
Experimental study of Manifold learning and tangent
propagation

by

Temirlan Ashimov

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Master of Science in Applied Mathematics

at the

NAZARBAYEV UNIVERSITY

Feb 2021

© Nazarbayev University 2021. All rights reserved.

Author .
Department of Mathematics

Feb 25, 2021

Certified by .
Rustem Takhanov

Assistant Professor
Thesis Supervisor

Accepted by .
Daniel Pugh

Dean, School of Science and Humanities

Experimental study of Manifold learning and tangent

propagation

by

Temirlan Ashimov

Submitted to the Department of Mathematics
on Feb 25, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Applied Mathematics

Abstract

In the Data Science routine, we often face the curse of dimensionality, dealing with
high-dimensional data which, in turn, can be very difficult. The problems of this nature
can be approached by methods of Dimensionality Reduction. These methods assume that
data can be interpreted in a smaller dimension. The hypothesis proposed in this work is
that data is located exactly or near along with a low dimension manifold and the tool for
finding this manifold is auto-encoders. In particular, we calculate the basis of the tangent
space of the low-dimensional manifold at each data point and up towards using it to the
regularization of the regression task.

All calculations are implemented via Python 3 since this programming language in-
cludes a wide range of packages for dealing with Big Data.

Thesis Supervisor: Rustem Takhanov
Title: Assistant Professor

2

Acknowledgments

This thesis, in which I have put all of my commitment knowledge and skills, is the

apotheosis of my master’s program at Nazarbayev University. I would like to express

gratitude to my supervisor assistant professor Rustem Takhanov, who assisted me during

the whole process of my work. Especially, for his undoubted competence in Machine

Learning, which provided me with a deep understanding of the topic.

I am also very thankful to the second reader professor Zhenisbek Assylbekov for his

valuable advices and suggestions.

3

Contents

1 Overview 7

1.1 Introduction . 7

1.2 Background . 8

1.3 Manifold Learning and Autoencoders . 11

1.4 Tangent bundle by a CAE . 15

1.5 Tangent Propagation . 17

2 Main 18

2.1 Manifold Tangent Classifier . 18

2.2 Alternating Scheme . 19

3 Experiments 22

3.1 Dataset . 22

3.2 Linear Regression . 25

3.3 Manifold Tangent Classifier . 27

3.3.1 Autoencoders . 27

3.3.2 Tangent Propagation . 35

3.4 Results . 42

4 Conclusion 43

4

List of Figures

1-1 𝑛-Dimensional Manifold. 9

1-2 Tangent space to the Manifold. 10

1-3 Mappings. 10

1-4 Data points on a lower-dimensional linear manifold. 11

1-5 An example of nonlinear manifold. 12

1-6 An illustration of auto-encoder’s architecture. 14

1-7 Tangent bundle of a manifold which in circular form. 16

3-1 Distribution of 𝑌 vector. 25

3-2 Graphs of linear regression. 26

3-3 Cost function of auto-encoder with 1-hidden layer. 30

3-4 Cost function of auto-encoder with 2-hidden layers 34

3-5 Cost function with 1-hidden layer of auto-encoder. 38

3-6 Graphs of regression model with 1-hidden layer of auto-encoder. 39

3-7 Cost function with 2-hidden layers of auto-encoder. 40

3-8 Graphs of regression model with 2-hidden layers of auto-encoder. 41

5

List of Tables

3.1 Results. 42

3.2 Results. 42

6

Chapter 1

Overview

1.1 Introduction

Recently, the term Data Science (DS) became very popular. DS includes a lot of

mathematically based methods for analyzing data. Several reasons cause the popularity

of that term. One of them is that there might be some useful insights and relations within

the data that can help people in numerous subject fields e.g. manufacturing, banking,

finance, healthcare, and etc. These results might be obtained by statistics, time-series

analysis, classification, regression, clustering, and etc. In fact, most DS methods exist

for almost half of a century, and thanks to modern computer capabilities we are able to

implement these methods fast enough while avoiding errors. Finally, due to the emergence

of the “Big Data” paradigm, we are able to collect a huge amount of data and recognize

patterns in it.

