that in a particular sentence, the words like “oqywi” (student) are a noun, and the 

origin from the verb “oqu” (to learn) does not add anything to the corpus. Granted, it 

does become relevant later in the project, once it is used for further breakdown or 

even text synthesis. However, at the current stage, the derivational morphology will 
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be treated as part of the word. The flexible structure of the corpus once it is 

completed will allow the words with derivational suffixes that are present in the 

database to be analyzed further into the derivational morphemes and the roots. 

Alternatively, the derivational morphemes may not be considered at all, and the 

words like the ones mentioned above will be treated as just the roots without 

morphemes. While it will certainly affect the data for academic purposes, it will not 

have a drastic impact on the development of the corpus for non-scholarly pursuits, 

like speech synthesis and recognition. 

Chapter 4: Practical approach 

Practical challenges 

One of the very first challenges I encountered during my project was storing 

the texts and preparing them for the subsequent analysis. There are a number of 

approaches one could use to digitize and store text. One of the more obvious ways 

to store text is by storing it as regular plain text. This approach requires the least 

amount of processing, as all it requires to do is to copy and paste the text into a .txt 

file.  

However, one of the more significant drawbacks is the encoding problem. 

Various machines can have various encodings installed on them, and that means 

that not all machines will be able to interpret the symbols and reproduce them, if 

needed, in a form that would be readable by humans. Moreover, if there are several 

files with different unmarked encodings, that would make parsing a lot more 

challenging, as it would have to adapt to every individual set of characters, which 

would unnecessarily inflate the code. 
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The second storage method - and the one I ultimately opted for - was the 

number system. Granted, the encoding problem exists in this domain as well, but it is 

solved a lot earlier in the project — in the second stage, text conversion. This system 

is not my own creation — systems like Unicode, Windows-125x, US-ASCII have 

existed for a while, and they cover a wide array of characters across different writing 

systems. However, using a standardized system like ASCII poses its own 

challenges. In the early stages of the research, when developing the tools to read 

the text, it was often the case that the Kazakh Cyrillic symbols would appear to be 

broken down into two separate symbols that bore no resemblance to the original 

characters anymore. This issue would have significantly impeded the text 

processing, as it would be entirely possible for the same program to produce 

different outputs depending on the encoding in use, rendering the efforts virtually 

unusable. Thus, I took it upon myself to come up with an encoding system that would 

work well, producing consistent, readable, and clear results. 

Cyrillic and Latinized alphabets 

 One of the most important questions in this study concerns the question of 

shifting writing systems in Kazakhstan. For quite some time in modern history, 

Cyrillic alphabet was the dominant writing system in the Kazakh language. However, 

in the more recent times, there have been suggestions and even official meetings 

regarding transition to Latinized script. No doubt, there are pros, cons, and 

implications of such a change in terms of political and social life, however, those are 

not relevant to the project. 

 The main challenge that arises from this change is the multitude of options for 

Kazakh Latinized alphabet. At the moment, it appears that there is no single 
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alphabet that has been widely accepted; several orthographies can be currently seen 

both online and outside. One of the options that seems to gain popularity is Qazaq 

Grammar35, with some options presented by Inform.kz36 and other less popular 

options. 

 This multitude of options poses a serious challenge to the research. A single 

letter can be written differently in all those writing systems, with the word “шай” (tea) 

being a very prominent example.  

 

Qazaq Grammar cay 

Inform.kz shai 

Inform.kz shay 

  

 I would like to direct particular attention towards the Qazaq Grammar project. 

The Facebook page was established on June 10, 2016, and they published their 

version of the alphabet on July 31, 2020. Their orthography appears to be widely 

used across Kazakhstani social media, however, it is still not official. While it is rather 

convenient, it has its own problematic areas related to specific letters. On their 

Facebook page, they give the following spelling rules: 

 “У — W/Uw/Iw/İw: у — uw, тау — taw, eлу — eliw, тату — tatıw 

* У кірме сөздерде → U: Сатурн → Saturn, Уран → Uran, Нептун → 

Neptun 

* И — Iy/İy: и — iy, ми — mıy, қи — qıy, би — biy, ки — kiy 

 
35 QazaqGrammar on Facebook.July 31, 2020. 
36 Informburo.kz, 2019 
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* И кірме сөздерде → Ii: испан → ispan, чип → chip, фин → fin 

 

* Я — Ya: ұя — uya, сия — sıya 

* Я кірме сөздерде → Ä/Ja: заряд → zarät, Ява→ Jawa 

* Ю — Yıw/Yiw: құю — quyıw, күю — küyiw 

* Ю кірме сөздерде → U/Ü/Yu/Ju: Юта → Uta, дзюдо → judo, блюз → 

blüz, Юпитер → Jupiter 

* Э → E: электр → elektr, эстон → eston 

* Щ → CC: ащы → accı, тұщы → tuccı, борщ → borc 

* Ч → CH: чек → chek, чех → cheh, чарт → chart 

* Ц → S/TS: цент → sent, цех → seh, пицца → pitsa, полиция → politsiya” 

The problem here is the multiplicity of options for some letters, and lack of 

distinction between others. Say, letter Ю has 6 spelling options, with 2 of those 

containing 3 symbols; letter У, similarly, has 5 spelling options, with 3 being 2-letter 

ones. In addition, there is no differentiation between Э and E, Ц and С, СС and Щ, to 

name a few. This all makes working with text very challenging, because the text will 

have to be parsed not 1, but 2-3 symbols at a time depending on the current input. 

The final point regarding the Latinized orthography is that at the current stage, 

the text parsing programs will need to have a separate script identifier module, that 

will be able to tell the program which alphabet the text is written in, so that the 

parsing will use the correct one. This can be done by searching through text and 

finding some letter combinations that correspond to a particular alphabet. Such an 

approach will make the program consume more time in the long run. 

Generally, there is no consensus on what shall be used for Kazakh language 

at the moment. In addition, many major news websites (Tengrinews, Informburo, 
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Zakon.kz, to name a few) do not have any versions with Latinized orthography. 

Therefore, it has been decided that the research project will only focus on the Cyrillic 

alphabet, as introducing the Latinized alphabet into the research will complicate the 

processing of text significantly without adding a significant benefit. However, due to 

the flexible nature of the code, when the need to add Latinized alphabet arises, it can 

be done without complications. 

 

Some practical considerations regarding the coding stage 

One of the first choices I had to make was whether I wanted to hardcode as 

much as possible or to leave more room in the code for future changes. In this 

context, hardcoding refers to initializing variables in the program’s body with a 

particular value and then using it throughout the program. Say, if we know there are 

41 letters in the alphabet, we could initialize a variable alphabet_number to 41, and 

use it in the code throughout the program. Undoubtedly, this is a very convenient 

solution, but only short-term: if something needs to be changed in the program, the 

code would have to be redone. This is especially troublesome with the hardcoded 

values not tied to a particular variable. 

For example, let us take a fairly simple “while” loop that would compare the 

character currently being analyzed with the character from the predefined alphabet. 

The loop would look like this: 

 

while (index<41){ 

    char ch = read_char_from_file(file_name); 
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    compare(ch, alphabet[index]); 

    if (ch == alphabet[index]){ 

        print_in_file (index); 

    } 

    i = i+1; 

} 

 

The pseudocode above shows a general way of assigning an index to a 

particular character that’s been read from the file; this is not the accurate 

representation of the actual running code. The loop is supposed to go until there are 

no more letters left to compare to (that is when Я has been checked) and stop after 

that. The array “alphabet” would also contain only 41 characters, so going above 40 

would be pointless and may produce an error when trying to access the unit that is 

not actually defined — trying to compare ch to alphabet[43] may yield unexpected 

results, as that value is undefined. 

