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Abstract

The identification of drug-target interaction (DTI) is a crucial part of the drug dis-
covery and development process. In vitro and in vivo experiments for drug target
validation and screening are, however, very expensive and take a lot of time to com-
plete. There experiment on large scale are unfeasible, thus there is a huge demand for
the development of computational in silico alternatives for DTI prediction. Several
statistical and machine learning-based methods have been developed over time that
focused on the binary classification of DTI. However, these interactions are very com-
plex, as there is a dynamic fluctuation present between the protein and the bound
compound and a continuous mutually flexible adjustment, which needs to be simpli-
fied by reaching an equilibrium state characterised by well established binding affinity
descriptor. The exact estimation of the binding affinity in the DTI still remains a
challenge to this day. Various machine and deep learning methodologies have been
developed that utilize different feature representation approaches for both compounds
and proteins. These algorithms generally utilize as input limited chemical informa-
tion, which may not be meaningful and intuitive enough to be used as an effective
descriptor.

In this work I am addressing the limitation of current methods by introduc-
ing a deep learning-based model that makes use of chemical representations of the
molecules. Results of experiments on two benchmark datasets demonstrate that the
proposed model outperforms the baseline model, which is one of the state-of-the-art
methods in the drug-target affinity (DTA) prediction field.
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Chapter 1

Introduction

The impaired activity of proteins in living organisms that may result in development

of various diseases can be modulated by drugs resulting in an alteration of protein

function which may lead to desirable therapeutic effects [27]. The discovery of drugs

for protein targets is a highly complex process that requires a vast amount of temporal

and financial resources. The development of a de novo drugs can cost up to 2.6 billion

dollars [23], and it takes about 10-17 years for it to develop a marketable drug that is

approved by the Food and Drug Administration (FDA) [2, 33]. Drug re-purposing,

where approved drugs with established safety and efficacy are used for purposes they

were not originally developed for, is therefore becoming a great alternative.

The crucial part of drug re-purposing is to identify how already established drugs

may work on the target of interest. Traditional screening methods, either in vivo or

in vitro, are conducted to learn the selectivity and efficacy of the interaction for the

drug-target pairs [26]. This process is very expensive and time-consuming, thus it is

not possible to screen extra large chemical libraries in chemical space with multiple

targets. Therefore there is a necessity in the development of computational meth-

ods that use statistical and machine learning approaches to estimate the interaction

strength between drug-target pairs and systematically identify promising candidate

molecules as hit compounds. The development of such in silico methods is inevitable

as they significantly facilitate the process of drug development, while reducing the

accompanying costs and invested screening time.
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Most of the previous studies approach the problem of the estimation of drug-target

interaction (DTI) as a binary classification problem [4, 5, 6, 13, 21, 24, 29, 41, 46].

The models are trained to predict whether or not the compound would interact

with the target, thus neglecting the important information of how strong this in-

teraction is. The descriptor called binding affinity reflects this missing information,

which can be expressed by various means such as a dissociation constant (𝐾𝑑), in-

hibition constant (𝐾𝑖) or half maximal inhibitory concentration (IC50). Only re-

cently researchers started addressing this problem by developing machine learning

and deep learning based regression models for the prediction of drug-target affinity

(DTA) [1, 10, 16, 17, 25, 28, 30, 31, 36, 47].

1.1 Related Work

At first similarity-based methods that utilize conventional machine learning tech-

niques called KronRLS [31] and SimBoost [16] were introduced. KronRLS is a Regu-

larized Least Squares based algorithm that uses 2D similarity matrices for compounds

and Smith-Waterman similarity [38] representation for targets. SimBoost uses a gra-

dient boosting machine learning method to predict binding affinities and is trained

on features engineered from similarity matrices of drug-target pairs. The major issue

when using these methods is that the feature representation is limited by the simi-

larity space. A novel molecule having low similarity with the molecules used in the

training, will lead to inaccurate predictions when provided to a model. One possible

way to overcome this problem is to use a wide variety of molecules that would cover

the whole chemical space, but this is rather unrealistic, because the resources neces-

sary to calculate similarity matrices limit the number of molecules that can be used

in the training.

