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Abstract

This work describes MPC implementation for 6-DOF robotic arm which can au-
tonomously reach a target pose generated by a grasping pose estimation algorithm
and allows the user to send Cartesian velocity commands to the robot via 3-axis joy-
stick thanks to the system model based on Jacobian. The developed controller makes
use of variable weighting matrices to make movement in different control modes more
smooth and realistic. It also includes a visual constraint to minimize occlusion of
target object by the manipulator. The next step of this project is to implement a
shared autonomy scheme based on the developed system.
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Chapter 1

Introduction

Shared autonomy or human-machine cooperation can be viewed as a robot control

scheme when both the user and the robot have some or significant degree of control

over a system or over a task[10]. Such systems can be useful for people with lower-

body disability and/or partial upper-body disability. Such people are capable of

performing some tasks on their own, but other tasks may become unavailable to

them, and a robotic system can compensate some of the lost capabilities. A properly

designed system could potentially help in performing activities of daily living.

Research tells that it is important to give the user a sufficient degree of control over

a system[20]. Users should be given as much control as possible, while it is important

for the system to remain intuitive and comfortable to use. The system should not be

too simple as it will probably constraint allowed task space for the user, but it also

should not be too complex as it might become too tiring for the user. From a study

by Dragan and Srinivasa[6] it is possible to learn that the assistance level in shared

autonomy scheme should vary depending on how difficult the task is for the user.

For this work, an attempt was made to implement a control scheme with an

assistive 6-DOF robot manipulator using a setup from a previous work to develop a

shared autonomy in the future[27](see Figure1-1). A joystick was used to receive user

commands and an external RGB-D camera for machine vision.

The control algorithm for this work was chosen to be model predictive control

(MPC). MPC is an advanced control method that is widely used in different areas.
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Figure 1-1: Robot setup used in this work

It differs from more classical Linear Quadratic Regulators (LQR) in that it optimizes

problem after each time sample over a finite time horizon, taking into consideration

future states and control actions.

Approach used in this work is robotic manipulator control in velocity space using

MPC controller. Novelty of this approach is the use of analytical Jacobian of the

manipulator as system model. The purpose of this approach is to control the manip-

ulator in joint velocity space and to be able to integrate joystick for shared control of

Cartesian velocity of the manipulator’s end-effector.

This work consists of the following chapters: Introduction, Related work, Method-

ology, Implementation, Results and Conclusion
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Chapter 2

Related work

2.1 Shared autonomy

Current robots are not intelligent enough to work fully autonomously. This is es-

pecially true for complex robots like manipulators or other multiple DOF systems.

They are usually preprogrammed for specific tasks and work without people in the

direct vicinity (e.g. car factory manipulators and manufacturing set-ups). However

robots can be used in multiple domains, where it is important to have a safe robot,

such as domestic use, assistive systems, medical applications and so on.

For an assistive system it is important that system can do its primary task - assist

a user in performing a task. At the same time, user should have a sufficient level of

control over the system[20]. There are multiple works that implement some type of

assistive or shared autonomy schemes. In general shared autonomy problem consists

of two steps: 1) user intent prediction, and 2) help in intent prediction[6].

2.1.1 Arbitration by blending

Probably one of the most early works in shared autonomy was done by Dragan and

Srinivasa[6] where they reviewed different arbitration approaches and introduced their

policy blending algorithm in the context of an assistive manipulator. The algorithm

consists of two step: goal prediction and trajectory prediction. Goal prediction is
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modeled as a maximum value of a probability function, which is based on cost function

of potential goal. Trajectory prediction can be done via any trajectory generation

algorithm, in the case of my thesis work it can be MPC. Arbitration is performed

based on the systems confidence in choosing the right goal.

Geravand et.al.[11] developed a shared autonomy scheme for a mobilility assistance

robot (MAR). The system has a low-level and high-level control: kinematic model

and a admittance control model. Kinematic model controls the motion on motors,

while admittance control generates the control signals. The shared control scheme

manipulates variables inside the admittance control. There are three decision making

functions based on sensorial, physical and cognitive feedback. They have form of a

reward futction and each control a variable in admittance control model. The test

results with 35 elderly people indicate that this shared autonomy scheme greatly

reduced number of collisions with obstacles thanks to limiting approach velocity near

obstacles.

Gopinath and Argall[12, 13] published two consecutive works on shared autonomy

optimization and intent disambiguation. In their first work[12] they proposed to

view shared autonomy as a form of optimal control problem. The optimization is

performed by the end-user via verbal commands and the optimized function is a

linear blending function described by three parameters. Their next work[13] focused

on intent disambiguation. Each potential goal is assigned a probability distribution

function (PDF). The disambiguation algorithm performs operations with the PDFs

to calculate parameters for disambiguation metrics. The disambiguation metrics are

there to decide which control mode to enter and which control dimensions to control,

based on confidence in intent estimation.

In the work by Jin and Pagilla[17] they predict operators intent in reaching a

subgoal based on two prediction functions: action based prediction and transition

based prediction. Action based prediction estimates probability of a subgoal being

the operator’s target based on angle between the action required to reach the subgoal

and the operator’s action. The transition based prediction estimated probablity of

a subgoal being the operator’s goal by taking into account repetitive form of the

14



process.

Li[22] use a simple blending function to give more control to either robot or hu-

man. The arbitration coefficient is estimated based on two uncertainty models: intent

uncertainty and autonomy uncertainty. The probability is modeled as Gaussian prob-

ability function and confidence is estimated with Gauss error function over probability

distribution function for target.

In summary shared autonomy schemas share a common feature in that they often

use a linear blending function to arbitrate between giving control to a human or to a

system. The blending function has a common form as in (2.1)

𝑋 = (1− 𝛼)𝑋𝑟𝑜𝑏𝑜𝑡 + 𝛼𝑋ℎ𝑢𝑚𝑎𝑛 (2.1)

What researchers are trying to do is to develop smart algorithms to estimate 𝛼 based

on different probabilistic models for human operator’s intent and the ability of robot

to guess the intent.

2.1.2 Markov processes

There are also shared autonomy schemas that are built using Markov processes [16,

23, 4] which are stochastic processes, where value of the next state depends solely on

the value of the current state and the control action. They use different variations

such as partially observable Markov decision processes (POMDP) and hidden Markov

models (HMM).

A typical Markov decision process is defined as follows [23]:

𝑀𝐷𝑃 = {𝑆,𝐴, 𝑇 (𝑠𝑖, 𝑎𝑘, 𝑠𝑗), 𝑅(𝑠𝑖, 𝑎𝑘)} → 𝜋(𝑠𝑖) (2.2)

where 𝑠𝑖 ∈ 𝑆, 𝑎𝑘 ∈ 𝐴, 𝑅(𝑠𝑖, 𝑎𝑘) is the set of state-dependent rewards for performing

an action 𝑎𝑘 at a state 𝑠𝑖, and 𝑇 (𝑠𝑖, 𝑎𝑘, 𝑠
𝑖) = 𝑝(𝑠𝑗|𝑠𝑖, 𝑎𝑘) is the set of all transition

probabilities.

Javdani et.al.[16] developed an assistive control scheme based on hindsight opti-
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mization and modeled as a partially observable Markov decision process. They utilize

a cascade of POMDP and MDP. First generates guesses about user’s goal based on a

set of beliefs, while second uses the guesses as known targets and model robot actions.

2.1.3 Visualization

Another interesting idea for control sharing is an assistive control. It can be a pure

visual assistance[4, 25] or autonomous passive assistance[1, 2].

Quintero et.al.[25] developed a visual only interface called VIBI. The interface

is a 2D image-based inteface where user selects a desired target and a pose robot

should approach the target with. At the same time the user can take control over the

autonomous task execution and perform a teleoperation.

Brooks and Szafir[4] supplemented a shared autonomy with augmented reality

(AR) to increase user acceptance of the shared autonomy. AR shows user what is

system’s intended target and how it intends to move to the target.

Farraj et.al.[1, 2] developed a shared autonomy scheme for remote telemanipula-

tion. There are two manipulators: one teleoperated by a human operator and the

second is autonomous with a camera mounted in the end-effector.

2.2 Model Predictive Control

Model Predictive Control (MPC) has a long history and found its application in

different areas[3, 7, 19]. MPC uses system model to find optimal control values for a

given time window. The main feature of MPC is moving horizon optimization - the

optimization is done over a relatively small time (horizon). However, unlike in more

standard optimization techniques like LQR, only the first step of generated control

sequence is implemented. Then optimization routine is repeated.

With the advancements in CPUs, it has become possible to solve MPC prob-

lems for complex systems such as 6-DOF manipulators in real-time. There are sev-

eral works that used MPC for different robotic systems such as drones(MAV)[9, 18],

manipulators[28, 36] and mobile robots[26].
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Zube[36] propose control of a 7 DOF redundant manipulator and a 10 DOF mo-

bile manipulator with NMPC controller. The system model is based on the forward

kinematics of the manipulator which are derived using DH parameters. The cost func-

tion minimizes joint displacements and joint velocities as well as trajectory following

error. Obstacle avoidance is performed by keeping the distance between test points

on the robot and the obstacles greater that some minimum allowed distance. The

author used sampling time 𝑇𝑠 = 0.1𝑠 and 𝑁 = 10 prediction steps to have prediction

horizon of 1s and report that control loop execution time is about 70ms on 2.8GHz

Intel Core i7 processor. It was shown that introduction of nonlinear constraints into

NMPC formulation can increase computation time by more that two times.