Thus, arises the problem. The code above uses 41 as one of the key values 

— it’s the number of characters in the alphabet, it’s the value the loop iterations 

should not exceed, etc. Whenever the code has to be changed (say, add more 

characters, or remove some temporarily), those numbers will have to be changed in 

multiple places as well. Refactoring (looking for a particular value/variable through 

the code and changing it) may solve the problem in some cases, but not necessarily 

in all of them, creating a lot of hassle and generally poor practice of coding. 

Therefore, I chose to keep my code as flexible as possible through global variables. 

Global variables are defined in the header area, before any function, using the 
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#define tag. This allowed me to tie several variables to a particular key number, and 

that number can be changed effortlessly at any given moment. 

 

Another part of hardcoding came from the alphabet itself. The alphabet is a 

relatively rigid notion that is not very easy to change in a short period of time. 

Therefore, it would make sense to just put it into the program manually, code all the 

values in, and allow the program to run like that. However, this leads to another 

potentially troublesome hardcode problem. 

The Kazakh alphabet has 43 letters (including those that are only 

encountered in loanwords from the Russian language); multiplying that by 2, 

because there are small and capital letters, gives us 86. In addition to that, there are 

also punctuation marks - a standard keyboard allows us to type in 39 characters, 

plus 10 digits, for 49 in total. Adding that up yields 135 characters that would need to 

be put into the program. It does not seem to be a lot for a one-time operation. 

However, during the development process, I have been changing the character set 

more than once (the reasons for those changes will be described below), and doing 

so each time I test an approach does not appear feasible. 

Therefore, I chose to go a more flexible way yet again and created a text file 

that contains all the characters. The program would read the text file, load the 

characters from it into the array, and then proceed with the rest. The text file can be 

edited much easier than the program code; it also allows greater flexibility in the 

future, if something in the alphabet changes. To a certain extent, the software could 

even accommodate a different alphabet. 
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Wildcard approach to morphology 

 Upon the examination of Kazakh morphology, it becomes clear that generally, 

Kazakh morphology is known to follow certain patterns37. One of the clearest 

examples of that is the case suffixes of the Kazakh language. The genitive case of 

Kazakh language has the following orthographic allomorphs: -ның, -нің, -дың, -дің, -

тың, -тің. The pattern is “-н/д/т+ы/i+ң”. Therefore, there is a possibility of 

representing the set of suffixes with a set of symbols, one symbol per specific set of 

letters. Let us divide the pattern into three distinct groups: 2 variables and 1 

constant. 2 variable groups are “н/д/т” and “ы/i”, while the constant group is “ң”. The 

variable groups change depending on the word the suffix is attached to, following the 

vowel harmony, while the constant group is invariant. The first group can be also 

noticed across other cases, but not in all of them – for example, the locative case 

does not have “н” in the first group. Following that, the first group, “н/д/т” can be 

declared CС1 (consonant variant 1), the second group – СV1 (vowel variant 1); the 

group without “н” can be named CС2, the “a/e” group is СV2, and last, “м/б/п” 

sequence can be named СC3. Thus, the entire case may be represented as 

“%СС1+%CV1+ң”. This approach is convenient, because instead of storing the 

entire variety of suffixes, it is enough to store the rules according to which those 

suffixes are formed, articulating the rules via small finite-state machines. 

  

Pronominal hardcoding 

Another consideration related to the morphology and coding certain language 

elements in the program is the pronoun class. Kazakh language has a limited 

 
37 Muhamedowa, 2016 



42 

number of personal pronouns, seven, to be precise. In addition, there is a set of 

suffixes that looks identical to the personal pronouns. Therefore, one of the decisions 

I have made in relation to text post-processing is to encode the personal pronouns 

separately first, and then generate the list of possible combinations of those 

pronouns with the suffixes (plural, case endings etc) automatically, and then verify 

the data manually and fix if necessary. This approach helps eliminate the possible 

confusion in the classification algorithm. The confusion may arise from the fact that, 

for example, “мен” can be a personal pronoun (I/me) or a case ending (-with). Since 

cases are generally a property of either pronouns or nouns, the presence of case 

ending contributes to the likelihood of a particular word being a noun/pronoun. So, 

when the algorithm starts searching for the potential words that fit the definition, it will 

detect “мен” and attempt to classify it; the behavior is unpredictable in this scenario, 

which may lead to inaccuracies. Therefore, to avoid this scenario, I have coded the 

pronouns and their possible morphological forms into the programs, thus they may 

be intercepted and tagged before being fed into the neural network. So, as the 

program is attempting to determine what a particular word is, for example, “онымен” 

(“with him/her”), it will first determine that the word end with “-i” and “-мен”; since 

there are still letters before the “-мен” suffix, the program will not automatically 

assign it as a pronoun, but instead will treat is an a morphological marker of case. 

When the program finds the root “мен-”, it detects that there is nothing preceding this 

part, which allows it to conclude, through the comparison with the list of pronouns, 

that this is a pronoun. Alternatively, it is possible to generate the list of most possible 

pronoun+suffix combinations via the use of regular expressions, and then picking 

those that fit the vowel harmony, and use this dictionary to completely avoid parsing 

of pronouns through the morphological features, and instead use a pre-coded 
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dictionary, which has all the possible variants of pronouns annotated. Granted, this 

approach is more-time consuming during the training, as for each word, the network 

will have to reference the pronoun dictionary. The neural network shall still search for 

the words with case endings in order to try and tag them with a part of speech based 

on their morphological features, however, it will not notice the words that have 

already been tagged. 

 

Advertising and suggested content 

Another issue that has arisen is the issue of advertisement. Given the online 

nature of the texts that are involved in this project, it becomes a rather salient 

problem that has to be addressed. Advertisement may come in various forms — it 

may be a JavaScript built into the page, or a <div> container. Generally, it is quite 

rare to see an advertisement in the middle of the news article, however, it definitely 

does take place, albeit not on all websites. This poses a problem for the research, 

because those texts do not fit the definition of “news article”, and might not be in the 

target language (Kazakh). Therefore, there needs to be a way to remove those. 

This task proved to be more challenging than initially expected. The main 

problem with the “ad remover” is the individual nature of the ad placement and style 

across different websites. There is no one specific format of advertisement that 

makes it easy to detect and remove those. While it is definitely possible to remove all 

<script> tags from the page and be reasonably sure there are no more JavaScript 

advertisements on the page, removing all <div> tags will erase the entire article. 

Thus, this approach needs more careful consideration. 
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Given that, I have decided to gather the articles from a limited number of 

online newspapers, and tailor the scraper for the possibilities of each of those 

newspapers. In addition, the chosen websites generally display little to no 

advertisement in the body of the news, making them good candidates for the 

research. 

Another possible problem is the “Suggested news” section. Those may 

appear at any point in the HTML as well, sometimes in the middle of the article, as 

shown in Appendix A. The code, obtained via Show Element, is demonstrated in 

Appendix B. 