To mitigate the downside of similarity-based methods, a deep learning-based DTA

prediction method called DeepDTA was developed [28]. The model works on the 1D

representation of compounds and proteins. For representing compounds the simplified

molecular input line entry system, otherwise known as SMILES is used. SMILES is a
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line notation for describing the chemical structures of molecules using ASCII charac-

ters. It was developed by David Weininger [43] to represent molecules in computer-

readable format. For target representation the amino acid sequence of proteins is

used, which is the string of sequential amino acids from the N-terminal to C-terminal

end of the protein molecule also known as protein primary structure. The underlying

architecture of DeepDTA learns the abstract feature representation of drugs and tar-

gets by using convolutional neural networks (CNNs). Concatenated feature vectors

are fed to a set of fully connected layers that are dedicated to predicting continu-

ous values of binding affinity. DeepDTA outperforms both KronRLS and SimBoost

on two benchmark datasets (Davis [7] and KIBA [39]), so the success of this deep

learning-based method has sparked the interest of the scientific community and more

variants have been developed since.

Some of the examples include CNN based feature representation methods, such

as WideDTA [30], MT-DTI [36] and PADME [10] models. WideDTA represents

the compounds and drugs as words, and it uses four different information sources

which are drugs given in SMILES format, protein sequences, protein motifs and do-

mains, and ligand maximum common substructures. MT-DTI uses the same input

as DeepDTA, but introduces the alternative representation of molecules based on

the self-attention mechanism. While WideDTA and MT-DTI let the CNN learn the

protein representation, PADME uses fixed-rule descriptors to represent proteins. For

compound representation SMILES are used.

Alternatives to CNN based models include GANsDTA [47] and DeepCDA [1].

Instead of using CNNs to learn feature representations, GANsDTA utilizes genera-

tive adversarial networks (GAN) whereas DeepCDA applies the integrated CNN and

long-short-term-memory (LSTM) model to obtain representations for compounds and

proteins. For the regression task of binding affinity prediction, the models utilize a

multi-layer perceptron (MLP) similar to all previous studies.

State-of-the-art approaches in the field of DTA prediction are GraphDTA [25] and

DGraphDTA [17]. These two methods have an underlying architecture that combines

the graph neural networks with conventional CNNs. Unlike learning compound and
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protein features from 1D representations, these models utilize structural information

of molecules that are available in their graph representation. Experiments on bench-

mark Davis and KIBA datasets, both representing datasets used in the protein kinase

drug-discovery field, showed significant predictive improvement over other methods

on several performance measure metrics.

1.2 Motivation

Although the field of DTA prediction is relatively new, it attracts a lot of attention,

as a lot of methods have been developed based on various input representations.

However, most of these methods do not exploit chemical properties much as their

default is to use only the 1D SMILES representation of drugs and protein sequence

information. Although they work quite well, models that use additional qualitative

chemical descriptors may enhance the prediction performance. GraphDTA [25] and

DGraphDTA [17] for instance utilize the graph representation for compounds that

contain atom properties and/or information about the chemical bonds and atom

inter-connectivity within a compounds. Interestingly, WideDTA [30] integrates the

functional information found in the protein sequences into its model. In particular

it uses sequence motifs and profiles to construct the predictor in combination with

traditionally used 1D representations. These models performed the best on extensive

experiments using benchmark Davis and KIBA datasets, which supports the idea that

the integration of chemical as well as functional data is beneficial for developing DTA

predictors.

Apart from what has been already studied, there are still additional directions that

are to be explored, and this is why this study is conducted. In this work, I am adopting

the best practices in the field of DTA prediction, while integrating and providing

novel auxiliary information such as chemical or functional descriptors. In particular,

a novel model proposed in this work is the combination of CNN and a graph neural

network. Multiple input representations are experimented with, which include graph-

based, Coulomb matrix and molecular property representations of the compounds,

12



and categorical encoding, amino acid scale and domains/motifs representation for

proteins. Numerous experiments are conducted and their performance on multiple

metrics is compared against the baseline GraphDTA model [25] on two benchmark

datasets, namely Davis and KIBA. Results show that the proposed model outperforms

the baseline on all of the metrics, so it serves as proof that the supplementation of

chemical and functional properties does indeed facilitate the performance of DTA

predictors, and that this is a viable direction for future more applied research.
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Chapter 2

Methodology

2.1 Datasets

In this work two datasets, namely Davis [7] and KIBA [39] are used for the develop-

ment of a DTA prediction model. Both datasets are based on large-scale biochemical

selectivity assays of kinase inhibitors, and are considered to be benchmark datasets

for the evaluation of the binding affinity prediction.

The Davis dataset consists of 442 sequence entries from the kinase protein family,

and 68 compounds, which overall constitute 30,056 DTI expressed by dissociation

constant (𝐾𝑑). As suggested by [16] 𝐾𝑑 values are transformed into log space, 𝑝𝐾𝑑

as shown in equation 2.1. This is done for ensuring the numerical stability.