Kamel[18] use NMPC for trajectory tracking of micro aerial vehicle (MAV) and

compare its performance with LMPC. The cost function in this work is a simple

squared distance between desired trajectory and the performed trajectory. The au-

thors implemented controllers using CVX-GEN and ACADO Toolkit for LMPC and

NMPC respectively and were running the controllers on 3.1GHz Intel i7 processor.

The sampling time 𝑇𝑠 = 0.1𝑠 and 𝑁 = 20 prediction steps were chosen which is

equivalent to prediction horizon of 2 seconds. The tests performed in this paper show

that NMPC performs better for hovering task, position step response and trajectory

tracking. For this specific case authors recorded that control loop for NMPC runs

much faster than for LMPC.

Another MPC implementation for drones[9] was presented, which takes into con-

sideration camera parameters into system model to track target in camera frame and

introduce perception component. They implement controller using ACADO Toolkit

with sampling time 𝑇𝑠 = 0.1𝑠 and 𝑁 = 20 prediction steps. The hardware used for

experiments was ARM processor with 2.26GHz clock frequency. The task in this work

was to track a target and the developed controller has shown good results.

Another work[28] implemented MPC controller to perform teleoperation of a 6

DOF manipulator. Authors used robot forward kinematics as system model and Ja-

cobian matrix for singularity avoidance. Multiple test points on the robot body were

used to ensure that robot would not collide with environment and would avoid ob-
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stacles. The MPC controller was imlemented using ACADO Toolkit with sampling

time 𝑇𝑠 = 0.1𝑠 and 𝑁 = 10 prediction steps to obtain prediction horizon of 1 second.

The controller was tested on machine with 2.3GHz Intel Core i7 processor with con-

trol loop execution time less than 3 ms. The experimental results show that MPC

controller can achieve a good real-time trajectory tracking.

More recently NMPC was also implemented for mobile robot with Ackermann

steering[26] with classical kinematic single-track model. In this work authors used

variable weighting matrices as opposed to previous works where weighting matrices

were fixed. The controller was implemented using ACADO Toolkit with sampling

time 𝑇𝑠 = 0.025𝑠 and 𝑁 = 80 prediction steps which results in prediction horizon of

2s. The controller was tested on Raspberry PI 3 with ARM Cortex-A53 processor

and has shown a good path tracking on a scaled two lane road.

It can be seen that MPC has a great potential as it was used in different successful

projects. For MPC to give the best performance and precision it is important to define

a proper system model and correctly prioritize optimization variables by assigning

convenient scaling weights in the cost function. It is also important to use variable

weighting matrices, to be able to integrate into controller multiple behaviours.

2.3 Grasping pose estimation

To generate a set of potential targets it is possible to use YOLO like object detection

and recognition algorithms together position extraction from depth frame[27]. How-

ever, with this method it is only possible to get a position of the potential object and

not the orientation. To get a complete pose of a potential target it is better to use

pose estimation algorithms. There are works which focused specifically on generat-

ing a set of possible gripping poses for an object given a point cloud representation.

Some of them train neural network models[30, 35, 14], while others use geometrical

approaches to process the incoming pointclouds[34, 15].

The general procedure in these approaches is to first preprocess point cloud and

remove background and ground plane. Then clusterization/voxelization will be ap-

18



plied to detect individual objects. When the point clouds for individual objects are

extracted, the grasping pose estimation algorithm is applied.

Pose estimation includes two main steps. First, find main axis of grasp - human

intuitively grasps an object perpendicularly to its longest axis. Second, determine

its center of mass and estimate a grasping pose. In [34] they do pose estimation

by first estimating finger contact points and then based on that knowledge calculate

necessary grasp pose. In [30] multiple grasp poses generated using sampling and then

CNN ranks them individually.
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Chapter 3

Methodology

3.1 Framework

3.1.1 ROS

Most of the implementations during this thesis are done in Robot Operating System

(ROS). ROS is an actively developing middleware, has the community support and is

an open-source. It is a popular framework among robotics developers as it has many

useful tools and libraries that make developing a robot program easier.

The basic building block of ROS is a node (Figure 3-1), a program which does a

specific routine and can communicate with other nodes through topics and services.

Figure 3-1: The simple program in the ROS (www.ros.org)

Many hardware developers create ROS oriented drivers for their devices that pro-

vide data stream and can be controlled via ROS interface. These include devices I

work with as well, which are Kinova Gen2 Jaco, Intel RealSense D435 RGB-D camera
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and a 3-axis joystick.

Finally, ROS has a lot of standard definitions for different message types, which

are used across different packages. Because of this standardized structure, users don’t

have to adapt to different SDKs and it becomes easier to develop your own code inside

ROS environment.

3.1.2 ACADO Toolkit

One of the key components of this thesis is Automatic Control and Dynamic Opti-

mization Toolkit (ACADO Toolkit) [31]. It is a collection of algorithms and imple-

mentations of integrators for optimal control, all wrapped into user friendly syntax,

which allows users to focus on problem definitions instead of syntax. ACADO Tool-

box was used extensively during this thesis work to generate different versions of a

solver for nonlinear model predictive control.

ACADO accepts MPC formulations of the following form:

min
𝑥0,...,𝑥𝑁

𝑢0,...,𝑢𝑁−1

𝑁−1∑︁
𝑘=0

‖ℎ(𝑥𝑘, 𝑢𝑘)− 𝑦𝑘‖2𝑊𝑘
+ ‖ℎ𝑁(𝑥𝑁)− 𝑦𝑁‖2𝑊𝑁

subject to 𝑥0 = �̂�0

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑢𝑘, 𝑧𝑘), 𝑘 = 0, . . . , 𝑁 − 1

𝑥𝑙𝑏
𝑘 ≤ 𝑥𝑘 ≤ 𝑥𝑢𝑏

𝑘 , 𝑘 = 0, . . . , 𝑁

𝑢𝑙𝑏
𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑢𝑏

𝑘 , 𝑘 = 0, . . . , 𝑁 − 1

𝑟𝑙𝑏𝑘 ≤ 𝑟𝑘(𝑥𝑘, 𝑢𝑘) ≤ 𝑟𝑢𝑏𝑘 , 𝑘 = 0, . . . , 𝑁 − 1

𝑟𝑙𝑏𝑁 ≤ 𝑟𝑁(𝑥𝑛) ≤ 𝑟𝑢𝑏𝑁

(3.1)

where the cost function is a squared norm of difference between the desired values

and the current values. The user defines reference functions ℎ(𝑥𝑘, 𝑢𝑘) and ℎ𝑁(𝑥𝑁),

continuous system model 𝐹 (𝑥, 𝑢, 𝑧) which discretized by ACADO into 𝐹 (𝑥𝑘, 𝑢𝑘, 𝑧𝑘),

constraint functions 𝑟𝑘(𝑥𝑘, 𝑢𝑘) and 𝑟𝑁(𝑥𝑛), tunes weighting matrices 𝑊𝑘 and 𝑊𝑁 ,

and chooses parameters such as horizon length, sampling time, and upper and lower

bounds on states, control variables and constraints.
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With the problem formulated in this way ACADO can generate C-code which

contains functions and variables necessary to solve NMPC. Specifically, it implements

Gauss-Newton RT algorithm, ODE, derivation and integration routines. Acado Man-

ual contains detailed description of the generated files and advanced code generation

options .

3.2 Quaternions

Quaternion is a representation of rotation between frames as well as a rotation oper-

ator of the following form

𝑞 = [cos𝜑 𝑖 * 𝑟𝑥 * sin𝜑 𝑗 * 𝑟𝑦 * sin𝜑 𝑘 * 𝑟𝑧 * sin𝜑]𝑇 (3.2)

where vector 𝑟 = [𝑟𝑥, 𝑟𝑦, 𝑟𝑧] represents rotation axis and 𝜑 rotation angle about 𝑟.

Usually, a quaternion is represented in form of 𝑞 = [𝑤, 𝑥, 𝑦, 𝑧], where w is the real

part and [x,y,z ] is the imaginary part.