 Those pieces are generally the titles of the articles and potentially some 

images. While they do constitute a “valid” piece of a news article, their location 

disrupts the overall text. Hence, those pieces have to be removed as well. The ways 

to do that may also vary across the different websites, which, therefore, reinforces 

the previously made decision to adhere to a specific set of websites. FIlters can be 

set up within the scraper, or the post-processing, to ensure those code pieces are 

removed from the text. The example above can be improved by attempting to 

remove the <div> portion of the code. Granted, there is a degree of risk to this 

approach, as there may be more tags with similar names and classes, but with 

different contents. Still, as noted before, an individual approach to every single news 

source must be developed. Below is an explanation of approaches for certain 

websites 

● Tengrinews does not require specific filtering that needs to be added in 

addition to standard scraping techniques used in the research 
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● Inform.kz contains the “Related news” within a <div class = 

“frame_news_article”>; while counterintuitive, this tag can be removed from 

the HTML code. 

● Azattyq contains the “Related news” within a <div class = “media-block also-

read”>; while counterintuitive, this tag can be removed from the HTML code. 

This is a highly specific tag class, which ensures that it is unlikely that 

something important gets removed from the body 

  

Classification according to the word order 

One of the premises of the project is the fixed word order of the Kazakh 

language. As it has been outlined above, the Kazakh language does possess a fixed 

word order — SOV, with subject being first, followed by an object, and concluded by 

a verb. This is generally true of the Kazakh language — for example, the sentence 

“Ол үй салды”(Ol ui saldy/He built [a] house) is a perfect representation of that word 

order. Granted, informal speech may not adhere to this rule as strictly, however, 

given that the texts gathered are from the online newspapers, the general 

expectation of adhering to the standard grammar appears to be justified. 

Even if that is true, there are still some issues arising when working with the 

Kazakh language strictly in terms of word order in a sentence. While some of the 

issues are not critical for parsing, others may be more challenging, demanding a 

different approach. 

Non-fixed order of adverbs and adjectives 

 One of the initial approaches I was attempting to develop for determining 

whether a particular word is a noun, verb, or another grammatical category, was to 
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correlate the position of the word in the sentence with the grammatical category. 

While it could definitely be more convenient to just use a dictionary approach, 

comparing the words with the body of known words, the dictionary has to exist in the 

first place, and the options are limited at the moment. To give an example, if the 

word “үкімет” (government) is generally placed first, then it is likely to be a noun; on 

the contrary, if the word “жету”(to reach) and other its forms are generally located 

last, then it is highly likely to be a verb. For the strict SOV sentences this kind of 

distribution would be valid. However, there are some problems that I will be 

discussing below. 

The first issue is that the adverbial modifiers, among other elements, may be 

placed in multiple places within a sentence — the SOV rule does not dictate that 

those should be placed in a certain spot. Thus, the sentences, 

1. Кешке қарай дәрігер жұмыстан босатты 

2. Дәрігер кешке қарай жұмыстан босатты 

3. Дәрігер жұмыстан кешке қарай босатты 

meaning “The doctor left the work in the evening”, are all equally valid grammatically, 

however, if we take a look at the indices of words, we shall see that it disrupts the 

system outlined above. The index of the word “дәрігер” in the first sentence is (3), 

but (1) in the other two sentences. This difference makes it difficult for a machine to 

say with a degree of certainty that the word is, in fact, a noun.  

One of the better approaches to this problem is not to use the direct numerical 

indexation (1, 2, 3, etc), but rather resort to a percentile system, with a particular 

emphasis on verbs. The percentiles may be adjusted, however, the system 

employing 25-50-75 distribution may be the most effective for an average length of a 

sentence in the Kazakh language. However, for longer sentences, especially the 
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complex ones, they are unfit, as that percentile may include nouns that can be 

mistaken for verbs. This is especially salient in the early stages, when there is no 

preliminary corpus yet — as the vocabulary expands, the program will be able to 

reference it and draw conclusions based on the existing data. 

One other way to make the percentiles more precise is to dynamically adjust 

them based on the number of words within a sentence which is ultimately a hybrid 

between the direct index and percentage approach. At a certain threshold, past 8 

words, the system should adjust to a 20-40-60-80 system, with each percentile 

containing about 2 more words than the previous one. While this approach may still 

be faulty, it is more likely to include the verbs that have 2 words in them, like “келіп 

кетті” — the verbs with auxiliary verbs. 

Kazakh as a pro-drop language 

 As it is the case with many SOV languages, Kazakh is a pro-drop language — 

the subject is likely to be dropped, as the speakers can generally infer the subject of 

the sentence, based on the context. However, for the machine to do the same, it 

would have to keep track of the previous sentences, and it would also have to have 

correctly identified the subject among the nouns/pronouns of that sentence, which 

might not necessarily be the case. However, the extent to which this problem is 

important might not be completely significant. Even though there is no subject within 

the sentence “Кітап оқыдық”([We] were reading a book), the personal suffix at the 

end of the verb indicates the missing element of the sentence. Moreover, we have to 

consider what information would be lost for the language processing machine. If the 

percentile approach is followed, the 50-percentile would be the word “кітап” (book), 

which, according to the model, is not likely to be a verb (which is true), and since it is 

at the beginning, it is likely to be a noun or a pronoun (also true). In general, what is 
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important for the percentile model is not the exact syntactic role of a particular word 

in a given sentence, but rather the part of speech that word belongs to. Therefore, 

the fact that Kazakh is a pro-drop language does not necessarily impede the 

process. 

The development process 

 The following diagram demonstrates the general data flow between the 

processes described in the following section. 

 

 
  

This diagram shows a more detail-oriented version of the previous diagram, 

demonstrating the processes of “data cleanup” etc. 
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Converter v.0.1.0-C — Alpha stage 

When writing the stage 1 converter, I have decided to first test my ideas on a 

more limited character set. Thus, my very first converter was only able to process 

capital letters of the Kazakh Cyrillic alphabet. The data for the array would come 

from a text file that I have created in advance. 

For this iteration, I decided to use an array that would contain only the capital 

letters, and the index would be used to assign the code. The example is presented 

below. 

 

index 0 1 2 ... 39 40 

letter А Ә Б ... Ю Я 
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The scheme above is a rather simplified representation of the way I intended 

to store the data in the machine. Essentially, this array is a simple data structure that 

ties keys (letters) to a numeric value. From this point onwards, for a convenience 

sake, I shall refer to this system as Pseudo ASCII, or PASCII. 

The rationale behind this implementation is that conventionally, the characters 

are not stored as characters per se, despite the “char” type; instead, they are 

generally stored as numbers. The numbers that signify the characters come from a 

unified system known as ASCII table. The ASCII table is a table that contains many 

characters commonly used on the machines - from letters and numbers to 

punctuation and the new line character. Initially, I tried to approach the current task 

with that table in mind - by reading the characters and outputting their numeric 

values. However, I have discovered that this attempt fails. 

The first reason for this was that the symbols are not stored consistently 

across the machines. Through trial and error I have found out that specifically 

Kazakh characters are stored as 2 bytes instead of 1: when trying to read symbol by 

symbol, the programs consistently output the garbage values, but when reading 2 

symbols, the output was correct. Another test I ran showed that when I calculated 

how many array “cells” are used in total, and the program indicated that 2 “cells” are 

used per letter. This   created certain difficulties in implementation, such as properly 

reading the input, and displaying it correctly. Thus, after trying to make the array 

work, I decided to take a different approach. 