𝑝𝐾𝑑 = −𝑙𝑜𝑔10 + (
𝐾𝑑

1𝑒9
) (2.1)

The original KIBA dataset contains 467 kinase protein family targets and 52,498

inhibitors. In total there are 246,088 affinity values that combine different sources,

such as 𝐾𝑖, 𝐾𝑑, and 𝐼𝐶50. Tang et al. introduced a novel bioactivity score called

KIBA, that statistically combines all known values to normalize the mutual consis-

tency between them [39]. This dataset was later updated to only include compounds

and targets that have at least 10 interactions, thus resulting in 229 proteins and 2,111

drugs with 118,254 interactions [16]. The latter updated version is used in this work.
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Figure 2-1: Summary of the Davis dataset (left panel) and KIBA (right panel) dataset.
First row shows the distribution of the lengths of the protein sequences. Second row
shows the distribution of the lengths of the SMILES strings. Third row represents
the distribution of binding affinity values.

The number of compounds, proteins and interactions of both datasets are sum-

marized in Table 2.1. Figure 2-1 gives more insight into all the components for Davis

(left panel) and KIBA (right panel). First row represents the sequence lengths dis-

tribution for all proteins. The minimum length of protein sequences for Davis is

244, while the maximum and average are 2549 and 788, respectively. For KIBA the
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minimum, maximum and average lengths of protein sequences are 215, 4128, and

728 characters. Second row shows the distribution for compound lengths in SMILES

format. Minimum, maximum and average drug lengths for Davis are 103, 39, and 64,

while for KIBA it is 590, 20, and 59 characters.

Dataset Compounds Proteins Interactions
Davis 68 442 30 056
KIBA 2111 229 118 254

Table 2.1: Summary of datasets

Third row shows the distribution of binding affinity values in 𝑝𝐾𝑑 format for Davis

and KIBA score format for KIBA. For Davis dataset lower 𝑝𝐾𝑑 values indicate lower

binding affinity. A strong spike can be observed at 𝑝𝐾𝑑 value of 5, with more than

half of the whole dataset (69%) belonging to it. These values correspond to "negative

pairs" which either have a weak binding affinities or the interactions are not observed

in the primary screen [31]. On the contrary for the KIBA dataset, the lower the

KIBA score, the higher the binding affinity between drug-target pairs. The suggested

threshold that separates positive and negative interaction values in KIBA is 12.1 in

terms of KIBA score [39]. Distribution of scores reveals that most of the pairs (80%)

are positive for this dataset.

2.2 Baseline Model

GraphDTA [25] is taken into consideration as state-of-the-art baseline model. The

architecture introduced in this work is based on the combination of CNN and graph

neural networks. The model takes the drug-protein pair as input and processes them

in parallel to get representation vectors. These two vectors are then concatenated and

forwarded to dense layers with the finishing regression layer that gives the prediction

for their affinity value.

GraphDTA uses a sequence representation for the proteins, a string of ASCII

17



letters where each character corresponds to an amino acid. The sequence is first

categorically encoded, then it undergoes the embedding layer, and several 1D CNNs

that learn the feature representation. For the compounds the method utilizes the

graph representation obtained by transforming the SMILES input. The graph neural

network is then applied to obtain the latent feature vector. This approach captures

the structural information of the drugs, which is lost if a conventional 1D SMILES

representation would be used. The overview of the model architecture is illustrated

in Figure 2-2.

SMILES

Protein
sequence

Label
encoding

Molecular graph

Embedding
layer

Convolution
layers

GNN
layers

FC
layers

binding affinity
prediction

Figure 2-2: Baseline model architecture.

2.3 Input Representation

The purpose of this work is to explore how the integration of chemical and functional

information into the development of DTA prediction models affects their performance.

Multiple input representations are tested out, which include experiments on various

compound and protein representations, as well as on their chemical and functional

properties.

2.3.1 Molecule Representation

Molecular graph

Following the best practices in the field of DTA prediction, this work utilizes the

graph representation for the compounds. SMILES strings are converted into a molec-
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ular graph of interactions between atoms, which conserves the important structural

information of the chemical structure. In particular, the compound preprocessing

pipeline of [25] is adopted. Nguyen et al. are using the atom feature design by

DeepChem [32]. Each node in the molecular graph is described by five atomic prop-

erties: atom symbol, atom degree - number of bonded neighbors plus number of

Hydrogen atoms, total number of Hydrogen atoms, implicit value of atom, and aro-

maticity of atom [32]. Multi-dimensional feature vectors are constructed for each

atom, and the edges are added between any pair of atoms if there exists a bond be-

tween them. This constitutes the final molecular graph. All of the computations are

performed using RDKit, which is an open-source collection of cheminformatics and

machine learning software tools [20].