Suppose there are two frames which have orientation expressed as quaternions

𝑞1 = [𝑤1, 𝑥1, 𝑦1, 𝑧1] and 𝑞2 = [𝑤2, 𝑥2, 𝑦2, 𝑧2]. Then quaternion error can be expressed

with the following equation:

𝛿𝑞 = 𝑤1

⎡⎢⎢⎢⎣
𝑥2

𝑦2

𝑧2

⎤⎥⎥⎥⎦− 𝑤2

⎡⎢⎢⎢⎣
𝑥1

𝑦1

𝑧1

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
𝑥1

𝑦1

𝑧1

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎣
𝑥2

𝑦2

𝑧2

⎤⎥⎥⎥⎦ (3.3)

which, after the required operations, can be rewritten in the following form:

𝛿𝑞 =

⎡⎢⎢⎢⎣
𝑤1 * 𝑥2 − 𝑤2 * 𝑥1 + 𝑧1 * 𝑦2 − 𝑦1 * 𝑧2
𝑤1 * 𝑦2 − 𝑤2 * 𝑦1 − 𝑧1 * 𝑥2 + 𝑥1 * 𝑧2
𝑤1 * 𝑧2 − 𝑤2 * 𝑧1 + 𝑦1 * 𝑥2 − 𝑥1 * 𝑦2

⎤⎥⎥⎥⎦ (3.4)

It was shown by Yuan in [33] that 𝛿𝑞 = 0 in Equation 3.4 is necessary and sufficient

condition for two coordinate frames to coincide.
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Quaternion rate of change can be expressed in different ways [8][9][24][29] which

depends on the choice of reference frame (body frame or fixed frame) and handedness

of quaternion (right-handed or left-handed). For this particular case the quaternion

rate of change can be expressed in the following form:

�̇� =
1

2

⎡⎢⎢⎢⎢⎢⎢⎣
0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 −𝜔𝑧 𝜔𝑦

𝜔𝑦 𝜔𝑧 0 −𝜔𝑥

𝜔𝑧 −𝜔𝑦 𝜔𝑥 0

⎤⎥⎥⎥⎥⎥⎥⎦ 𝑞 (3.5)

where 𝜔 = [𝜔𝑥, 𝜔𝑦, 𝜔𝑧] is the angular velocity of body expressed in global frame, and

𝑞 is the current orientation of body frame in global frame. It can be observed that

the matrix is a skew-symmetric operator.

3.3 Problem definition

3.3.1 System model

The system model is defined by the following state vector:

𝑋 =
[︁
𝜃 𝑝𝑒𝑒

]︁𝑇
∈ 𝑅13 (3.6)

where 𝜃 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6]
𝑇 is the joint positions of the manipulator, and 𝑝𝑒𝑒 =

[𝑟𝑒𝑒, 𝑞𝑒𝑒] = [𝑥𝑒𝑒, 𝑦𝑒𝑒, 𝑧𝑒𝑒, 𝑞0𝑒𝑒, 𝑞1𝑒𝑒, 𝑞2𝑒𝑒, 𝑞3𝑒𝑒, 𝑞4𝑒𝑒] is the position and orientation of the

end-effector of the manipulator. The system control variables are joint velocities:

𝑈 = �̇� ∈ 𝑅6 (3.7)
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The corresponding system model has the following form:

𝑋 = 𝐹 (𝑥(𝑡), 𝑢(𝑡), 𝑧(𝑡)) =

⎡⎢⎢⎢⎣
�̇�(𝑡)

𝑣𝑒𝑒(𝑡)

q̇𝑒𝑒(𝑡)

⎤⎥⎥⎥⎦ ∈ 𝑅13 (3.8)

where rate of change of quaternion q̇(𝑡) is calculated by Equation 3.5.

The vector [𝑣𝑒𝑒,𝜔𝑒𝑒] = [𝑣𝑥𝑒𝑒, 𝑣𝑦𝑒𝑒, 𝑣𝑧𝑒𝑒, 𝜔𝑥𝑒𝑒, 𝜔𝑦𝑒𝑒, 𝜔𝑧𝑒𝑒] is estimated based on the

manipulator’s Jacobian: ⎡⎣𝑣𝑒𝑒

𝜔𝑒𝑒

⎤⎦ = 𝐽(𝜃)�̇� (3.9)

Jacobian is derived analytically from forward kinematics of the manipulator, described

in the Kinova User Guide[21]. Refer to Matlab code in Appendix A for Jacobian

derivation.

3.3.2 MPC formulation

The following form of MPC was formulated using ACADO Toolkit:

min
𝑥0,...,𝑥𝑁

𝑢0,...,𝑢𝑁−1

𝑁−1∑︁
𝑘=0

||ℎ(𝑥𝑘, 𝑢𝑘)− 𝑦𝑘||2𝑊𝑘
+ ||ℎ𝑁(𝑥𝑁)− 𝑦𝑁 ||2𝑊𝑁

subject to 𝑥0 = �̂�0

𝑥𝑘+1 = 𝐹 (𝑥𝑘, 𝑢𝑘, 𝑧𝑘), 𝑓𝑜𝑟 𝑘 = 0, ..., 𝑁 − 1

𝑥𝑙𝑏
𝑘 ≤ 𝑥𝑘 ≤ 𝑥𝑢𝑏

𝑘 , 𝑓𝑜𝑟 𝑘 = 0, ..., 𝑁

𝑢𝑙𝑏
𝑘 ≤ 𝑢𝑘 ≤ 𝑢𝑢𝑏

𝑘 , 𝑓𝑜𝑟 𝑘 = 0, ..., 𝑁 − 1

𝑟𝑙𝑏𝑘 ≤ 𝑟𝑘(𝑥𝑘, 𝑢𝑘) ≤ 𝑟𝑢𝑏𝑘 , 𝑓𝑜𝑟 𝑘 = 0, ..., 𝑁 − 1

𝑟𝑙𝑏𝑁 ≤ 𝑟𝑁(𝑥𝑛) ≤ 𝑟𝑢𝑏𝑁

(3.10)

with number of discretization steps 𝑁 = 10 and sampling time 𝑇𝑠 = 0.1𝑠. 𝑦𝑘 and 𝑦𝑁

denote real-time dynamic reference and 𝑊𝑘 ∈ 𝑅18×18 and 𝑊𝑁 ∈ 𝑅6×6 are diagonal

variable weighting matrices. 𝑟𝑘(𝑘𝑘, 𝑢𝑘) and 𝑟𝑁(𝑥𝑛) are the path and point constraints.
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Superscripts lb and ub denote lower and upper bounds. 𝐹 (𝑥𝑘, 𝑢𝑘, 𝑧𝑘) is the discretized

system model described in the Equation 3.8.

The reference functions ℎ(𝑥𝑘, 𝑢𝑘) and ℎ𝑁(𝑥𝑁) are defined in the following way:

ℎ(𝑥𝑘, 𝑢𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑒𝑒

𝛿𝑞𝑒𝑒

𝑣𝑒𝑒

𝜔𝑒𝑒

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ 𝑅18 (3.11)

ℎ𝑁(𝑥𝑁) =

⎡⎣ 𝑟𝑒𝑒

𝛿𝑞𝑒𝑒

⎤⎦ ∈ 𝑅6 (3.12)

with 𝛿𝑞𝑒𝑒 being the quaternion error defined in the Equation 3.4.
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Chapter 4

Implementation

4.1 Hardware setup

I used Kinova Jaco v2 robotic manipulator. It is a lightweight assistive manipulator

which has six degrees of freedom and three finger end-effector. For robot vision Intel

RealSense D435 RGB-D camera was used. For user input I used MEGATRON 3-axis

joystick with 2 buttons. All of the three devices are connected to PC via USB ports.

The PC runs on 3.30GHz Intel Core i9-7900X CPU and holds 32GB RAM.

4.2 System calibration

The calibration procedure is estimating pose of the camera frame relative to the robot

frame. For this it is needed to gather Cartesian coordinates of four points in camera

frame and in robot frame. Then run a simple algorithm to estimate the relative

transformation from camera frame to robot frame.

For gathering the points there were two different approaches. The first was used

in the initial stages of the thesis and is less precise than the second. Here only the

second will be described.

With the robot and camera drivers on, a script will be launched that will listen to

topics /clicked_point and end-effector tool pose. Topic /clicked_point is RViz topic

which gives Cartesian coordinates of a clicked point. A user will click at a red reference
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(a) RGB view (b) Point cloud view

Figure 4-1: System calibration

point in point cloud in RViz as shown in Figure 4-1). The script will gather five points

from /clicked_point and compute their average, then it will read end-effector pose

and extract end-effector position. Then both averaged value and end-effector position

will be written into a file. Finally, the user will move end effector to a new place and

the procedure will be repeated three more times. The points gathered should lie in

one plane with except of one, which should be outside of the plane.

When four points are gathered, we follow a procedure described in [27] to find

transformations from an arbitrary frame to the robot and to the camera. Knowing

these two transforms it becomes straightforward to calculate transformation from

camera to robot and its inverse.

4.3 Grasping pose estimation

For reference generation approach presented in [34] was adopted. It generates ref-

erence end-effector position and orientation and optionally visualizes fingers contact

points as shown in Figure 4-2. The reference pose is estimated in the camera frame,

so it is transformed into the robot frame using transform found during system cali-

bration.

Before transforming the generated reference pose into the robot frame it is nec-
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(a) Marker view (b) Point cloud view

Figure 4-2: Visualization of estimated grasp

essary to rotate it around Z axis by 180 degrees to make it a more natural grip for

manipulator. This way X and Y axes of the reference pose and of the end-effector

will have similar directions, and therefore it will be easier to reach the target.