Converter v.0.2.0-C — Second stage 

For the second stage, I have decided to adopt a different strategy, utilizing the 

data structures that are present in C. I created a structure called “alphabet” and 
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created 2 members in it — pascii integer and letter string. A string is essentially a set 

of characters — given what I discussed previously regarding the storage of 

characters, this was the only viable option. 

#define letter_num 42 

struct alphabet{ 

 int pascii[letter_num]; 

 char letter[letter_num][3]; 

} 

 

int main(){ 

 struct alphabet cyrillic; 

} 

  

 

Index in 

arrays 

0 1 2 ... 40 41 

pascii 1 2 3 ... 41 42 

Letter bit 1       

Letter bit 2       

End 

character 

\0 \0 \0 \0 \0 \0 

 

The code piece above shows the declaration of the structure “alphabet” and 
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then its initialization in the body of the program (int main). The first line is a 

preprocessor definition, letter_num, which defines how many elements there will be 

in the arrays within the structure right under it, and letter_num can be used anywhere 

in the code later on. In addition, despite letter being declared as a character, the [3] 

at the end makes it a two-dimensional array of characters, or in other words, an 

array of strings that are 2 characters long. Notable, strings in C have to end with the 

“\0” symbol, which is the symbol that shows the string is over, and it also needs its 

own place. Thus I cannot declare an array of size 2 for a 2-character string, it has to 

be 3. 

 This attempt appeared to work a lot better than the previous one. The problem 

with the character storage worked for now, and the code became a lot more flexible. 

By including the letter_num I was able to expand the arrays as needed, so the 

inclusion of small letters was easy in this iteration. However, this iteration still lacked 

the ability to work with the punctuation, and I shall expand on the problem in the next 

section. 

 Performance-wise, though, there was still room for improvement. While the 

program was able to work with the letters only, longer sequences led to 

progressively longer execution times. The table below shows the times it took for the 

program to work with 50, 75, 100, 500, 1000, and 3000 characters — I do not 

foresee texts going above 3000 characters in a newspaper. A similar test will be 

conducted for future programs. An important note here is that n=0 indicates pure 

initialization of the program - filling the structure described above with values, without 

processing any text. The tests were conducted using the worst-case scenario — the 

very last element of the array, “я”, iterated n amount of times. Calculation was done 

by running the program 10 times with the same values, then finding the average. The 
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time (in C) was calculated using the clock() function imported from <time.h>; the 

timer was started at the beginning of the code, and finished 1 line before the 

termination of the program. 

#include <time.h> 

int main(){ 

 clock_t start = clock(); 

     //program body 

     clock_t end = clock(); 

     double time = (double)(end-start) 

     printf("%lf", time); 

     return 0; 

} 

 

n 0 50 75 100 500 1000 3000 10000 

T(C) 11 12 12 13 14 14 17 23 

Algorithm execution time, in C (in ms) 

 However, another issue arose. Like most texts, newspapers contain 

punctuation and numeric character, with some coming from English (website 

name, for example). Therefore, those symbols have to be processed as well. 

The rather obvious solution for the problem would be to have them in a 

separate alphabet structure, called it non-alphabetic, and compare the 

symbols to them as well; alternatively, it is also possible to just add the 

punctuation and numbers into the existing alphabet structure. 

 This problem was the one that made me finally reconsider the choice of 

the programming language. As it was mentioned before, the Kazakh symbols 

in C using UTF-8 are treated as 2 characters, however, punctuation and 

numbers are still one. Therefore, the question arose: how can a machine read 



54 

a character and determine correctly whether it is a punctuation/number or a 

Kazakh letter? 

 I have tried several approaches to the problem. The first solution was 

based on the assumption that punctuation marks are often followed by a 

space. Given that, it would be possible to read off 2 characters from the file 

and compare it to “punctuation mark+space” in the array. This would allow me 

to make minimal changes to the code, only changing the way the punctuation 

is introduced into the arrays.  

I М Ы С А Л Ы ,   

II ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 

  

The table above demonstrates my approach towards reading the text 

with the assumption “punctuation+space”. Row I in the table represents the 

letters in the text - in the table above, it is the word “мысалы” (example/for 

example), followed by a comma with space. The second line shows how the 

characters are represented in the array. As mentioned before, each letter is 

represented by 2 characters (ch1 and ch2), and the punctuation is grouped 

together with space as a single letter. I have colored the cells green to 

represent that the frame of reading is functioning correctly, and the text will be 

processed without difficulties. 

While this method was convenient, I have realized the problem rather 

quickly. Upon another examination of the texts, I have noticed that there are, 

in fact, multiple cases of punctuation marks not being followed by space. 
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I “ М Ы С А Л Ы 

II ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 ch2 ch1 

 

This table shows what happens when there is a quotation mark at the 

beginning of the sentence. The first character is read correctly as a quotation, but not 

identified yet, since the identification only runs when there are 2 characters read off. 

The second character that will be fetched and counted as the second part of the first 

symbol (supposedly space) is the first character of M. This is the part when the 

problem starts occurring. In fact, there will be 2 issues resulting from this. 

First, there will be no character that will be recognized and processed 

correctly. The start of the phrase will see an unexpected character after “, which will 

lead to that symbol not being recognized - that is, the punctuation will not be 

processed correctly at all. The second problem is that the frame of reading is shifted 

by 1 character to the right, not being in the correct position. In other words, instead of 

having ch1 and ch2 of a particular letter, what the program will get is the ch2 of one 

letter and ch1 of the next one. Predictably, there will be no entries that will 

correspond to that sequence, therefore, no symbols will be recognized. 

One of the possible ways to solve the problem is to run the characters through 

2 separate functions. The first function will only use one character (not parsing the 

second just yet), and run the comparison only for the punctuation marks and 

numbers (which are only 1 character in storage). If the first function returns no result 

for the symbol, then the second symbol will be read off and added to the first one, 

initializing the second function. The second function will go through the alphabetic 
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characters and find the match. If no match is found even then, the program could 

output the symbol that was undefined. In this case, though, the processing time grew 

slightly. Therefore, the algorithm became even less optimal. At this point it became 

obvious that the project needs to be done in a higher-level language to be optimal. 

Converter v1.0.0-Py — First stage 

 The language of choice became Python. Python offers a wide selection of 

tools for text processing and getting the source data from a variety of file formats. In 

addition, Python is a high-level language, which means memory management and 

other processes are already automated to a certain degree. 

 As with C, the first step in the development in Python was to test the ideas 

carried over from C. As before, I used a file to create an alphabet within my code by 

reading from it. I used a dictionary data structure present in Python; the dictionary is 

an unordered collection of items that cannot be changed, and may not have 

duplicates;  the dictionary contains key:value pairs. It was a perfect fit for the project: 

the alphabet doesn’t contain duplicates, and each key (letter) would have exactly 1 

value (PASCII code). 

 Python treated each letter as a separate object, therefore, I did not have to 

calculate how much memory would a particular letter take, which is a significant 

improvement over C. Therefore, it was enough to have the program read symbols 

one by one from file and put them in the dictionary, while PASCII code was assigned 

according to the order of the letters in the source files. The source file contained 

capital letters first, and small letters after them at this stage. 

 Another advantage of using Python came from the fact that finding a particular 

key in the dictionary and returning its value is realized through the get(key) 
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method (key being the letter) that returns the value corresponding to this key, 

eliminating the need to code the search algorithm. Note that since the dictionary 

does not allow duplicates, there will be no case when one key will correspond to 2 

values in this program. 