Contrastingly to this great phenomenon “Big Data”, which implies not only a vast

amount of data but also very high dimensionality of it, we face the “curse of dimensional-

ity”. The “curse of dimensionality” is a key obstacle for application of DS methods which

7

causes statistical and computational issues. [2, 5]

Fortunately, the existence of several hypotheses contributes to the solution to these

problems. The key idea of them is that the dimensionality of the hidden space may be

lower. It means that high-dimensional data can be transformed into lower-dimensional

representations. The tasks of this kind in Machine Learning (ML) are called Dimension-

ality Reduction (DR) problems. In the case of that branch of ML, a lot of models are

based on the geometrical approach.

The support of the data might be located on a lower-dimensional manifold. The appli-

cation of Manifold Learning methods to the dataset can not only accelerate the processing

of the dataset but also improve the accuracy of supervised tasks as well [1].

1.2 Background

Definition. Let a topological space 𝐷 be given. If for any point 𝑥 there exists such an

open set 𝑂 that contains this point such that a mapping 𝑔 : 𝑂 ↦→ R𝑛 is homeomorphic, in

such case 𝐷 is called 𝑛-𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑀𝑎𝑛𝑖𝑓𝑜𝑙𝑑. A pair (𝑂, 𝑔 : 𝑂 ↦→ R𝑛) is called a 𝑐ℎ𝑎𝑟𝑡.

[4]

Let R𝑚 be an 𝑚-dimensional space and 𝐷 be a “smooth-enough” 𝑘-dimensional data

manifold such that 𝐷 ⊆ R𝑚 and 𝑘 ≤ 𝑚. Assume that a dimension of manifold 𝐷 was

calculated in advance and 𝑔 is a diffeomorphic such that 𝑔 : 𝐵 ↦→ 𝐷 from 𝐵 ⊆ R𝑘 onto

the manifold 𝐷 = 𝑔(𝐵). By that way, the data manifold 𝐷 is defined as 𝐷 = {𝐴 =

𝑔(𝑝) ∈ R𝑚 : 𝑝 ∈ 𝐵 ⊂ R𝑘}, where 𝐵 is an open set in R𝑘. Thus, there exists an inverse

mapping 𝑓 = 𝑔−1 : 𝐷 ↦→ 𝐵 because of homeomorphism of 𝑔, and that mapping defines

low-dimensional structure on our data manifold 𝐷. [1]

8

Figure 1-1: 𝑛-Dimensional Manifold.

Defnition. If 𝑓 : R𝑛 ↦→ R𝑚 is a smooth function. Then the Jacobian matrix is defined

as:

J𝑓 (𝑥) = [𝜕𝑓
𝜕𝑥1

(𝑥) . . . 𝜕𝑓
𝜕𝑥𝑛

(𝑥)] =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑓1
𝜕𝑥1

. . . 𝜕𝑓1
𝜕𝑥𝑛

...

𝜕𝑓𝑚
𝜕𝑥1

. . . 𝜕𝑓𝑚
𝜕𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦.

Thus,

span(J𝑓 (𝑥)) = span(𝜕𝑓
𝜕𝑥1

(𝑥) . . . 𝜕𝑓
𝜕𝑥𝑛

(𝑥)).

Definition. Suppose 𝑓(𝐴) and 𝑔(𝑝) are the smooth functions and Jacobian matrices

of them have a form J𝑓 (𝐴) ⊆ R𝑘×𝑚 and J𝑔(𝑝) ⊆ R𝑚×𝑘 respectively. Then 𝑇𝑎𝑛𝑔𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒

to the data manifold 𝐷 at point 𝐴 ∈ 𝐷 is defined as follows:

𝑇 (𝐴) = 𝐶𝑜𝑙(J𝑔(𝑓(𝐴))),

where 𝑇 (𝐴) is linear space in R𝑚 with dimension 𝑘 if 𝑟𝑎𝑛𝑘(J𝑔(𝐹 (𝐴))) = 𝑘.

9

Figure 1-2: Tangent space to the Manifold.