Also, there are several frames attached to the camera, for example optical frame,

depth frame, body frame and so on. The reference pose is generated in the cam-

era_color_optical_frame and first should be transformed into main camera frame

camera_link before transforming it into the robot base frame. This is done to ensure

that ROS can handle the constructed transformation tree and will be able to visualize

it in RViz.

4.4 Joystick control

4.4.1 Control modes

There are three control modes implemented for robot teleoperation: position control,

orientation control and finger control (see Figure 4-3). The robot behaviour in these

modes is almost identical to that observed when controlling it with factory joystick.

Switching between modes is done via buttons on the joystick. Right button will

switch between mode 1 and mode 2. Left button switches between modes 1 and
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(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 4-3: Joystick control modes

3. Simultaneously pressing both buttons will move the manipulator to the home

configuration. The manipulator does not accept any other commands while moving

to the home configuration.

In the first mode, user controls the end-effector’s linear velocity in the Cartesian

space. The commands are sent in the form of linear velocity vector and NMPC solver

generates joint velocities. The maximum linear velocity hardcoded into the solver

is 0.4m/s and user command is scaled not to exceed 0.2m/s. Forward push will

move end-effector forward and in negative Y direction relative to base frame. Left

push moves end-effector to the left and in the positive X direction in the base frame.

Finally, counter-clockwise rotation will move end-effector up in the positive direction

of the base frame.

In the second mode, user controls end-effector’s angular velocity in the Cartesian

space. As with linear velocity, user sends angular velocity vector and NMPC solves

for joint velocities. The maximum angular velocity of end-effector is constrained at

0.8rad/s by solver and user command is scaled to be within 0.4rad/s. Forward push

rolls end-effector in positive direction of its X-axis. Left push pitches end-effector

around its Y-axis. Rotation with yaw end-effector around its Z-axis.

In mode 3, user controls speed of opening or closing the fingers. Tilting to the left

will start closing the fingers and tilting to the right will start opening the fingers.
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4.4.2 Intuitive frame

The solver finds solutions in the base frame of the manipulator. However, controlling

the end-effector in base frame is not intuitive and Campeau-Lecours et.al. [5] suggest

to use an additional virtual frame 𝐸𝐸2 = [𝑥2, 𝑦2, 𝑧2].

Assuming that the base frame is 𝑂 = [𝑥0, 𝑦0, 𝑧0] and end-effector frame is 𝐸𝐸 =

[𝑥1, 𝑦1, 𝑧1], we define 𝑧2 axis to be the same as 𝑧1, i.e. pointing out of the end-effector.

The 𝑥2 axis lays in the horizontal plane and is perpendicular to the both 𝑧2 and 𝑧0:

𝑒𝑥2 =
𝑒𝑧0 × 𝑒𝑧2

‖𝑒𝑧0 × 𝑒𝑧2‖
(4.1)

To keep 𝑥2 defined at all times, it is necessary to redefine it as follows:

𝑖𝑓 𝛼 < 𝛼𝑚𝑖𝑛 𝑡ℎ𝑒𝑛 𝑒𝑥2 = 𝑒𝑥0 (4.2)

where 𝛼𝑚𝑖𝑛 is a threshold angle and

𝛼 = 𝑐𝑜𝑠−1(𝑒𝑧0 · 𝑒𝑧2) (4.3)

4.5 Real-Time NMPC solver

ACADO Code Generation tool was used to encode kinematic model of the robot,

system dynamics and constraints and generate NMPC solver. Full program for code

generation is presented in Appendix B. One thing worth noting is the number of

integration steps defined in line 219 of the code, which will be discussed later.

As it was discussed in the previous chapter it is important to use variable weighting

matrices to be able to reproduce different motion behaviours. For this thesis many

different weighting matrix coefficients were tested and the best ones according to

author were chosen empirically.
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4.5.1 NMPC constraints

The NMPC formulation was developed in the previous section and finalized in the

equation 3.10. Here the chosen constraints will be discussed.

Angular velocities of the joints are constrained by 0.8rad/s. The values are chosen

based on the maximum joint velocity when the manipulator operated with its factory

joystick.

Angular positions of the joints are constrained by the robot shape and its working

zone. They have the following values:

3.14 ≤𝜃1 ≤ 6.28 2.5 ≤ 𝜃2 ≤ 5.46

0.33 ≤𝜃3 ≤ 5.95 − 6.28 ≤ 𝜃4 ≤ 6.28

−6.28 ≤𝜃5 ≤ 6.28 − 6.28 ≤ 𝜃6 ≤ 6.28

The maximum Cartesian velocity of the end-effector is limited by 0.4m/s for lin-

ear component and 0.8rad/s for angular component. They were chosen such that

maximum velocity would be approximately the same as with factory joystick and

it will not be too fast from the user perspective. Also, the end-effector position is

constrained by the lowest level of 5cm above the ground.

Finally, there is a constraint to partially avoid visual occlusion of a target object

by the manipulator movement and it is similar to one used in [32]. Suppose there are

a reference object and an obstacle object which can potentially create an occlusion.

Suppose the coordinates of the reference object and the obstacle object in the

camera frame are known and are given by two vectors 𝛼 and 𝛽 respectively as shown

in Figure 4-4. It is desirable that the obstacle does not enter a cone which goes from

the origin of the camera frame to the reference object along 𝛼 and has base radius

r. It means that the distance d from the reference to the projection of the obstacle

onto the plane of the base of the cone should be greater than radius r of the base of

the cone at all times:

𝑑2 > 𝑟2
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Figure 4-4: Visual occlusion avoidance

squaring both sides to avoid performing square root operation. d can be calculated

as difference between 𝛼 and its projection onto 𝛽:

𝑑2 = 𝛼𝑇 (𝐼 − 𝛽𝛽𝑇

𝛽𝑇𝛽
)𝛼

Therefore the final equation for visual occlusion has the following form:

𝛼𝑇 (𝐼 − 𝛽𝛽𝑇

𝛽𝑇𝛽
)𝛼− 𝑟2 > 0 (4.4)

This equation is imposed as a constraint for the manipulator’s third and fifth joints.

The coordinates of the joints are calculated based on the forward kinematics of the

manipulator and transformed into the camera frame by the transform estimated dur-

ing the system calibration phase.

4.5.2 Choice of weights for weighting matrices

As it was discussed before, weighting matrices 𝑊𝑘 ∈ 𝑅18×18 and 𝑊𝑁 ∈ 𝑅6×6 from

equation 3.10 are assigned dynamically. Weights are changed depending on the joy-

stick control state discussed in subsection 4.4.1. When we are in the position control

mode, we do not want to change orientation so weights should be changed so as to re-

tain end-effector orientation. In the same way, when we are in the orientation control

mode, weights should be changed so that end-effector position remains the same.
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The reference functions were defined in the subsection 3.3.2 and have the following

form:

ℎ(𝑥𝑘, 𝑢𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑒𝑒

𝛿𝑞𝑒𝑒

𝑣𝑒𝑒

𝜔𝑒𝑒

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ 𝑅18 (4.5)

ℎ𝑁(𝑥𝑁) =

⎡⎣ 𝑟𝑒𝑒

𝛿𝑞𝑒𝑒

⎤⎦ ∈ 𝑅6 (4.6)

When we are in the position control mode, we need to assign much higher weights

to the end-effector’s orientation compared to the end-effector’s position. At the same

time we need to have weights responsible for the end-effector’s velocity much higher

than for the end-effector’s pose. Also weights responsible for the end-effector’s linear

velocity should be significantly higher than weights for the end-effector’s angular

velocity. Meanwhile weights for joint velocities can be set to a very low level, because

they are there just to be sure that we do not exceed joint velocity limit. Therefore,

the corresponding weighting matrices during position control mode are the following:

𝑊𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5𝑒−4 · 𝐼3×3 . . . . . . . . . . . .

. . . 5𝑒−1 · 𝐼3×3 . . . . . . . . .

. . . . . . 5𝑒4 · 𝐼3×3 . . . . . .

. . . . . . . . . 1𝑒2 · 𝐼3×3 . . .

. . . . . . . . . . . . 1𝑒−8 · 𝐼6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.7a)

𝑊𝑁 =

⎡⎣1𝑒−6 · 𝐼3×3 . . .

. . . 1𝑒−3 · 𝐼3×3

⎤⎦ (4.7b)

and dots are filled with zeros.

Similarly, when we are in the orientation control mode, weights for the end-
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effector’s position are much higher than weights for the end-effector’s orientation.

Weights for the end-effector’s linear velocity are now significantly lower than weights

for the end-effector’s angular velocity. The overall scale of the weighting matrices

stays the same as in the position control mode and in the end, they will have the

following form:

𝑊𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑒4 · 𝐼3×3 . . . . . . . . . . . .

. . . 5𝑒−4 · 𝐼3×3 . . . . . . . . .

. . . . . . 1𝑒2 · 𝐼3×3 . . . . . .

. . . . . . . . . 5𝑒4 · 𝐼3×3 . . .

. . . . . . . . . . . . 1𝑒−8 · 𝐼6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.8a)

𝑊𝑁 =

⎡⎣1𝑒−3 · 𝐼3×3 . . .