 The tests on a variety of strings were successful: the program was able to 

read the letters from the input file and correctly output its number into a 

corresponding output file. 

 

 Converter v1.1.0-Py — Second stage 

 After the successful completion of the first stage, I have introduced the other 

elements of a regular text into the program: punctuation marks and numbers. The 

signs like “¿” and “¡” were not included in the list, as it is unlikely they will be used in 

Kazakh language. The approach described for Stage 1 worked for the punctuation 

as well, without any modifications to the code. Whenever the program encounters a 

foreign character (the one that is not found in the dictionary), it will omit it, going to 

the next one. This is particularly useful to remove the URL of the website from within 

the text (kaz.tengrinews.kz often has Tengrinews.kz in its news). 

The table below shows the performance tests ran on the same amount of the 

same symbol as for C. The tests in Python were run using default_timer imported 

from the timeit package, as it is the better option for measuring performance38. 

n 0 50 75 100 500 1000 3000 10000 

T(P) 3 3 3 3 3 4.5 7.5 13 

T(C) 11 12 12 13 14 14 17 23 

Algorithm execution time, in Python, comparing with C (in ms) 

 
38 https://docs.python.org/3/library/timeit.html 
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Performance comparison, visualized; algorithm complexity is shown to be 

identical, being O(n) for both. 

 

The table above shows that Python offers a significant improvement in 

performance compared to C, with both algorithms being of O(n) complexity, meaning 

that the time it took the program to process the input was directly proportional to the 

input. The difference at lower values of n is negligible for Python. 

Scraper 

The next step is building a web page scraper. A scraper is a program that 

takes a web document (in my case, HTML) and extracts the needed text from it, 

along with any other information that may be relevant for the research. Python offers 

some ways to do that. I have decided to first test the tools with the fixed URL 

address hard-coded into the program, and if successful, implement the requests to 
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the database that contains the URLs of the articles I am planning to use in my 

research. 

The first Python package I used was the urllib. Urllib is a package that collects 

several modules that can work with URL addresses39. This was required to access 

the web-page online and fetch its contents. I used the 

urllib.request.urlopen(URL) function to gain access to the webpage. The 

function returns the encoded webpage content in a document; the content is usually 

encoded, so I decode it using the read().decode(“utf-8”), which is a widely 

used encoding. The end document is the HTML content of the page. 

However, not all content that is on the page is needed or even relevant. A lot 

of the source code, as I found, contains links to social media sharing options, 

advertisement blocks, various widgets and other content. The relevant text is 

generally located in tags like <title>, <tag> (this tag may vary depending on the 

source website), and <p>. Title generally contains the title of the news article, tags 

contain the information about the topics in the article, and p contain the text of the 

article. All those have to be extracted from the document and processed in the text 

converter. 

Beautiful Soup 4 is a Python package specifically for working with HTML and 

XML documents. It uses Python’s internal HTML parser to work with them; note that 

BS4 is unable to open the links directly, hence I had to use the urllib package. 

The difference between a method and a function in Python is that a method is 

defined within a class, so the methods are called following the object.method syntax. 

On the other hand, functions are independent of the objects, and are instead called 

on the object like function(object). In the examples above, 

 
39 https://docs.python.org/3/library/urllib.html 
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urllib.request.urlopen() is a function, and read().decode() is a method of 

class. 

BS4 has a lot of methods and functions that are useful for working with the 

HTML files. At this stage in my project, I have made use of several of those: 

BeautifulSoup(), prettify() and find_all(), among others. 

BeautifulSoup() function takes the HTML document (received earlier via 

urllib.request.urlopen()) and transforms it into a bs4 object, which is 

essentially an object of type soup, with the methods defined by BS4. A soup object 

is, according to BS4 documentation40, a nested data structure, a parse tree, with the 

enhanced navigation and netter search functionality than a regular HTML page. 

Prettify() is a method of soup object that makes the soup object more readable 

for humans, converting it into a Unicode string with a separate line for each tag41. 

Finally, find_all() method looks for all the tags of a certain type in the soup (which 

is just a parse tree), and then returns them. I have used this method to extract the 

entirety of the news body, which is generally contained in <p> tags, into a separate 

document, which will be then ready for parsing using the converter. The tags 

<title> and <tag> will be used later on, when building the actual database for the 

corpus; at this stage, they are not relevant yet. 

However, the output of find_all() may be rather cluttered at this stage — 

tags like img, strong, a href (images, bold font, and hyperlinks) will still be 

present, and those have to be removed. There are several ways to clean up the text, 

either at this or the later stages; since BeautifulSoup offers this functionality, using it 

is the better course of action.  

 
40 https://www.crummy.com/software/BeautifulSoup/bs4/doc/ 
41 ibid 
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Having collected all the text of the web page via find_all(‘p’) and placing it in a 

separate soup object, which I shall reference as soup_p, I have then run another set 

of find_all() within soup_p(), this time with a set of other tags, such as the ones 

mentioned above. This time, the tags will have to be either removed completely with 

all of their content (like an image URL) or extracted (keeping the text and removing 

the tag, like bold, italics, or any other formatting option that is irrelevant). 

BeautifulSoup provides two methods for doing that. decompose() method destroys 

the tag specified along with its contents — anything within the tag specified will get 

completely removed from the soup. This method is useful for removing images and 

advertisements. 

Final stage of scraping is creating a storage for the output of the 

BeautifulSoup. Note that by default, the “soup”, which is what the output of 

BeautifulSoup4 is, is not specifically a string of text; rather, it is a binary tree, which 

contains all the tags, as described above. This entails that there has to be a 

conversion from soup to a piece of text. In addition, the output of the conversion 

should not be a plain string of text per se, it has to be a more “processed” version 

that can be searched and analyzed. One of the ways to do so is via another 

package, TextBlob. TextBlob is another Python package that offers extensive 

functionality for natural text processing. It has been built on the basis of other 

existing packages, namely NLTK (Natural Language Toolkit) and “pattern”. TextBlob 

creates a textblob object, which can be later broken down into “sentence”, “words'' 

and “word” (the last two are two distinct objects), and all of those have their own 

separate methods. However, they will be postponed to a later stage of post-

processing. Within the scraper, TextBlob is used to scan through the text and ensure 

there is only Kazakh text, and no extraneous tags left. However, it is impossible to 
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directly convert soup into a textblob; this can be achieved by typecasting — forcing 

the program to treat a type of object as something different. In this case, the 

typecasting shall look like this: 

 output = textblob(str(soup_p)) 

with str being the typecast. What this achieves is it forces the binary tree (soup) to 

be a string, which is an acceptable type for a textblob container. 

Following this, the text is checked for inconsistencies like tags, extraneous 

text that could have been generated by BS4, and then written to an output file. This 

stage completes the scraper. 

Neural network approach 

General information 

There are several ways to break down a sentence into words and analyze 

them. The first way involves the use of an extensive dictionary that will serve as a 

reference to the program. Such a dictionary will have a list of words with their 

corresponding parts of speech, and the program will reference the dictionary for 

each word. 

This method has a series of drawbacks. First, the dictionary itself will have to 

be exhaustive, with as many words as possible included for reference. Online 

dictionaries for Kazakh language exist, however, they are not well-suited for use in 

this research, as they don’t offer a way to access the data bypassing the search 

boxes on their websites. In case a word is not found in the dictionary, it will remain 

unidentified, and therefore not analyzable. There is also a certain degree of 

ambiguity present in the natural language. Some words will have more than one 

meaning, thus representing two or more entries belonging to the same or different 



63 

parts of speech, so the program will not be able to analyze that correctly. For 

example, the phrases “Look!” (imperative verb) and “Black” (color adjective) are both 

“кара”.  