We observe the following equivalences from the definitions above: 𝑔(𝑓(𝐴)) ≡ 𝐴 and

𝑓(𝑔(𝑝)) ≡ 𝑝. To be more explicit, the mappings 𝑔 : 𝐵 ↦→ 𝐷 and 𝑓 : 𝐷 ↦→ 𝐵 are called

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 and 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑚𝑎𝑝𝑝𝑖𝑛𝑔𝑠 respectively.

Figure 1-3: Mappings.

In the ML field, “auto-encoders” is a general concept that includes “recovery” and “em-

bedding” mappings in itself. Auto-encoders are a tool for mapping from high-dimensional

data into low dimensional space and then recovery into original space avoiding divergence

from initial data points.

10

1.3 Manifold Learning and Autoencoders

We have discussed that the “curse of dimensionality” is an obstacle in analysis of data.

In order to deal with this kind of problem several Dimensionality Reduction (DR) methods

exist. As mentioned before, the key idea of these methods is that data points are sampled

from a neighborhood of low-dimensional manifold, which is embedded in high-dimensional

space [3]. For instance: given data points

X = {𝑋1, 𝑋2, ..., 𝑋𝑛} ⊂ R𝑚.

The task is to find an embedding mapping 𝑓

𝑓(X) = Y = {𝑌1, 𝑌2, ..., 𝑌𝑛} ⊂ R𝑘

of 𝑚-dimensional X to 𝑘-dimensional Y where 𝑚 >> 𝑘.

Figure 1-4: Data points on a lower-dimensional linear manifold.

There are two distinct approaches in the DR methods: 𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 (Manifold

Learning - Nonlinear approach). The difference between them could be observed, such

11

that, in the linear model we are asked to find embedding mapping into the linear manifold,

whereas the nonlinear model - the nonlinear manifold. Linear models have advantages

and disadvantages against nonlinear models. For instance, linear models are faster in

comparison with the nonlinear models, however, the quality of their representations of

the data points leaves much to be desired. As can be seen from Figure 1-5 linear manifold

causes loss of information. Obviously, there exists a nonlinear manifold that would capture

data points more effectively and avoiding loss of information.

Figure 1-5: An example of nonlinear manifold.

Inside of DR, there are many techniques of nonlinear approach. One of them is a par-

ticular type of Artificial Neural Networks - Auto-encoder (AE). It learns an 𝑒𝑛𝑐𝑜𝑑𝑒𝑟

function 𝑓 which maps 𝑥 from input 𝑚-dimensional space to a lower 𝑘-dimensional space,

in combination with 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 function 𝑔 that maps inversely to the original 𝑚-dimensional

space. Any gradient descent technique can be chosen to calculate the optimal parame-

ters of the auto-encoder by minimizing 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿(𝑥, 𝑔(𝑓(𝑥))) for the points of the

12

training dataset.[6]

To clarify the explanation, let us consider the auto-encoder with a single hidden layer at

𝑒𝑛𝑐𝑜𝑑𝑒𝑟 and 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 components. 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 is a function of the form 𝑓(𝑥) = 𝜎1(𝑊𝑥+ 𝑏𝑒),

where 𝑊 is weight matrix, whose dimension 𝑘 × 𝑚, 𝑏𝑒 is bias vector (𝑏𝑒 ∈ R𝑘) and

𝜎1 is an element-wise nonlinear activation function (logistic sigmoid: 𝜎1(𝑧) = 1
1+𝑒−𝑧).

𝐷𝑒𝑐𝑜𝑑𝑒𝑟 is a function of the form 𝑟 = 𝑔(𝑓(𝑥)) = 𝜎2(𝑊
𝑇𝑓(𝑥) + 𝑏𝑑), where parameter 𝑊 𝑇

is transpose of the weight matrix of the 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 function, 𝑏𝑑 is a bias vector (𝑏𝑑 ∈ R𝑚) and

𝜎2 is an element-wise activation function which can be either the same as 𝜎1 or identity

function. It is worth mentioning if nonlinear activation functions at hidden layers of the

auto-encoder were not used, an akin dimensionality reduction to PCA would be obtained.