. . . 1𝑒−6 · 𝐼3×3

⎤⎦ (4.8b)

There is also an option of fully autonomous movement. In this case all weights

except weights for joint velocities are on the same order. This way user still is able to

send velocity commands to controller, but it will be less responsive and will always

try to reach the target. Weighting matrices in this case have the following form:

𝑊𝑘 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5𝑒−4 · 𝐼3×3 . . . . . . . . . . . .

. . . 5𝑒−4 · 𝐼3×3 . . . . . . . . .

. . . . . . 1𝑒−3 · 𝐼3×3 . . . . . .

. . . . . . . . . 5𝑒−3 · 𝐼3×3 . . .

. . . . . . . . . . . . 1𝑒−8 · 𝐼6×6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.9a)

𝑊𝑁 =

⎡⎣1𝑒−6 · 𝐼3×3 . . .

. . . 1𝑒−6 · 𝐼3×3

⎤⎦ (4.9b)
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Chapter 5

Results

This chapter will present graphics showing performance of the implemented system.

For the tests two scenarios were chosen: fully autonomous object reaching and tele-

operated object reaching.

5.1 Autonomous reaching

During fully autonomous reaching, user does not provide reference velocities to the

controller. The controller automatically chooses joint trajectories to reach the desired

goal configuration and therefore controls both linear and angular velocities of the end-

effector.

Figure 5-1 visualizes the end-effector’s trajectory during autonomous object reach-

ing. The cone is the visualization of the visual constraint with its tip being the origin

of the camera frame and the center of the base being the position of the reference

object. The manipulator’s base frame is located at the origin. The axis limits show

approximately the allowed working zone of the manipulator. It can be seen that the

end-effector follows a smooth trajectory and does not show an unexpected behaviour.

Figure 5-2a shows end-effector position error with respect to Cartesian reference

position and Figure 5-2b shows distance left to the object. The motion is very smooth

and there is practically no overshooting. The position error is less than 1cm in

approximately 10s. A little notch on the graph along Z axis is when end-effector
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Figure 5-1: End-effector’s trajectory during autonomous reaching

almost reached ground and was pushed up a little to respect constraints.

Figure 5-3 shows joint trajectories during the autonomous reaching. After approx-

imately 14s the joint positions and joint velocities almost reached steady state values.

None of the constraints imposed on joint positions and joint velocities are violated -

joint positions are within margins for each corresponding joint and joint velocities are

lower than allowed 0.8rad/s. It can be seen that most of the displacement occurred

during the initial 8 seconds, then it slowly converges to the ideal position.

Figure 5-4 shows the plot of the end-effector’s linear velocity in the robot base

frame. It can be seen that the input reference velocity is zero at all times and the

manipulator moves autonomously. Also note that the linear velocities do not exceed

the allowed 0.4m/s limit. The graphics are noisy because the manipulator’s driver

does not provide end-effector velocities. They were estimated using simple first order

derivative of the end-effector’s position which is also has a little noisy.

5.2 Teleoperated reaching

During teleoperated reaching the user sends linear velocity commands, and the con-

troller tries to follow reference linear velocities while maintaining end-effector orienta-

tion. There is still option to switch joystick control mode as was explained in section
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(a) Position error for each axis (b) Distance to the object

Figure 5-2: End-effector error during autonomous object reaching

(a) Joint positions (b) Joint velocities

Figure 5-3: Joint positions and joint velocities during the autonomous reaching

4.4.1, however the idea is that the controller will do the orientation adjustments

automatically and the user would not need to switch the modes.

Figure 5-5a visualizes the trajectory followed by the end-effector during teleoper-

ated reaching. Here the reference object is the same as with the autonomous reaching

task. Note the notch at the bottom of the trajectory. It was intentional to verify that

the ground constraint is working and the end-effector will not go lower than 5 cm.

Because the velocity command was very high, the end-effector almost bumped into

the ground constraint, however it bounced off resulting in the notch. It can be seen

in Figure 5-5b that the constraint was not violated. There is another factor for the
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Figure 5-4: End-effector velocity during autonomous grasping

(a) 3D trajectory

(b) Trajectory along Z axis

Figure 5-5: End-effector trajectory during teleoperated reaching

notch, which is the autonomous orientation control. When the linear velocity is very

high, the controller can’t keep up and the orientation drifts a little. Then when refer-

ence linear velocity drops, the controller catches up and adjusts the orientation. And

when adjusting orientation, the end-effector can enter a short period of oscillatory

motion.

Figure 5-6 shows end-effector reference velocity (red) vs. actual end-effector ve-

locity (blue). As it can be seen the controller is able to follow the reference most

of the time. The velocity spikes happen at the time when end-effector has reached

the ground. However the constraints are never violated and linear velocity remains
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Figure 5-6: End-effector reference and actual velocity during teleoperated grasping

inside the allowed margin. It should be noted that there is a latency approximately

200-250ms between the control signal and the actual execution of the control signal.

This is expected as the controller runs with the frequency of 10Hz or equivalently

with the period of 100ms. It takes at least one control loop iteration to react to a

new reference. Taking into consideration the complexity of the system model and

the previous moving horizon solutions, it is normal to have MPC converge to a new

solution in two control loop iterations.

(a) Joint positions (b) Joint velocities

Figure 5-7: Joint positions and joint velocities during the teleoperated reaching

Figure 5-7 shows joint positions and joint velocities during teleoperated object

reaching task. It can be seen that the joint velocities are much more disordered

compared to joint velocities during autonomous object reaching in Figure 5-3b. This

is due to the fact that a user can’t control so many degrees of freedom in parallel and
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does not optimize for joint positions or joint velocities. The sole intention of the user

is to grab an object the way they feel will be correct.

(a) Autonomous reaching (b) Teleoperated reaching

Figure 5-8: Feedback step execution time

Figure 5-8 shows execution times for controller’s feedback step during autonomous

and teleoperated object reaching. They are very similar with average execution time

of 3ms for autonomous reaching and 3.4ms for teleoperated reaching.

5.3 Discussion and future work

The results presented in this work still need revision and improvement. For example,

the weights are not perfectly chosen and should be tuned further to obtain a smooth

end-effector velocity even in the presense of rapidly changing user control signals.

One way of doing so may be weights scaling based on the user input and distance to

the object. This is similar to the methods described in the literature review section

and is planned to be implemented.

The controller frequency should be increased to a higher level. Previously, the low

controller frequency was chosen because the solver was not optimized and it was taking

more than 40ms on average to perform a single feedback step and was approximately

around 60ms in some cases. So it was not possible to increase controller frequency

further. Now with feedback step taking less than 10ms, it is possible to implement

the controller with higher update rate to reduce latency and achive more smooth

motions.

Another feature that I would like to add is to increase robot speed in the final

stage of autonomous reaching to improve task completion time. As it can be seen from
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Figure 5-3b, currently, most of the motion is performed in the first half of the process.

At this stage manipulator’s end-effector has almost reached the target object. For

big objects like a bottle or a cup, this accuracy is already good and the obgect can be

grasped. But for smaller objects like box of vitamins, this accuracy is not sufficient

and user would have to wait a little longer until end-effector’s position converges. Is

it possible that increasing the controller frequency will partiallly solve this problem.

However it is probably worth to try putting constraints on minimum joint velocities.

Finally, there is still shared autonomy scheme to be implemented. I would like to

first try blending approaches such as those described in the literature review section.

I will try different arbitration methods and particularly want to try arbitration based

on Markov processes.
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Chapter 6

Conclusion

In this thesis work a manipulator controller based on MPC was developed, which can

be used in the future for developing a shared autonomy scheme. The main feature

of this controller is the system model which is described by the Jacobian matrix of

the manipulator. This way it is possible to give the controller reference velocity in

Cartesian space and at the same time reference pose in the Cartesian space.

In parallel with regular constraints like joint position and joint velocity limits,

the controller also includes constraints for avoiding visual occlusion of a target by

the manipulator. This is done by introducing a line of sight cone with its tip at the

camera frame and the base at the target.