In order to correctly break down sentences for the parser to work with 

individual words, I have decided to use a neural network. The main idea of the neural 

network will be to recognize the patterns present in the language in terms of syntax, 

analyze the input (the sentence that has to be broken down), and output separate 

words with their classifier (noun, verb, etc). 

In a broad sense, this is a corpus-driven approach. At this stage, “corpus” is 

the collection of the natural text from online sources, which does fit the definition 

partially. However, at this point (pre-neural network) it is a collection of raw data 

which is not understandable for the machines. The task of the neural network in this 

project is to break the text down into the smallest possible units of meaning and 

assign the meaning to them. The unit of analysis in this stage is the words, without 

their relation to each other, and the goal of analysis is to narrow down their possible 

classes as much as possible. The second stage will employ sentences as its unit of 

analysis as well, but this time, the expected outcome of the analysis will be a more 

precise definition of the class a particular word belongs to based on its syntactic role 

within the given sentence. 

As the project goes on, though, those neural networks will be collapsed into 

one single neural network that will be able to work with the texts from start to finish, 

enabling a seamless addition of new words to the corpus continuously. 

The preprocessing is one of the most intensive steps of the process. One of 

the most optimal approaches is to implement the Recurrent Neural Network working 

structure. It has been widely discussed that this type of neural network is optimal for 
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natural language processing because this neural network also takes into account the 

time of appearance as one of the factors to use for the weights. The input has to 

have a good representation so that the machine will learn the maximum number of 

patterns present in the language. 

The machine will not be able to automatically know which word is which 

without the training data set. Therefore, the first set of data will include the parts of 

speech, their syntactic roles and the morphological markers that are able to be 

attached to them. At this point, the derivational morphemes are not entered in the 

database, only the inflectional morphemes. This leads to certain restrictions in the 

text processing: a word like “satuwi” (seller/cashier) is treated as a single root without 

any suffixes, despite the fact it carries “-wi” derivational suffix that transforms the 

verb “satu-” (to sell) into a noun “the person who sells”. For example, this is what the 

entry for nouns would look like using a table representation. 

 

Part of speech Syntactic roles Morphology 

Noun Subject Case 

 Object Number 

  Possessive 

 

Note that there is no intrinsic connection between “Syntactic roles” and 

“Morphology” other than the fact they both belong to the same category of “noun 

features” – that is, it is not imperative that an object carries a plural marker. In a 

sense, it is useful to think about this table as two tables merged into one. 
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According to Muhamedowa (2016), there is another marker for nouns – 

definitiveness, however, that marker is generally a separate word like “bir” (one) or 

“sol” (that), to give a brief example. Therefore, this is not a morphological marker of 

definitiveness, which excludes it from the list of morphological features to be 

included in the table. 

Recurrent neural networks, as mentioned before, take into account the time of 

appearance, which makes a difference for the recognition. In terms of the natural 

language processing framework of this project, “the time of appearance” is most 

closely aligned with the position of a word in the sentence. A great example of that is 

the word “мен” – in the Kazakh language, it can be either a first-person singular 

pronoun or a conjunction (and). The position of the word in a sentence is one of the 

defining factors in distinguishing between the two – if the word occurs at the 

beginning of the sentence, it is highly unlikely that it is going to be a conjunction, 

therefore “мен” in this case will be classified as the first-person singular pronoun. 

This is confirmed by a search through a third-party corpus, Apertium in this case — 

there was no case of “мен” classified as a conjunction at the beginning of a 

sentence42. In turn, if the word occurs mid-sentence between two nouns or two 

objects, there is a higher likelihood of the word being conjunction, for example, “шай 

мен нан”. For this to work, the neural network will have to loop around on the 

preceding words to adjusts the weight for the particular word. 

In terms of analysis, the Kazakh language is very convenient, as it has a fixed 

word order (SOV), therefore, most transitive sentences will follow that structure. 

Granted, there will also be other elements, such as numerals, proper nouns, 

 
42 Apertium 
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temporal and spatial indicators, etc. The task of the neural network will also be to 

determine what those are and classify them accordingly. 

The list of features for the neural network will contain as many of them as 

possible. Location in the sentence, neighboring syntactic structures, capitalization 

will all be included. However, as a starting point, I am planning to use morphological 

markers. Some of the markers are unique to a certain part of speech, which carries 

over to a group of syntactic structures. For example, case markers are commonly an 

attribute of a noun or a pronoun. Therefore, a character sequence that has those will 

be marked as a noun or pronoun, and then, depending on its position in the 

sentence and other possible patterns the machine will establish, it will determine its 

role in the sentence and the part of speech. 

Another important aspect of the work with natural language is its ambiguity. 

Depending on the position of the word within a sentence and the context, the word in 

question may change the meaning dramatically. This is yet another argument 

supporting the neural network approach. A particular position and the concordance 

analysis results may reveal the patterns of meaning that can only be discovered 

through the corpus approach. At the moment, providing an example of such is 

impossible, as the corpus is still in development, however, it is plausible those 

patterns will be revealed later on. 

Neural network with word percentile as a weight-influencing factor 

As mentioned above, one of the approaches that was taken when developing 

and testing the neural network was to use the percentile as one of the factors that 

will ultimately influence the assignment of the part of speech to the analyzed words. 
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The idea behind this approach was based on the idea that the Kazakh 

language has a fixed word order – subject, followed by an object, concluded with a 

verb. This reflects the general structure of a simple sentence in the Kazakh 

language: “Dosym qalamdy syndyrdym “ ([My] friend broke [a] pen) is an example of 

such a sentence. 

The percentile is not a precise measure of the position of a given word in a 

sentence, but rather an approximation – since the number of words in a sentence is 

not constant, some percentiles will produce a result with a fraction. For example, 

25% (twenty-fifth percentile) of a sentence with four words is going to include one 

single word, while the same percentile will produce 1.25 words in a sentence with six 

words. Obviously, 0.25 of a word means nothing in this case, therefore the measures 

are approximate. 

Despite that, a framework that would be usable in the scope of this project 

ought to have specific boundaries; based on those, it would then assign the part of 

speech to a word. An important note here is that the percentile has to end at a 

hundred, marking the end of a sentence. Initially, it may appear that based on just 

three elements of a simple sentence, the best candidate for the percentile set would 

be one based on step 33 – 33%, 66% and 100%; values after the decimal point have 

been truncated, as the accuracy did not add anything to the degree of the model’s 

precision.  

 

The figure above demonstrates the principle behind the percentile model 

An important consideration here also involves the average number of words in 

a sentence in the news article genre in the Kazakh language. Establishing an 
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average amount of words per sentence in the Kazakh language overall would be too 

vague – it is highly likely that in literary texts the number would fluctuate beyond 

usable margins. For example, a sentence “Kel!” (Come!), while being a perfectly 

valid sentence, is only a single word, giving the number of 1. On the other hand, a 

sentence from “Abay Zholy” (Abay’s Path), a novel by Mukhtar Auezov “Екеуi 

жарыса жөнелгенде, амалсыз егеске түсiп, "мен озам, мен озаммен" тепкiлесiп, 

созыла бердi”43 (“When the two of them were racing, they kept shouting “I’m ahead, 

I’m ahead””) contains 13 words; it is entirely possible that there are longer sentences 

in the book. What this indicates is that the average of words per sentence may vary 

according to the genre of the text – some genres, like literary, are likely to have to 

longer average length, while others, for example, online messaging, may be very 

short, as omissions are acceptable. After surveying the news articles gathered over 

the course of the research, I have determined the average number of words per 

sentence is 8.36.  