Coulomb matrix

A different approach for compound representation is the Coulomb matrix descriptor

introduced by Rupp et al. [35]. The Coulomb matrix features the approximation of

the electrostatic interaction between nuclei inside the molecule [35]. It requires a set

of nuclear charges 𝑍𝑖 and corresponding Cartesian coordinates 𝑅𝑖, which are used as

follows to compute the matrix entries for any given molecule:

𝑀𝑖𝑗 =

⎧⎪⎨⎪⎩0.5𝑍2.4
𝑖 ∀ 𝐼 = 𝐽

𝑍𝑖𝑍𝑗

|𝑅𝑖𝑅𝑗 | ∀ 𝐼 ̸= 𝐽

(2.2)

The diagonal entries of the Coulomb matrix correspond to a polynomial fit of the

potential energies of isolated atoms, while the off-diagonal entries encode the Coulomb

repulsion between different pairs of nuclei in the molecule [9]. The matrix is therefore

invariant to translations and rotations of the molecule. It is however not invariant

under random atom permutations. There are several approaches that tackle this

problem, one of which is the use of sorted Coulomb matrices. The idea is to order

the rows of the matrix, such that ||𝑀𝑖|| ≤ ||𝑀𝑖+1|| for any given row 𝑖. This ensures

that two different molecules necessarily have different Coulomb matrices [22].
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Figure 2-3: Length of Coulomb’s matrix of compounds for Davis (left panel) and
KIBA (right panel) datasets.

The sorted Coulomb matrix method is used in this work via the implementation

by ChemML machine learning and cheminformatics program [15]. The resulting

distribution of the lengths of Coulomb matrices can be observed in Figure 2-3 for

both the Davis (left panel) and the KIBA (right panel) dataset. It can be clearly

seen that for most of the compounds the length of the resulting Coulomb matrix

representation falls into the range of up to 1000 molecules. More precisely 98% for

Davis and 96% for KIBA datasets. It was therefore decided to create a fixed length

Coulomb matrix representation of size 1000, with larger feature vectors truncated,

whereas smaller feature vectors 0-padded.

Other molecular descriptors

A molecular descriptor is "the final result of a logic and mathematical procedure

which transforms chemical information encoded within a symbolic representation of

a molecule into a useful number or the result of some standardized experiment" [40].

In this study additional molecular descriptors were utilized, calculated using RDKit,

a toolkit widely used in the cheminformatics research community. All together, 33

various descriptors such as exact molecular weight, number of aromatic rings, number

of rotatable bonds were calculated, thus constituting fixed-size feature vectors for each

of the compounds. Table A.1 presents all utilized molecular descriptors.
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2.3.2 Protein Representation

Integer/label encoding

One of the straightforward, machine learning friendly ways of representing a protein is

to encode each amino acid in a sequence with a distinct integer. A thorough analysis

was done in a study by Öztürk et al. [28], where authors scanned a large quantity of

protein sequences and extracted 25 unique letters. Each of these letters is mapped

into a corresponding integer, e.g. {’A’:1, ’B’:2, ’C’:3, ... , ’Z’:25} when encoding is

implemented. Protein sequence ’MTVKTEA...’ is, for instance, transformed into the

following integer vector:

[𝑀 𝑇 𝑉 𝐾 𝑇 ...] = [12 19 21 10 19 ...]

Protein sequences have varying length, but vectors of fixed length are preferred for

optimal feature representation. Based on the distribution of protein sequence lengths,

depicted in Figure 2-1 (first row), it was decided to use 1000 characters as a cutoff,

since 73% and 80% of protein sequences have a length of less than 1000 characters for

Davis and KIBA respectively. To obtain fixed vector length, longer sequences were

truncated and shorter sequences were padded with 0.

Amino acid scale representation

A possible downside to the integer/label encoding is that the mapping is user-defined

and it may not carry any meaning. There is, however, an alternative way of imple-

menting the encoding with actual chemical properties, which is to use the amino acid

scale representation. An amino acid scale is defined by a numerical value assigned to

each type of amino acid. There are numerous amino acid scales which are based on

different chemico-physical properties of the amino acids.