The controller makes use of variable weighting matrices to adapt MCP solver for

different control modes. There are position mode, orientation mode and finger control

mode. Additionally, there is a set of weights for an autonomous task execution, where

user still can change end-effector’s velocity, but the controller will try to reach the

target pose.
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Appendix A

Jacobian generation for Kinova Jaco

v2 robotic manipulator

1 clear all

2 close all

3 %% Real Jaco robot quats and DH rotations

4 % define all symbolic variables

5 syms theta_1 theta_2 theta_3 theta_4 theta_5 theta_6 D1 D2 D3 D4 D5 D6 aa e2

real

6 syms theta_dot_1 theta_dot_2 theta_dot_3 theta_dot_4 theta_dot_5 theta_dot_6 real

7 assume(theta_1 <10 & theta_1 >-10)

8 assume(theta_2 <10 & theta_2 >-10)

9 assume(theta_3 <10 & theta_3 >-10)

10 assume(theta_4 <10 & theta_4 >-10)

11 assume(theta_5 <10 & theta_5 >-10)

12 assume(theta_6 <10 & theta_6 >-10)

13

14 u = [theta_dot_1; theta_dot_2; theta_dot_3; theta_dot_4; theta_dot_5; theta_dot_6

];

15

16 % define all constants

17 % robot length values (metres)

18 D1 = 0.2755;

19 D2 = 0.4100;
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20 D3 = 0.2073;

21 D4 = 0.0743;

22 D5 = 0.0743;

23 D6 = 0.1687;

24 e2 = 0.0098;

25

26 % alternate parameters

27 aa = pi/6;

28 ca = cos(aa);

29 sa = sin(aa);

30 c2a = cos(2*aa);

31 s2a = sin(2*aa);

32 d4b = D3 + sa/s2a*D4;

33 d5b = sa/s2a*D4 + sa/s2a*D5;

34 d6b = sa/s2a*D5 + D6;

35

36 % prepare all data

37 alpha=[pi/2 pi pi/2 aa*2 aa*2 pi];

38 a=[0 D2 0 0 0 0 0];

39 d=[D1 0 -e2 -d4b -d5b -d6b];

40 q=[-theta_1 theta_2 -pi/2 theta_3+pi/2 theta_4 theta_5 -pi theta_6+pi/2];

41

42 % calculate forward kinematics

43 i = 1;

44 T1 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

45 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

46 0 sin(alpha(i)) cos(alpha(i)) d(i);

47 0 0 0 1];

48

49 i = 2;

50 T2 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

51 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

52 0 sin(alpha(i)) cos(alpha(i)) d(i);

53 0 0 0 1];

54

55 i = 3;
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56 T3 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

57 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

58 0 sin(alpha(i)) cos(alpha(i)) d(i);

59 0 0 0 1];

60

61 i = 4;

62 T4 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

63 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

64 0 sin(alpha(i)) cos(alpha(i)) d(i);

65 0 0 0 1];

66

67 i = 5;

68 T5 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

69 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

70 0 sin(alpha(i)) cos(alpha(i)) d(i);

71 0 0 0 1];

72

73 i = 6;

74 T6 = [cos(q(i)) -sin(q(i))*cos(alpha(i)) sin(q(i))*sin(alpha(i)) a(i)*cos(q(i));

75 sin(q(i)) cos(q(i))*cos(alpha(i)) -cos(q(i))*sin(alpha(i)) a(i)*sin(q(i));

76 0 sin(alpha(i)) cos(alpha(i)) d(i);

77 0 0 0 1];

78

79 T06 = T1*T2*T3*T4*T5*T6;

80

81

82 % extract rotation matrixes

83 R01 = T1(1:3 ,1:3);

84 R12 = T2(1:3 ,1:3);

85 R23 = T3(1:3 ,1:3);

86 R34 = T4(1:3 ,1:3);

87 R45 = T5(1:3 ,1:3);

88 R56 = T6(1:3 ,1:3);

89

90 % directions of the joint axes z(i-1)

91 k = [0 0 1]’;
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92 z0 = k;

93 z1 = R01*k;

94 z2 = R01*R12*k;

95 z3 = R01*R12*R23*k;

96 z4 = R01*R12*R23*R34*k;

97 z5 = R01*R12*R23*R34*R45*k;

98

99 % extract position vector p

100 p6 = T06 (1:3 ,4);

101

102 % Construct Geometric Jacobian

103 J = simplify ([diff(p6 ,theta_1) diff(p6,theta_2) diff(p6,theta_3) diff(p6,theta_4)

diff(p6,theta_5) diff(p6,theta_6);...

104 z0 z1 z2 z3 z4 z5])

105

106 % simplify Jacobian

107 threshold = 1e-6;

108 Jsimpl = vpa(mapSymType(J, ’vpareal ’, @(x) piecewise(abs(x) <=threshold , 0, x)),

8)

109

110 % extract velocity vector and simplify

111 v = vpa(simplify(Jsimpl*u) ,8);

112 v = vpa(mapSymType(v, ’vpareal ’, @(x) piecewise(abs(x) <=threshold , 0, x)), 8)

113

114 % write velocity vector to a text file

115 fid = fopen(’res.txt’, ’w’ );

116 for i=1:6

117 fprintf(fid , ’ %s;\n’, char( vpa(expand(v(i), ’ArithmeticOnly ’, true) ,6) ));

118 end

119 fclose(fid);

120 disp("THE END");
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Appendix B

NMPC formulation for ACADO Code

Generation

1 #include <acado_code_generation.hpp >

2

3 using namespace std;

4

5 USING_NAMESPACE_ACADO

6

7 int main( )

8 {

9 USING_NAMESPACE_ACADO

10

11

12 // INTRODUCE THE VARIABLES:

13 // -------------------------

14 DifferentialState theta_1; // joint 1 angular position

15 DifferentialState theta_2; // joint 2 angular position

16 DifferentialState theta_3; // joint 3 angular position

17 DifferentialState theta_4; // joint 4 angular position

18 DifferentialState theta_5; // joint 5 angular position

19 DifferentialState theta_6; // joint 6 angular position

20

21 DifferentialState x; // x-end effector
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22 DifferentialState y; // y-end effector

23 DifferentialState z; // z-end effector

24 DifferentialState q0; // end -effector orientation w

25 DifferentialState q1; // end -effector orientation x

26 DifferentialState q2; // end -effector orientation y

27 DifferentialState q3; // end -effector orientation z

28

29 Control theta_dot_1; // joint 1 angular velocity

30 Control theta_dot_2; // joint 2 angular velocity

31 Control theta_dot_3; // joint 3 angular velocity

32 Control theta_dot_4; // joint 4 angular velocity

33 Control theta_dot_5; // joint 5 angular velocity

34 Control theta_dot_6; // joint 6 angular velocity

35

36 double D1 = 0.2755; // Base to elbow

37 double D2 = 0.4100; // Arm Length

38 double D3 = 0.2073; // Front arm length

39 double D4 = 0.0743; // First wrist length

40 double D5 = 0.0743; // Second wrist lenght

41 double D6 = 0.1687; // Wrist to center of the hand

42 double e2 = 0.0098;

43 double pi = 3.1415;

44

45 OnlineData q0ref;

46 OnlineData q1ref;

47 OnlineData q2ref;

48 OnlineData q3ref;

49

50 IntermediateState s1 = sin(theta_1); IntermediateState s2 = sin(theta_2);

51 IntermediateState s3 = sin(theta_3); IntermediateState s4 = sin(theta_4);

52 IntermediateState s5 = sin(theta_5); IntermediateState s6 = sin(theta_6);

53

54 IntermediateState c1 = cos(theta_1); IntermediateState c2 = cos(theta_2);

55 IntermediateState c3 = cos(theta_3); IntermediateState c4 = cos(theta_4);

56 IntermediateState c5 = cos(theta_5); IntermediateState c6 = cos(theta_6);

57
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58 IntermediateState vx = 0.41* theta_dot_2*c1*c2 - 0.0098* theta_dot_1*c1 +

0.165924* theta_dot_1*c1*c4 - 0.41* theta_dot_1*s1*s2 - 0.165924* theta_dot_4*s1*

s4 - 0.345994* theta_dot_2*c1*c2*c3 + 0.345994* theta_dot_3*c1*c2*c3 -

0.0916242* theta_dot_1*c1*c4*c5 - 0.345994* theta_dot_1*c2*s1*s3 + 0.345994*

theta_dot_1*c3*s1*s2 - 0.345994* theta_dot_2*c1*s2*s3 + 0.345994* theta_dot_3*c1

*s2*s3 + 0.183248* theta_dot_1*c1*s4*s5 + 0.183248* theta_dot_4*c4*s1*s5 +

0.0916242* theta_dot_4*c5*s1*s4 + 0.0916242* theta_dot_5*c4*s1*s5 + 0.183248*

theta_dot_5*c5*s1*s4 - 0.158698* theta_dot_2*c1*c2*c3*c5 + 0.158698* theta_dot_3

*c1*c2*c3*c5 + 0.165924* theta_dot_4*c1*c2*c3*c4 - 0.165924* theta_dot_1*c2*c3*

s1*s4 - 0.158698* theta_dot_1*c2*c5*s1*s3 + 0.158698* theta_dot_1*c3*c5*s1*s2 +

0.165924* theta_dot_2*c1*c2*s3*s4 - 0.165924* theta_dot_2*c1*c3*s2*s4 -

0.158698* theta_dot_2*c1*c5*s2*s3 - 0.165924* theta_dot_3*c1*c2*s3*s4 +

0.165924* theta_dot_3*c1*c3*s2*s4 + 0.158698* theta_dot_3*c1*c5*s2*s3 +

0.165924* theta_dot_4*c1*c4*s2*s3 - 0.158698* theta_dot_5*c1*c2*s3*s5 +

0.158698* theta_dot_5*c1*c3*s2*s5 - 0.165924* theta_dot_1*s1*s2*s3*s4 -

0.0916242* theta_dot_4*c1*c2*c3*c4*c5 - 0.183248* theta_dot_5*c1*c2*c3*c4*c5 +

0.183248* theta_dot_1*c2*c3*c4*s1*s5 + 0.0916242* theta_dot_1*c2*c3*c5*s1*s4 -

0.183248* theta_dot_2*c1*c2*c4*s3*s5 - 0.0916242* theta_dot_2*c1*c2*c5*s3*s4 +

0.183248* theta_dot_2*c1*c3*c4*s2*s5 + 0.0916242* theta_dot_2*c1*c3*c5*s2*s4 +

0.183248* theta_dot_3*c1*c2*c4*s3*s5 + 0.0916242* theta_dot_3*c1*c2*c5*s3*s4 -

0.183248* theta_dot_3*c1*c3*c4*s2*s5 - 0.0916242* theta_dot_3*c1*c3*c5*s2*s4 +

0.183248* theta_dot_4*c1*c2*c3*s4*s5 - 0.0916242* theta_dot_4*c1*c4*c5*s2*s3 +

0.0916242* theta_dot_5*c1*c2*c3*s4*s5 - 0.183248* theta_dot_5*c1*c4*c5*s2*s3 +

0.183248* theta_dot_1*c4*s1*s2*s3*s5 + 0.0916242* theta_dot_1*c5*s1*s2*s3*s4 +

0.183248* theta_dot_4*c1*s2*s3*s4*s5 + 0.0916242* theta_dot_5*c1*s2*s3*s4*s5;