Given the data above, I set out to determine which step would offer the most 

accuracy while still maintaining a reasonably large gap. After testing several sets of 

values, with steps ranging from 10 to 50, I have determined that the optimal step for 

this approach would be 25. This produces a set of 25-50-75-100, with the hundredth 

percentile being the end of the sentence. Essentially, those numbers represent the 

portion of the sentence where the word occurs. 25, in this case, would mean that the 

word is encountered in the first 25% of the sentence, 50 — word encountered after 

the 25th percentile, but before the half of the sentence, and so forth. This set of 

percentiles allows for maximum flexibility in terms of number of words in a sentence 

for which it is applied. 

 
43 Kitap.kz “Абай жолы” 
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The expected behavior of this model is as follows. Given the SOV structure of 

Kazakh sentences, it can be safely assumed that most sentences will follow that 

pattern, or a variation of it. However, it is highly likely there will also be other words 

representing other syntactic categories. It is also possible that the verb will consist of 

multiple words — there is plenty of examples in the Kazakh language, such as “келе 

бер” (“come”), “жазылып кет” (“get better”), with the second verb being an auxiliary 

one (“келу, кету, жату, тұру”). There are nuances in meaning when those auxiliary 

verbs are changed to one another, however, they do not carry their original meaning 

anymore. Still, they are a part of the verb. Thus, according to the percentiles laid out 

above, the sentence “” will be broken down into 4 parts: 25th percentile - “”, 50th 

percentile - “”, 75th percentile - “”, and the 100th percentile - “”. The word in the first 

percentile is likely, according to the model prediction, to be a subject of the sentence. 

Given that it is a subject, there are 2 main possibilities: the word in the 25th 

percentile is either a pronoun or a noun. The disambiguation between the two is 

rather simple: I opted for having the pronouns hardcoded, as there is a small number 

of those, and to avoid confusion with some case suffixes. Therefore, it is expected 

that the program will assign either noun or pronoun category to the word based on its 

syntactic properties. 

The words in the 50th percentile, according to the model, are likely to be 

related to the object; an object in the Kazakh language is often represented by a 

noun, or a pronoun (granted, there are more complicated cases, but those shall be 

covered below). In order to avoid falsely identifying an adjective as a noun, the 

program first checks for typically adjective suffixes within the words of that percentile; 

if the search returns nothing, then the program will follow the same steps as for the 

previous percentile – check for pronouns, and then for nouns. 
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Finally, the concluding percentiles are mainly allocated for verbs. 100th 

percentile is generally either the auxiliary verb, or a regular verb with a lexical 

meaning; 75th, on the other hand, is an ambiguous percentile, which may contain a 

verb or a different part of speech. There is a high confidence in the prediction in the 

final percentile, as the sentences would have to end with a verb. 

Unfortunately, while in theory the system would have made the part of speech 

assignment based on syntactic features easy to implement, the practical tests have 

shown a rather different picture. While the neural network with the percentile setup 

was able to work with some sentences, it was falling short on many occasions. The 

only percentile that achieved a reasonable degree of accuracy (±84.63$) was the 

last, 100th percentile. Other percentiles demonstrated a significantly worse 

performance, rendering the model unusable in its current state. 

Some of the failures can be attributed to the fact that while the skeletal 

structure of a Kazakh sentence is SOV, there is no guarantee that a subject will 

come first in the sentence. This became more apparent in the longer sentences. To 

illustrate, let’s consider the following sentence: “Әдемі қыз дауыстап ән айтады.” (A 

beautiful girl sings loudly). While this sentence is unlikely to appear in the press, 

which is the main focus of this corpus, it nonetheless demonstrates the shortcomings 

of the percentile approach clearly. By approximating the 20 step-based percentile 

(100/5 words = 20) to the working 25 model, the percentile breakdown is as follows: 

25 - Әдемі (beginning of the sentence) 

50 - қыз дауыстап (40 and 60 are closest to 50) 

75 - ән (80 is closest to 75) 

100 - айтады (final word, 100). 
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According to the model outlined above, the first percentile (25) is for subject; 

however, in this case we have a noun phrase (adjective+noun). As the adjective is 

first, it is allocated to the first percentile, and thus becomes a noun instead of an 

adjective, which is erroneous. Percentile 50 and 75 had consistently correct 

assignments, and so did 100, which contains a verb. Therefore, the noun phrase has 

a potential of disrupting the work of the neural network, which negatively impacts 

further progress - since the network learned that there is a possible ambiguity in 

terms of the first word being either a noun or an adjective, further results were 

becoming less predictable. 

It became apparent that this model would require manual supervision and 

correction of errors after each epoch, which delays effective learning significantly. In 

addition, it did not work well with a set of words when the structure of the sentence 

was not preserved: dictionary-style text file (a word per line with no indication of 

syntax produced very inaccurate results, rendering the program unusable. In 

addition, Kazakh is a pro-drop language, which can drop the subject (noun/pronoun) 

if the object of reference is clear from the preceding context. In order to account for 

that, the neural network had to be expanded significantly to allow for context 

memorization from the previous sentences, and it also had to learn to detect the 

missing features. While the neural networks are great at detecting present hidden 

patterns and features, it is unable to deal particularly well with the absence of those 

features. In addition, the attempts to determine when the previous context should be 

wiped to allow replacement with the new context were futile – the references to a 

subject could be throughout the entire article under analysis, and there were more 

references to different subjects within 2 sentences. The multi-layered nature of the 

context made it difficult to maintain the network, and it started to run out of memory 
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past various points, with the run time becoming increasingly large to the point of it 

being unfeasible, given large enough samples of test data. 

The network could potentially be adjusted to work with more complex 

sentence structures that have multiple clauses, however, at this stage of the project 

this effort is not feasible. 

Neural network based on morphological features with cross-

references to training dataset as a dictionary 

The second approach employed in the research was based on purely 

morphological features with cross-references to the training dataset, dictionary style. 

This approach uses the morphological features present in the word in order to assign 

the part of speech to it. If the word has no distinguishable morphological features (a 

noun in nominative case, for example), the network would then use the previous 

word to try and determine the part of speech (concordance recognition). If this fails, 

the neural network will switch to dictionary lookup, scanning the training data to find 

the unknown word. Finally, if even that yielded no results, the neural network will 

mark the word for review and move ahead. During the subsequent runs, it may be 

able to tag some words correctly without the manual correction; however, I was 

unable to register what is there in common between the tagged words. 

The training dataset for this network is a mix of publicly available data from 

Apertium’s GitHub repository and sentences, annotated semi-automatically by me. 

This provides the program with a large volume of training data, improving the 

accuracy, and a sizable dictionary to reference for later. 

As the program runs through multiple epochs, it expands its vocabulary and 

discovers more features that would allow it to determine the part of speech. Context-
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free grammar provides the basis for the lookup of those features. For example, 

assignment of adjectives has not been an issue for this iteration of the neural 

network, as generally the adjectives have predictable morphological patterns, such 

as suffixes, initial reduplication, that distinguish them unambiguously in most cases. 