In this work I am using 11 various scales provided by the ProtScale web tool [12]:

Average Flexibility, Bulkiness, Hydropathicity, Molecular Weight, Number Of Codons,

Polarity, Recognition Factors, Refractivity, Relative Mutability, Retention Coefficient

trifluoroacetic, and Transmembrane Tendency. As with the integer/label encoding
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each amino acid in the sequence is replaced with the corresponding value defined in

the scales, constituting a multi-dimensional array. Same as with integer/label encod-

ing to keep things uniform, the length of each encoding is fit to the length of 1000,

thus resulting in a representation of a size (11, 1000) for each protein.

Motifs and domains

Another piece of information that can be obtained from the protein is the protein

sequence motifs and domains. These are the specific regions within the protein se-

quence, which may be important for folding, binding, catalytic activity and thermo-

dynamics [30]. A protein motif is a continuous short amino-acid sequence pattern

shared by similar proteins, which may be defined by a unique biological or chemical

function [3]. A protein domain is a larger element of the protein’s structure that often

folds independently of the remaining protein chain and retains its functional proper-

ties independently from the full protein [3]. Both the motifs and domains are obtained

and tested out in this work via the ScanProsite web tool [8], that scans the proteins

against a large-scale database of motifs and profiles descriptors (PROSITE [37]).

For each of the proteins two lists of available motifs and domains are obtained

using the aforementioned tool. All obtained motifs and domains are then used to

extract three-residue "words" from the sequences. For instance, the given motif

’IGKGSFGKVLLARHKAEEVFYAVKVLQKKAILK’ is represented as a set of three

letter "words" ’IGK’, ’GKG’, ’KGS’, ..., ’KAI’, ’AIL’, ’ILK’. Separate analysis on the

datasets showed that for Davis there are 3449 unique three-residues for motifs, and

7851 unique three-residues for domains, whereas for KIBA there are 2859 and 7648

respectively. These residues are then categorically encoded and motifs and domains

are represented as vectors of integers.

Figure 2-4 depicts the distribution of the number of three-residues per motif (first

row) and per domain (second row). For both Davis (left panel) and KIBA (right

panel) datasets most of the proteins (around 80-90%) have less than 60 residues per

motif and less than 650 residues per domain. These numbers are therefore used as a

cutoff to ensure the fixed length for the protein representation.
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Figure 2-4: Number of 3-letter residues per motif (first row) and per domain (second
row) for Davis (left panel) and KIBA (right panel) datasets.

2.4 Proposed Model

The proposed model adopts a simplified version of the framework used in the GraphDTA

method [25], which is the combination of a conventional CNN and a graph neural net-

work. The summary of this model is depicted in Figure 2-5. The left portion shows all

drug representations and the right portion is dedicated to all target representations.

Incoming dashed lines into ’combined representation’ part mean that the choice of

representation vectors is optional and depends on the conducted experiment.

While experimenting with several input representations, the model differs through-

out the trials, but the underlying architecture stays the same. The model takes a

compound-protein pair and feed-forwards them in parallel to learn feature represen-

tation vectors. All latent vectors are then concatenated and sent to two consecutive

fully connected layers, which are completed by a regression layer that returns the

binding affinity prediction.
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Figure 2-5: Proposed model architecture.

Three representation options for a compound are graph-based, Coulomb matrix,

and molecular descriptors. To obtain a graph-based representation, the model con-

verts a SMILES input into a molecular graph (as described in the previous section)

and applies a graph algorithm to learn the feature vector. There are a number of graph

neural network models, such as graph convolutional network (GCN) [19], graph at-

tention network (GAT [42]), and graph isomorphism network (GIN) [45]. According

to the work by Nguyen et al. [25] the best performance is exhibited by applying GIN

that uses a multi-layer perceptron to update node features, so it was chosen for the

proposed model. This network consists of five GIN layers with batch normalization

in between, followed by global max pooling, and a fully connected layer.

A similar procedure is performed on the Coulomb matrix representation. Once

the sorted Coulomb matrix is calculated, the model applies a simple 1D convolution

layer to learn the features, and a fully connected layer to get the representation
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vector. As for the last option, a vector of molecular descriptors is not processed by

CNNs, as there is not enough data for it to be effective, so a raw molecular descriptor

representation is used.

Protein sequence representations explored in this work are integer/label encoding,

amino acid scale, and motif/domain representations. Given the protein sequence

input, first the model does the encoding (described in detail in Section 2.3.2). For

textual data (categorical amino acid and motif/domain three-residue encodings) the

embedding layer is added that represents each token by a 128-dimensional vector. A

1D convolution layer is then applied to learn features, and the model processes the

representation with a fully connected layer.