59 IntermediateState vy = 0.0098* theta_dot_1*s1 - 0.41* theta_dot_1*c1*s2 - 0.41*

theta_dot_2*c2*s1 - 0.165924* theta_dot_1*c4*s1 - 0.165924* theta_dot_4*c1*s4 -

0.345994* theta_dot_1*c1*c2*s3 + 0.345994* theta_dot_1*c1*c3*s2 + 0.345994*

theta_dot_2*c2*c3*s1 - 0.345994* theta_dot_3*c2*c3*s1 + 0.0916242* theta_dot_1*

c4*c5*s1 + 0.183248* theta_dot_4*c1*c4*s5 + 0.0916242* theta_dot_4*c1*c5*s4 +

0.0916242* theta_dot_5*c1*c4*s5 + 0.183248* theta_dot_5*c1*c5*s4 + 0.345994*

theta_dot_2*s1*s2*s3 - 0.345994* theta_dot_3*s1*s2*s3 - 0.183248* theta_dot_1*s1

*s4*s5 - 0.165924* theta_dot_1*c1*c2*c3*s4 - 0.158698* theta_dot_1*c1*c2*c5*s3 +

0.158698* theta_dot_1*c1*c3*c5*s2 + 0.158698* theta_dot_2*c2*c3*c5*s1 -

0.158698* theta_dot_3*c2*c3*c5*s1 - 0.165924* theta_dot_4*c2*c3*c4*s1 -

0.165924* theta_dot_1*c1*s2*s3*s4 - 0.165924* theta_dot_2*c2*s1*s3*s4 +
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0.165924* theta_dot_2*c3*s1*s2*s4 + 0.158698* theta_dot_2*c5*s1*s2*s3 +

0.165924* theta_dot_3*c2*s1*s3*s4 - 0.165924* theta_dot_3*c3*s1*s2*s4 -

0.158698* theta_dot_3*c5*s1*s2*s3 - 0.165924* theta_dot_4*c4*s1*s2*s3 +

0.158698* theta_dot_5*c2*s1*s3*s5 - 0.158698* theta_dot_5*c3*s1*s2*s5 +

0.183248* theta_dot_1*c1*c2*c3*c4*s5 + 0.0916242* theta_dot_1*c1*c2*c3*c5*s4 +

0.0916242* theta_dot_4*c2*c3*c4*c5*s1 + 0.183248* theta_dot_5*c2*c3*c4*c5*s1 +

0.183248* theta_dot_1*c1*c4*s2*s3*s5 + 0.0916242* theta_dot_1*c1*c5*s2*s3*s4 +

0.183248* theta_dot_2*c2*c4*s1*s3*s5 + 0.0916242* theta_dot_2*c2*c5*s1*s3*s4 -

0.183248* theta_dot_2*c3*c4*s1*s2*s5 - 0.0916242* theta_dot_2*c3*c5*s1*s2*s4 -

0.183248* theta_dot_3*c2*c4*s1*s3*s5 - 0.0916242* theta_dot_3*c2*c5*s1*s3*s4 +

0.183248* theta_dot_3*c3*c4*s1*s2*s5 + 0.0916242* theta_dot_3*c3*c5*s1*s2*s4 -

0.183248* theta_dot_4*c2*c3*s1*s4*s5 + 0.0916242* theta_dot_4*c4*c5*s1*s2*s3 -

0.0916242* theta_dot_5*c2*c3*s1*s4*s5 + 0.183248* theta_dot_5*c4*c5*s1*s2*s3 -

0.183248* theta_dot_4*s1*s2*s3*s4*s5 - 0.0916242* theta_dot_5*s1*s2*s3*s4*s5;

60 IntermediateState vz = 0.41* theta_dot_2*s2 + 0.158698* theta_dot_3*sin(theta_2

- theta_3)*c5 - 0.158698* theta_dot_5*cos(theta_2 - theta_3)*s5 + 0.0916242*

theta_dot_3*cos(theta_2 - theta_3 + theta_4)*s5 + 0.0916242* theta_dot_3*cos(

theta_3 - theta_2 + theta_4)*s5 + 0.0458121* theta_dot_3*sin(theta_2 - theta_3

+ theta_4)*c5 + 0.0458121* theta_dot_3*sin(theta_3 - theta_2 + theta_4)*c5 +

0.345994* theta_dot_2*c2*s3 - 0.345994* theta_dot_2*c3*s2 - 0.345994* theta_dot_3

*c2*s3 + 0.165924* theta_dot_2*c2*c3*s4 + 0.158698* theta_dot_2*c2*c5*s3 -

0.158698* theta_dot_2*c3*c5*s2 + 0.165924* theta_dot_2*s2*s3*s4 - 0.0916242*

theta_dot_4*sin(theta_2 - theta_3)*c4*c5 - 0.183248* theta_dot_5*sin(theta_2 -

theta_3)*c4*c5 + 0.183248* theta_dot_4*sin(theta_2 - theta_3)*s4*s5 +

0.0916242* theta_dot_5*sin(theta_2 - theta_3)*s4*s5 - 0.183248* theta_dot_2*c2*

c3*c4*s5 - 0.0916242* theta_dot_2*c2*c3*c5*s4 - 0.183248* theta_dot_2*c4*s2*s3*

s5 - 0.0916242* theta_dot_2*c5*s2*s3*s4;

61 IntermediateState wx = theta_dot_3*s1 - theta_dot_2*s1 - 0.866025* theta_dot_5

*c4*s1 - 0.433013* theta_dot_6*c4*s1 - theta_dot_4*c1*c2*s3 + theta_dot_4*c1*c3

*s2 - 0.5* theta_dot_5*c1*c2*s3 + 0.5* theta_dot_5*c1*c3*s2 - 0.25* theta_dot_6*

c1*c2*s3 + 0.25* theta_dot_6*c1*c3*s2 + 0.433013* theta_dot_6*c4*c5*s1 -

0.866025* theta_dot_6*s1*s4*s5 - 0.866025* theta_dot_5*c1*c2*c3*s4 - 0.433013*

theta_dot_6*c1*c2*c3*s4 - 0.75* theta_dot_6*c1*c2*c5*s3 + 0.75* theta_dot_6*c1*

c3*c5*s2 - 0.866025* theta_dot_5*c1*s2*s3*s4 - 0.433013* theta_dot_6*c1*s2*s3*s4

+ 0.866025* theta_dot_6*c1*c2*c3*c4*s5 + 0.433013* theta_dot_6*c1*c2*c3*c5*s4 +

0.866025* theta_dot_6*c1*c4*s2*s3*s5 + 0.433013* theta_dot_6*c1*c5*s2*s3*s4;
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62 IntermediateState wy = theta_dot_3*c1 - theta_dot_2*c1 - 0.866025* theta_dot_5

*c1*c4 - 0.433013* theta_dot_6*c1*c4 + 0.433013* theta_dot_6*c1*c4*c5 +

theta_dot_4*c2*s1*s3 - theta_dot_4*c3*s1*s2 + 0.5* theta_dot_5*c2*s1*s3 - 0.5*

theta_dot_5*c3*s1*s2 + 0.25* theta_dot_6*c2*s1*s3 - 0.25* theta_dot_6*c3*s1*s2 -

0.866025* theta_dot_6*c1*s4*s5 + 0.866025* theta_dot_5*c2*c3*s1*s4 + 0.433013*

theta_dot_6*c2*c3*s1*s4 + 0.75* theta_dot_6*c2*c5*s1*s3 - 0.75* theta_dot_6*c3*

c5*s1*s2 + 0.866025* theta_dot_5*s1*s2*s3*s4 + 0.433013* theta_dot_6*s1*s2*s3*s4

- 0.866025* theta_dot_6*c2*c3*c4*s1*s5 - 0.433013* theta_dot_6*c2*c3*c5*s1*s4 -

0.866025* theta_dot_6*c4*s1*s2*s3*s5 - 0.433013* theta_dot_6*c5*s1*s2*s3*s4;