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of the auto-encoder is either a standard squared error ℒ(𝑥, 𝑟) = ‖𝑥− 𝑟‖2

or Bernoulli cross-entropy ℒ(𝑥, 𝑟) = −Σ𝑑
𝑖=1𝑥𝑖 log(𝑟𝑖) + (1− 𝑥𝑖) log(1− 𝑟𝑖) if values of the

input data points are between 0 and 1. As the result the 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is:

𝒥𝐴𝐸(𝑊, 𝑏𝑒, 𝑏𝑑) =
∑︀

𝑥∈𝐷ℒ(𝑥, 𝑔(𝑓(𝑥))).

It is expected that with respect to small changes of training data points, the auto-

encoder should encode very similar values. In mathematical terms, we would say that for

any small 𝜖1, 𝜖2 there is a small number 𝛿 such that 0 < |𝑓(𝑥 + 𝜖1) − 𝑓(𝑥 + 𝜖2)| < 𝛿. To

fulfill this idea Contractive Auto-encoder (CAE) could be applied [6]. CAE penalizes

sensitivity of 𝑓(𝑥) to the inputs by 𝐿2 regularization term which is calculated as the

squared Frobenius norm of the Jacobian for the encoder function 𝑓 (𝐽(𝑥) = 𝜕𝑓
𝜕𝑥

). The

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of CAE is defined as:

𝒥𝐶𝐴𝐸(𝜃) =
∑︀

𝑥∈𝐷ℒ(𝑥, 𝑔(𝑓(𝑥))) + 𝜆‖𝐽(𝑥)‖2,

13

Figure 1-6: An illustration of auto-encoder’s architecture.

14

where 𝜃 is a set of the auto-encoder’s parameters and 𝜆 is a non-negative hyper-

parameter that controls the effect of penalizing the Jaconbian’s norm.

In addition, we are able to control the smoothness of the manifold by penalizing higher-

order derivatives (Hessian). In fact, it is sufficient to apply an additional regularization

term as a difference between the Jacobian at 𝑥 and the Jacobian at points of neighborhood

of 𝑥. The 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of the CAE+H (CAE+Hessian) is defined as:

𝒥𝐶𝐴𝐸+𝐻(𝜃) =
∑︀

𝑥∈𝐷ℒ(𝑥, 𝑔(𝑓(𝑥))) + 𝜆‖𝐽(𝑥)‖2 + 𝛾E𝜖∼𝒩 (0,𝜎2I)[‖𝐽(𝑥)− 𝐽(𝑥 + 𝜖)‖2],

where 𝛾 is an extra non-negative hyper-parameter for controlling the effect of

penalizing the Jacobian’s neighbor variations.

1.4 Tangent bundle by a CAE

The 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑏𝑢𝑛𝑑𝑙𝑒 of a differential manifoldℳ is a collection of tangent planes at all

points on the manifoldℳ. Every tangent plane has its own Euclidean coordinate system

or 𝑐ℎ𝑎𝑟𝑡, that defines an 𝑎𝑡𝑙𝑎𝑠. [6]

The chart on 𝑥 is defined by the Singular Value Decomposition of the Jacobian for

the encoder function 𝑓 , where 𝑓 is smooth (𝐽𝑇 (𝑥) = 𝑈(𝑥)𝑆(𝑥)𝑉 𝑇 (𝑥), where 𝑈(𝑥), 𝑉 (𝑥)

are orthogonal matrices and 𝑆(𝑥) is a diagonal matrix). The tangent plane ℋ𝑥 at 𝑥 is

obtained by the span of vectors ℬ𝑥 such that:

ℬ𝑥 = {𝑈𝑘(𝑥)|𝑆𝑘𝑘(𝑥) > 𝜖} and ℋ𝑥 = {𝑥 + 𝑣|𝑣 ∈ span(ℬ𝑥)},

where 𝑈𝑘 is the 𝑘-column of the matrix 𝑈(𝑥).

15

Figure 1-7: Tangent bundle of a manifold which in circular form.

16

1.5 Tangent Propagation

One crucial issue in Machine Learning (ML) is avoiding the over-fitting. Often the

regularization might be a tool to overcome this problem. Data scientists define several

regularization techniques such that: 𝐿2, 𝐿1, dropout for neural networks and etc.