2.5 Performance Evaluation Metrics

For comparison of the performance between the proposed and the baseline model

are four commonly used evaluation metrics for regression task, namely mean squared

error (MSE), concordance index (CI) [14], Pearson correlation coefficient, and squared

correlation coefficient 𝑟2𝑚 [34].

Mean squared error

MSE is a metric that evaluates the difference between the true value and the predicted

one. Given 𝑛 samples, MSE is defined as the average of the sum of the squared

difference between predicted 𝑝𝑖 and true 𝑡𝑖 values, where 𝑖 ∈ [1, 𝑛]. Smaller MSE

values indicate that the prediction is close to the ground truth values:

𝑀𝑆𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑡𝑖)
2 (2.3)

Concordance index

Another common metric used for evaluation of DTA predictions is the concordance

index (CI). It is a metric used to measure the probability of two predicted affinity

values appearing in the same order as their real values. Drawing two random distinct
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samples 𝑏𝑖 and 𝑏𝑗, where 𝑏𝑖 > 𝑏𝑗, the values are in correct order if their corresponding

true affinity scores 𝛿𝑖 and 𝛿𝑗 satisfy the condition 𝛿𝑖 > 𝛿𝑗:

𝐶𝐼 =
1

𝑍

∑︁
𝛿𝑖>𝛿𝑗

𝜂(𝑏𝑖 − 𝑏𝑗) (2.4)

Z is a normalization constant, 𝜂(𝑥) is a step function:

𝜂(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 𝑥 > 0

0.5, 𝑥 = 0

0, 𝑒𝑙𝑠𝑒

(2.5)

CI values range between 0.5 and 1.0, where 0.5 is a result achieved by a random

predictor, and 1.0 corresponds to the perfect predictive performance.

Correlation coefficients

Some studies also calculate correlation coefficients between predicted (𝑝) and true (𝑡)

affinity values, which measure the strength and direction of a relationship between

them. Most commonly used Pearson correlation coefficient is defined as follows:

𝑟𝑝,𝑡 =
𝑐𝑜𝑣(𝑝, 𝑡)

𝜎(𝑝) 𝜎(𝑡)
(2.6)

The coefficient ranges between -1 and 1, where -1 indicates a strong negative

relationship between values, 1 indicates a strong positive relationship, and 0 indicates

that there is no linear relationship at all.

Additionally a squared correlation coefficient 𝑟2𝑚 is used for evaluation, which

is calculated using the following formula, where 𝑟 is a correlation coefficient with

intercept, and 𝑟0 without intercept:

𝑟2𝑚 = 𝑟2 (1−
√︁

𝑟2 − 𝑟20) (2.7)

The performance of the predictor is considered acceptable, if it achieves an 𝑟2𝑚

value of at least 0.5.

26



Chapter 3

Experiments and Results

3.1 Experimental Setup

The performance of the proposed model is evaluated against the performance of a

baseline GraphDTA model on the Davis and KIBA datasets using all performance

evaluation metrics described in Section 2.5, namely MSE, CI, Pearson correlation

coefficient and 𝑟2𝑚. The data for all experiments is split in the exact same way for

both datasets, where 68% of data is dedicated for training, 16% for model evaluation,

and 16% is kept as a holdout set for testing. Davis has 20,037/5,009/5,010 sam-

ples for train/validation/test split, whereas KIBA has 78,836/19,709/19,709 samples

correspondingly.

The proposed model was implemented using Pytorch geometric [11]. The training

was set for 100 epochs with a batch size 512 for the weight update. Adam optimization

algorithm [18] was utilized with a constant learning rate of 0.0005. To ensure that

the model is not overfitted, dropout was applied throughout the network. Another

overfitting prevention was the implementation of early stopping with a patience of

15 epochs - if the MSE score did not improve on the validation set for more than 15

epochs the training stopped and the last best performing model state was saved.

Besides the experiment on the baseline model, overall 7 experiments with different

input combinations for the proposed model were conducted for each dataset:
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• [AS] Graph-based compound representation + amino acid scale encoding pro-

tein representation

• [CM] Graph-based and Coulomb matrix compound representation + integer/label

encoding protein representation

• [MD] Graph-based and molecular descriptors compound representation + in-

teger/label encoding protein representation

• [CM-MD] Graph-based, Coulomb matrix and molecular descriptors compound

representation + integer/label encoding protein representation

• [DM] Graph-based compound representation + integer/label encoding and do-

mains protein representation

• [MT] Graph-based compound representation + integer/label encoding and mo-

tifs protein representation

• [CM-MT] Graph-based and Coulomb matrix compound representation + in-

teger/label encoding and motifs protein representation

3.2 Results

Table 3.1 and Table 3.2 show all resulting performances based on MSE, CI, Pearson

correlation coefficient and 𝑟2𝑚 metrics on test set of Davis and KIBA datasets. The

first row in each table represents the performance of the baseline GraphDTA model.