For example, a context-free grammar rule indicates that if there is an adjective, there 

has to be a noun adjacent to it (N→ NP→ Adj+N). While it may not hold 100% 

correct all the time (a case of pronoun+adjective is also possible), it provides part-of-

speech assignment with a high degree of accuracy, higher than the previous model. 

This model was able to achieve an admissible accuracy threshold of 88.32% 

over a sample of 40 articles, which is 9624 words, with the initial training dataset of 

5000 words. The test sample can be easily expanded by providing more URLs to the 

scraper and can be done on demand. 

 

Chapter 5: Conclusion 

Conclusion 

Corpus linguistics is a very powerful modern tool for both the academics and 

general public. It is a rapidly growing branch of linguistics that demands attention. 

However, not all languages enjoy equal coverage in the digital era. The study 

highlights that the Kazakh language has still relatively poor coverage from the 

computational side. The descriptive literature on the Kazakh language is plentiful, but 

only a part of it is English. One of the most recent books, by Muhamedowa (2016), 

while offering insights into the grammatical and morphological aspects of the Kazakh 

language, has no guidance on the ways to approach the Kazakh language 

computationally. As identified in Muhamedowa (2016) and Bekbulatov et al. (2014), 
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an agglutinative language, Kazakh poses some challenges for the natural language 

processing engines, since it uses both prefixation and suffixation, which makes it 

hard for automated processors to distinguish between the root and the 

derivational/inflectional morphemes. These problematic issues in Kazakh language 

are well-discussed by Bekbulatov et al. (2014), but the ways to solve them were not 

offered. The status of National Corpus of Kazakh Language remains largely 

uncertain, with little to no updates over the past years, which indicates the corpus is 

likely becoming outdated, given its initial source was mostly literary texts. 

The software that can be expected to work with the Kazakh language should 

be able to deal with complex morphology of the Kazakh language. Therefore, 

programs/engines that work well for a language like English will probably not work 

well for the Kazakh language. This means that when developing or testing software 

for the Kazakh language, anything ranging from morphological transducer to speech 

synthesis engine, it is imperative to ensure that the application can work with the 

morphology. On the other hand, Kazakh features a fixed word order, unlike Russian, 

for example, which makes it easier to create rule-based processing tools. However, 

Kazakh language is also a pro-drop language, which means it may drop the subject 

or pronoun if the contextual clues give an indication of what the subject of the 

sentence is. This issue has the potential of disrupting the workflow of some 

programs that expect there to always be at least a subject or verb – the software 

may either consider the object to be the subject, mark sentence as agrammatical, or 

stop working altogether if this case was not considered. 

Generally, the lack of a unified annotation system for the Kazakh corpus, 

coupled with the challenging nature of Kazakh language in terms of morphology, 

contribute towards its poor representation computationally. Those challenges can be 
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overcome, by ensuring the standardization of the Kazakh language description 

system. The steps are being taken, as there are multiple projects currently being 

developed; however, more is yet to be done. 

Overall, this project sheds light on studying the Kazakh language through the 

quantitative methodology via corpus linguistics, its challenges and approaches. By 

surveying the literature available, I have identified the key problematic and explored 

possible solutions. The project developed a method for creating a sample corpus 

and possibly a standalone software for corpus analysis that would fit Kazakh 

language with its complexities. The method implies merging the sample corpus with 

the lexc file used by Apertium, a free open-source software, to contribute to the 

Kazakh language digitization effort. 

In the process of accomplishing this, I have first identified the areas that could 

be potentially challenging for machine recognition, such as complex Kazakh 

morphology and two competing writing systems. I have also identified a particular 

utility of a uniform, publicly available system of notations that can correctly reflect the 

nuances of the Kazakh language. To address the issue, I have used the available 

descriptions of Turkic language family in general, and Kazakh language specifically. 

In the process, I have also consulted the practically applied solutions of Apertium, 

identifying its shortcomings and advantages.  

Having accomplished the above, the next issue is gathering the data for the 

corpus. The literature suggests the Internet can be a representative corpus for 

written Kazakh language; at this stage, this is the best data collection environment. 

The data collection involved several stages: first, I created a list of URLs from news 

websites that would serve as the sources of the data. Then, I made a series of 

programs that worked with the text from start (fetching the raw HTML data from the 
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web) to finish (encoding/decoding the data and processing it via a neural network). I 

have used several available Python packages for this purpose – urllib for request to 

the web servers, BeautifulSoup4 for cleaning up the raw HTML data and finding 

relevant tags, and TextBlob, for breaking the text down into smaller pieces and 

recording the data and some basic info about the text. 

Next, specialized software is created utilizing the annotation system devised 

at the earlier stage. This software is designed to perform several tasks: first, to break 

down the text into one-word-long chunks with identified part-of-speech affiliation. The 

next task applies morphological transducer to parse the words into affixes and roots. 

This concludes the current scope of the project. 

As the neural network offers a potent tool for discovering the principles behind 

the language, I have decided to utilize it within this project as part-of-speech tagger. 

By first manually annotating a set of words, as well as including a part of previously 

tagged corpus, tagging them, and feeding them to the network, it developed an 

understanding of what constitutes a particular word class in the Kaza kh language. 

This builds a vocabulary of known and tagged words that can be addressed later, 

making the neural network involvement smaller as more words are tagged. 

The project also made use of the neural network for part-of-speech tagging. 

This method of tagging parts of speech can achieve a good accuracy using some 

human input during the training process. The approach eliminates the need for 

constant human supervision the longer the model trains. Essentially, the neural 

network built for this project resembles a perceptron – it had to classify the inputs 

(words) as belonging to a particular part of speech based on a set of features such 

as previous word, the presence of prefixes/suffixes, the kind of suffixes/prefixes 

present, and others. The network was trained on a data set consisting of data taken 
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from Apertium-kaz repository and data manually tagged by me. The final version of 

the neural network was able to classify the words with 88.32% accuracy – while the 

state-of-the-art software can produce more accurate results, I would consider this 

neural network to be a successfully implemented model based on the limited amount 

of the training data. 

This research project in its current design has achieved several goals: 

identifying the key parameters of the annotation system for the Kazakh language; 

creation of applications able to work with the Kazakh language utilizing the said 

annotation system; creation of a sample corpus to be annotated and analyzed using 

the above applications to prove the project accomplished its goals; subsequent 

integration of the above solutions with the Apertium-kaz system to address the larger 

aim of contributing to digitization of the Kazakh language through the creation of 

more diverse corpora, which includes not only literary Kazakh texts, but also more 

contemporary versions through use of newspapers. This method enables the 

researchers to gain access to the version of language that is used on the regular 

basis, but at the same time does not have the same set of challenges associated 

with processing spoken data or informal conversations. 

 

Project outlook 

Still, the scope of work for the future research is grand. The present project 

does not take the multilingual nature of the region into account, as that requires a 

separate research in and of itself. The source of the data for the corpus has been 

chosen in an attempt to stay as close to monolingual as possible – speech or 

Internet communication will likely be multilingual. Therefore, this is one of the 
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potential research topics for the future - adapting the corpus technologies to more 

than one language.  
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Appendix A 

 

Example of “Suggested news” (https://www.inform.kz/kz/stati-isi-aksh-soty-

kazakstannyn-bergen-talap-aryzyn-toktatudan-bas-tartty_a3767338) 

Appendix B 

 

Code representation of the Appendix A 
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