63 IntermediateState wz = theta_dot_1 - theta_dot_4*c2*c3 - 0.5* theta_dot_5*c2*

c3 - 0.25* theta_dot_6*c2*c3 - theta_dot_4*s2*s3 - 0.5* theta_dot_5*s2*s3 -

0.25* theta_dot_6*s2*s3 - 0.75* theta_dot_6*c2*c3*c5 + 0.866025* theta_dot_5*c2*

s3*s4 - 0.866025* theta_dot_5*c3*s2*s4 + 0.433013* theta_dot_6*c2*s3*s4 -

0.433013* theta_dot_6*c3*s2*s4 - 0.75* theta_dot_6*c5*s2*s3 - 0.866025*

theta_dot_6*c2*c4*s3*s5 - 0.433013* theta_dot_6*c2*c5*s3*s4 + 0.866025*

theta_dot_6*c3*c4*s2*s5 + 0.433013* theta_dot_6*c3*c5*s2*s4;
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65

66 /*

67 * Implementation of 4.20 from JiaolePhD.pdf

68 */

69 // position of joint3 in camera frame (beta vector)

70 IntermediateState betax = 0.0072387* c1 + 0.25266* c2 + 0.0026761* s1 - 0.11196*

c1*s2 + 0.30284* s1*s2 + 0.24629;

71 IntermediateState betay = 0.0035618* c1 - 0.0093948* c2 - 0.0091275* s1 +

0.38187* c1*s2 + 0.14902* s1*s2 - 0.53482;

72 IntermediateState betaz = 0.0055635* c1 - 0.32275* c2 + 0.0023606* s1 -

0.098761* c1*s2 + 0.23276* s1*s2 - 0.21311;

73 /*

74 * position of reference in camera frame (alpha vector)

75 */

76 OnlineData prx , pry , prz;

77 /*

78 * rejection of alpha on beta

79 */

80 IntermediateState d_f_i_norm = (betax*betax*pry*pry + betax*betax*prz*prz -
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2.0* betax*betay*prx*pry - 2.0* betax*betaz*prx*prz + betay*betay*prx*prx +

betay*betay*prz*prz - 2.0* betay*betaz*pry*prz + betaz*betaz*prx*prx + betaz*

betaz*pry*pry)/(betax*betax + betay*betay + betaz*betaz);

81

82

83 DifferentialEquation f;

84

85 f << dot(theta_1) == theta_dot_1;

86 f << dot(theta_2) == theta_dot_2;

87 f << dot(theta_3) == theta_dot_3;

88 f << dot(theta_4) == theta_dot_4;

89 f << dot(theta_5) == theta_dot_5;

90 f << dot(theta_6) == theta_dot_6;

91 f << dot(x) == vx;

92 f << dot(y) == vy;

93 f << dot(z) == vz;

94 f << dot(q0) == 0.5*(0.0* q0 - wx*q1 - wy*q2 - wz*q3);

95 f << dot(q1) == 0.5*(wx*q0 + 0.0*q1 - wz*q2 + wy*q3);

96 f << dot(q2) == 0.5*(wy*q0 + wz*q1 + 0.0*q2 - wx*q3);

97 f << dot(q3) == 0.5*(wz*q0 - wy*q1 + wx*q2 + 0.0*q3);

98

99 // DEFINE LEAST SQUARE FUNCTION:

100 // -----------------------------

101 Function h, hN;

102

103 IntermediateState q1_err = q0ref*q1 - q0*q1ref + q3ref*q2 - q2ref*q3;

104

105 IntermediateState q2_err = q0ref*q2 - q0*q2ref - q3ref*q1 + q1ref*q3;

106

107 IntermediateState q3_err = q0ref*q3 - q0*q3ref + q2ref*q1 - q1ref*q2;

108

109 h << x;

110 h << y;

111 h << z;

112 h << q1_err;

113 h << q2_err;
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114 h << q3_err;

115

116 // x_dot

117 h << vx;

118 // y_dot

119 h << vy;

120 // z_dot

121 h << vz;

122 // wx

123 h << wx;

124 // wy

125 h << wy;

126 // wz

127 h << wz;

128

129 h << theta_dot_1;

130 h << theta_dot_2;

131 h << theta_dot_3;

132 h << theta_dot_4;

133 h << theta_dot_5;

134 h << theta_dot_6;

135

136

137 //hN - 19 elements

138 // x

139 hN << x;

140 // y

141 hN << y;

142 // z

143 hN << z;

144 // q0

145 hN << q1_err;

146 // q1

147 hN << q2_err;

148 // q2

149 hN << q3_err;

57



150

151

152 BMatrix Q = eye <bool >(h.getDim ());

153 BMatrix QN = eye <bool >(hN.getDim ());

154

155

156

157 // DEFINE AN OPTIMAL CONTROL PROBLEM:

158 // ----------------------------------

159 const double tStart = 0.0;

160 const double tSampl = 0.1;

161 const double nSteps = 10;

162 const double tEnd = tSampl*nSteps;

163

164 OCP ocp( tStart , tEnd , nSteps);

165

166 ocp.minimizeLSQ( Q, h );

167 ocp.minimizeLSQEndTerm( QN, hN);

168

169 ocp.subjectTo( f );

170

171 float theta_dot_max = 0.35;

172 ocp.subjectTo( -theta_dot_max <= theta_dot_1 <= theta_dot_max );

173 ocp.subjectTo( -theta_dot_max <= theta_dot_2 <= theta_dot_max );

174 ocp.subjectTo( -theta_dot_max <= theta_dot_3 <= theta_dot_max );

175 ocp.subjectTo( -theta_dot_max <= theta_dot_4 <= theta_dot_max );

176 ocp.subjectTo( -theta_dot_max <= theta_dot_5 <= theta_dot_max );

177 ocp.subjectTo( -theta_dot_max <= theta_dot_6 <= theta_dot_max );

178 ocp.subjectTo( 3.14 <= theta_1 <= 6.28 );

179 ocp.subjectTo( 2.50 <= theta_2 <= 5.46 );

180 ocp.subjectTo( 0.33 <= theta_3 <= 5.95 );

181 ocp.subjectTo( -6.28 <= theta_4 <= 6.28 );

182 ocp.subjectTo( -6.28 <= theta_5 <= 6.28 );

183 ocp.subjectTo( -6.28 <= theta_6 <= 6.28 );

184

185 // float v_max = 0.1;
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186 // ocp.subjectTo( -v_max <= vx <= v_max );

187 // ocp.subjectTo( -v_max <= vy <= v_max );

188 // ocp.subjectTo( -v_max <= vz <= v_max );

189

190 // float w_max = 0.174;

191 // ocp.subjectTo( -w_max <= wx <= w_max );

192 // ocp.subjectTo( -w_max <= wy <= w_max );

193 // ocp.subjectTo( -w_max <= wz <= w_max );

194

195 /*

196 * Implementation of 4.20 from JiaolePhD.pdf

197 */

198 // double r = 0.03;

199 // ocp.subjectTo( d_f_i_norm - r*r >= 0 );

200

201 // self -collision avoidance

202 // double j2_x = 0, j2_y = 0, j3_z = 0.2755;

203 // double minDist = 0.2;

204 // IntermediateState constraint = (x-j2_x)*(x-j2_x) + (y-j2_y)*(y-j2_y) + (z-

j3_z)*(z-j3_z) - minDist*minDist;

205 // ocp.subjectTo(constraint >=0);

206

207 ocp.subjectTo( z >= 0.1 );

208

209 ocp.setNOD( 7 );

210

211

212 // Export the code:

213 OCPexport mpc( ocp );

214

215 mpc.set( HESSIAN_APPROXIMATION , GAUSS_NEWTON );

216 mpc.set( DISCRETIZATION_TYPE , MULTIPLE_SHOOTING );

217 mpc.set( SPARSE_QP_SOLUTION , FULL_CONDENSING_N2 );

218 mpc.set( INTEGRATOR_TYPE , INT_RK4 );

219 mpc.set( NUM_INTEGRATOR_STEPS , 1 );

220 mpc.set( QP_SOLVER , QP_QPOASES );
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221 mpc.set( HOTSTART_QP , YES );

222 mpc.set( LEVENBERG_MARQUARDT , 1.0e-5 );

223 mpc.set( USE_SINGLE_PRECISION , BT_TRUE );

224 mpc.set( CG_USE_VARIABLE_WEIGHTING_MATRIX , YES );

225 mpc.set( GENERATE_TEST_FILE , BT_FALSE);

226 mpc.set( GENERATE_MAKE_FILE , BT_FALSE);

227

228 if (mpc.exportCode( "/home/robot/CatkinWorkspaces/grad_2019_jaco/src/mpc_jaco

/solver" ) != SUCCESSFUL_RETURN)

229 exit( EXIT_FAILURE );

230

231 mpc.printDimensionsQP( );

232

233 return EXIT_SUCCESS;

234 }
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