The rest of the table gives the results for all input combinations of the proposed model

described in Section 2.3.

The data from the tables shows that the proposed model outperforms the baseline

in each of the performance metrics. The largest improvement on prediction perfor-

mance in terms of MSE and CI was achieved by applying the combination of the

graph-based and Coulomb matrix compound representation, and label/integer en-

coding and motifs protein representation [CM-MT]. For the Davis dataset, the MSE
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Compound
representation

Protein
representation MSE CI Pearson rm^2

GraphDTA graph-based integer encoding 0.3 0.793 0.859 0.596
AS graph-based amino acid scale 0.533 0.592 0.796 0.317

CM graph-based
Coulomb matrix integer encoding 0.283 0.81 0.875 0.604

MD graph-based
molecular descriptors integer encoding 0.345 0.759 0.849 0.543

CM-MD
graph-based

Coulomb matrix
molecular descriptors

integer encoding 0.338 0.761 0.857 0.574

DM graph-based integer encoding
domains 0.281 0.812 0.873 0.658

MT graph-based integer encoding
motifs 0.269 0.821 0.88 0.629

CM-MT graph-based
Coulomb matrix

integer encoding
motifs 0.264 0.822 0.869 0.637

Table 3.1: MSE, CI, Pearson correlation coefficient, and 𝑟2𝑚 scores of the test set of
Davis dataset

Compound
representation

Protein
representation MSE CI Pearson rm^2

GraphDTA graph-based integer encoding 0.265 0.803 0.781 0.598
AS graph-based amino acid scale 0.325 0.775 0.726 0.503

CM graph-based
Coulomb matrix integer encoding 0.241 0.819 0.807 0.603

MD graph-based
molecular descriptors integer encoding 0.287 0.794 0.765 0.561

CM-MD
graph-based

Coulomb matrix
molecular descriptors

integer encoding 0.255 0.809 0.794 0.6

DM graph-based integer encoding
domains 0.254 0.811 0.792 0.609

MT graph-based integer encoding
motifs 0.243 0.812 0.802 0.624

CM-MT graph-based
Coulomb matrix

integer encoding
motifs 0.227 0.823 0.822 0.655

Table 3.2: MSE, CI, Pearson correlation coefficient, and 𝑟2𝑚 scores of the test set of
KIBA dataset
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score decreased from 0.3 (baseline model) to 0.264, while the CI score increased from

0.793 to 0.822. As for KIBA, MSE dropped from 0.265 to 0.227 and CI grew from

0.803 to 0.823. Pearson and 𝑟2𝑚 scores are also improved - from 0.859 to 0.869 and

from 0.596 to 0.637 for Davis; from 0.781 to 0.0.822 and from 0.598 to 0.655 for

KIBA.

Other combinations that performed comparably well are inputs including Coulomb

matrix representation for compounds, and domains/motifs representation for proteins

(CM, CM-MD, DM, and MT trials). Most of the scores superseded the baseline

performance, which can be observed in Tables 3.1 and 3.2.

Figure 3-1 illustrates the scatter plot of the predicted binding affinity values for

the best performing configuration against the ground truth values for Davis (left

panel) and KIBA (right panel) datasets. A perfect model performance is exhibited if

a plot results in a straight line 𝑝 = 𝑡, where 𝑝 is a prediction and 𝑡 is a true value.

It can be observed that the density around the perfect prediction line is quite high,

especially for KIBA dataset, and that there are very few samples where the prediction

significantly differs from the actual binding affinity value.
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Figure 3-1: Predicted against ground truth values for Davis (left panel) and KIBA
(right panel) datasets.
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3.3 Discussion

The results of multiple experiments using the two large-scale kinase inhibitor datasets,

Davis and KIBA, have proven that integration of chemical and functional informa-

tion for compounds and proteins can improve DTA predictions. For instance, adding

a Coulomb matrix to the compound representation, as well as motifs and domains

to protein representation has shown to enhance the performance of the model (Ta-

bles 3.1 and 3.2). However, the use of the remaining representations did not fulfil the

expectations.
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Figure 3-2: MSE (first row) and CI (second row) trends over 100 epochs for Davis
(left panel) and KIBA (right panel) datasets.

Both molecular descriptors based compound representation and amino acid scale

protein representation performed considerably worse, compared even to the baseline

model. The main reason for such a failure might be the sub-optimal model used for

input representation. In case of molecular descriptors for instance, no convolution

layer based feature representation was introduced, so the feature vector is used in its
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raw state. As for the amino acid scale representation, a 1D convolution layer was

applied to (11,1000) shaped input - so the current model may not be complex enough

to effectively learn feature representations.

A more thorough analysis of the performance evaluation over the whole period

of training confirmed the limitation of the current model on input representation.

Figure 3-2 illustrates the trend of change in MSE (first row) and CI (second row) of

baseline and best performing CM-MT model on test set across 100 training epochs for

Davis (left panel) and KIBA (right panel) datasets. Although the proposed model

performs better than the baseline, towards the end of training the MSE and CI

values for both models seem to converge. Such behavior indicates that after some

time the proposed model starts to overfit. It is more noticeable for Davis, as there

are significantly less training samples. The overfitting happens because the proposed

model has to operate on twice the input data compared to the baseline model, while

having the underlying architecture of the same complexity. Designing a more fitting

architecture should solve the problem of overfitting, and this task will be addressed

in the future work.
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Chapter 4

Conclusion

In this study a machine learning model for DTA prediction was proposed and tested,

which integrates graph neural networks with traditional CNNs in its underlying ar-

chitecture. The model works on various input representations, which include con-

ventional 1D string representations of compounds in SMILES format and protein

sequences, as well as representations obtained from their chemical and functional

properties. In particular, for compounds the sorted Coulomb matrix and molecular

descriptors were applied, while for proteins amino acid scales and protein motifs and

domains were tested out.

Performance of the proposed model was examined on two large-scale benchmark

datasets based on biochemical selectivity assays for kinase inhibitors, namely Davis

and KIBA, and compared to the baseline GraphDTA model. The proposed model

superseded the predictive performance of the baseline on four evaluation metrics

(MSE, CI, Pearson correlation coefficient and 𝑟2𝑚). The best input configuration was

a combination of graph-based and Coulomb matrix representations for compounds,

and categorical encoding with motif representation for proteins. Compared to the

baseline, MSE improved from 0.3 to 0.264 for Davis dataset and from 0.265 to 0.227

for KIBA. As for CI the values improved from 0.793 to 0.822 and from 0.803 to 0.823

for Davis and KIBA, respectively. Other successful input configurations included the

combinations with a Coulomb matrix compound representation and motif/domain

representation of proteins.
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Results demonstrate the practical advantage of integrating additional chemical

and functional information into the development of DTA predictions. However, a

closer look into the performance evaluation metrics revealed that the underlying ar-

chitecture for feature representation is sub-optimal, as it overfits the model once it

is trained for a longer period. Optimizing the network would likely solve this prob-

lem, so this will be addressed in a future work alongside with other possible feature

representation improvements.
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Appendix A

Molecular descriptors

RDKit descriptor Description
ExactMolWt the exact molecular weight of the molecule
MolWt the average molecular weight of the molecule
HeavyAtomMolWt the average molecular weight of the molecule without the hydrogens
FpDensityMorgan1-3 topological fingerprints for molecular characterization and extended connectivity
MaxAbsPartialCharge
MaxPartialCharge
MinAbsPartialCharge
MinPartialCharge

partial charges for molecules descriptors

NumRadicalElectrons
NumValenceElectrons the number of radical/valence electrons the molecule has

FractionCSP3 the fraction of C atoms that are SP3 hybridized
HeavyAtomCount
NHOHCount
NOCount

the number of heavy atoms/NHs or OHs/Nitrogens and Oxygens in a molecule

NumAliphaticCarbocycles
NumAliphaticHeterocycles
NumAliphaticRings

the number of aliphatic (containing at least one non-aromatic bond) carbocy-
cles/heterocycles/rings for a molecule

NumAromaticCarbocycles
NumAromaticHeterocycles
NumAromaticRings

the number of aromatic carbocycles/heterocycles/rings for a molecule

NumSaturatedCarbocycles
NumSaturatedHeterocycles
NumSaturatedRings

the number of saturated carbocycles/heterocycles/rings for a molecule

NumHAcceptors
NumHDonors the number of Hydrogen bond acceptors/donors

NumHeteroatoms the number of heteroatoms
NumRotatableBonds the number of rotatable bonds
RingCount the number of rings for a molecule
MolLogP
MolMR the Wildman-Crippen LogP/MR value [44]

TPSA the topological polar surface area

Table A.1: RDKit molecular descriptors used in the proposed model
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