In the tangent propagation algorithms, we encourage the model to be robust with

respect to small changes of input data points. In order to achieve the robustness, 𝜕𝑜
𝜕𝑥

must be orthogonal to the tangent vectors 𝑢 of the manifold at 𝑥, or equivalently the dot

product be as small as possible which is added to the cost function as:

Ω(𝑥) =
∑︀

𝑢∈ℬ𝑥
‖ 𝜕𝑜
𝜕𝑥
𝑢‖2,

where 𝑜 is the output of neural networks. Alongside all ML models, we can control

effect of regularization by hyper-parameter of the penalty term.

17

Chapter 2

Main

2.1 Manifold Tangent Classifier

In previous sections, auto-encoder was introduced as a manifold learning technique. In

fact, the auto-encoder is a smooth “correcting” function 𝜑 (composition of encoder and

decoder mappings) from 𝑚-dimensional space to 𝑘-dimensional space (𝑐𝑜𝑑𝑒 𝑠𝑝𝑎𝑐𝑒) where

the difference between original data points (𝑥𝑖) and “corrected” data points (𝜑(𝑥𝑖)) is

being minimized:

𝜑* ← arg min𝜑:R𝑚→ℳ*
1
𝑁

∑︀𝑁

𝑖=1
‖𝑥𝑖 − 𝜑(𝑥𝑖)‖2.

Manifold Tangent Classifier (MTC) algorithm includes second desirable property of

“correcting” function 𝜑 - smoothness of the hidden manifold ℳ. The smoothness is

implemented by additional penalty term [6]:

𝛾E𝜖∼𝒩 (0,𝜎2I)‖𝜕𝑓𝜕𝑥(𝑥𝑖)− 𝜕𝑓
𝜕𝑥

(𝑥𝑖 + 𝜖)‖2.

Thus, the 𝑐𝑜𝑠𝑡 function of MTC’s auto-encoder (contractiveness is added as well) is

defined as:

18

𝜑* ← arg min𝜑:R𝑚→ℳ*
1
𝑁

∑︀𝑁

𝑖=1
‖𝑥𝑖−𝜑(𝑥𝑖)‖2+𝜆‖𝜕𝑓

𝜕𝑥
(𝑥𝑖)‖2+𝛾E𝜖∼𝒩 (0,𝜎2I)‖𝜕𝑓𝜕𝑥(𝑥𝑖)−𝜕𝑓

𝜕𝑥
(𝑥𝑖+𝜖)‖2.

2.2 Alternating Scheme

The goal of Alternating scheme algorithm is reduction of dimension of data points from

𝑚-dimensional space into 𝑑-dimensional manifold, where 𝑑 < 𝑘 of 𝑘-dimensional 𝑐𝑜𝑑𝑒

𝑠𝑝𝑎𝑐𝑒.

Hence, the problem of finding optimal parameters of “correcting” mapping in the min-

imization objective should be revised as:

𝜑* ← arg min𝜑:R𝑚→R𝑚,∀𝑥:𝑟𝑎𝑛𝑘(𝜕𝜑
𝜕𝑥

(𝑥))≤𝑑
1
𝑁

∑︀𝑁

𝑖=1
‖𝑥𝑖 − 𝜑(𝑥𝑖)‖2,

where 𝜑* : R𝑚 → R𝑚 is a smooth function whose Jacobian’s rank is, ideally less than 𝑑,

or equal to 𝑑 at all data points.

In fact, the auto-encoder is “correcting” function 𝜑(𝑥) = 𝑔(𝑓(𝑥)) (e.g. MTC’s auto-

encoder), where 𝑓 : R𝑚 → R𝑘 and 𝑔 : R𝑘 → R𝑚. In order to achieve a reduction of the

dimension of the manifold we implement an additional penalty term to the 𝑐𝑜𝑠𝑡 function

above (smoothness penalty regularization term is added as well). As a result, the 𝑐𝑜𝑠𝑡

function is defined as:

𝐹 (𝜃, ⟨𝐵𝑗⟩)𝑀𝑗=1 =
∑︀𝑁

𝑖=1
‖𝑥𝑖 − 𝜑𝜃(𝑥𝑖)‖2 +

𝛾E𝜖∼𝒩 (0,𝜎2𝐼𝑛)‖
𝜕𝜑𝜃

𝜕𝑥
(𝑥𝑖 + 𝜖)− 𝜕𝜑𝜃

𝜕𝑥
(𝑥𝑖)‖2 +

𝜆
∑︀𝑀

𝑗=1
‖𝜕𝜑
𝜕𝑥

(𝑥𝑖𝑗)−𝐵𝑥𝑖𝑗
‖2𝐹 ,

19

where the 𝑐𝑜𝑠𝑡 function should be minimized at the same time over 𝜃 and matrices 𝐵𝑥𝑖𝑗

such that 𝑟𝑎𝑛𝑘(𝐵𝑥𝑖𝑗
) ≤ 𝑘, 𝑗 = 1,𝑀 . For fixed matrices 𝐵𝑥𝑖𝑗

, minimization over 𝜃 can

be achieved by any gradient descent technique. For fixed parameter 𝜃, minimization over

{𝐵𝑥𝑖𝑗
}𝑀𝑗=1 is equivalent to setting

𝐵𝑥𝑖𝑗
← 𝑈 𝑗

1:𝑛,1:𝑑Σ
𝑗
1:𝑑,1:𝑑(𝑉

𝑗
1:𝑛,1:𝑑)

𝑇

where 𝜕𝜑𝜃

𝜕𝑥
(𝑥𝑖𝑗) = 𝑈 𝑗Σ𝑗(𝑉 𝑗)𝑇 is a singular value decomposition of 𝜕𝜑𝜃

𝜕𝑥
(𝑥𝑖𝑗).

20

Our algorithm is following:
Algorithm 1: The alternating algorithm. Hyper-parameters: 𝑚,𝜆, 𝛾, 𝜎, 𝛼

for 𝑗 = 1, ...,𝑀 do
𝐵𝑥𝑖𝑗

← 0

end

for 𝑡 = 1, ..., 𝑇 do

while 𝜃 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do
𝑆𝑎𝑚𝑝𝑙𝑒 {𝑦𝑖}𝑚𝑖=1 ∼P𝑑𝑎𝑡𝑎(𝑥1,...,𝑥𝑁)

𝑆𝑎𝑚𝑝𝑙𝑒 {𝜖𝑖}𝑚𝑖=1 ∼ 𝒩 (0, 𝜎2)

𝑆𝑎𝑚𝑝𝑙𝑒 {𝑧𝑖}𝑚𝑖=1 ∼P𝑑𝑎𝑡𝑎(𝑥𝑖1
,...,𝑥𝑖𝑀

)

𝐿← 1
𝑚

∑︀𝑚

𝑖=1
(𝑦𝑖−𝜑𝜃(𝑦𝑖))

2+ 𝛾
𝑚

∑︀𝑚

𝑖=1
‖𝜕𝜑𝜃(𝑦𝑖+𝜖𝑖)

𝜕𝑥
−𝜕𝜑𝜃(𝑦𝑖)

𝜕𝑥
‖2+ 𝜆

𝑚

∑︀
‖𝜕𝜑𝜃(𝑧𝑖)

𝜕𝑥
−𝐵𝑧𝑖‖2

𝜃 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(∇𝜃𝐿, 𝜃, 𝛼)

end

𝜃𝑡 ← 𝜃

for 𝑗 = 1, ...,𝑀 do

𝑈 𝑗Σ𝑗(𝑉 𝑗)𝑇 ← 𝑆𝑉 𝐷(
𝜕𝑔𝜃𝑡
𝜕𝑥

(𝑥𝑖𝑗))

𝐵𝑥𝑖𝑗
← 𝑈 𝑗

1:𝑛,1:𝑑Σ
𝑗
1:𝑑,1:𝑑(𝑉

𝑗
1:𝑛,1:𝑑)

𝑇

end

end

Output: 𝑓 ← 𝜑𝜃𝑡

21

Chapter 3

Experiments

In this work, we implemented Standard Neural Network without regularization, Man-

ifold Tangent Classifier (MTC), and Alternatig Scheme (AS) for an autoencoder (our

algorithm). Further task is to compare the accuracy of the algorithm to other mod-

els. All experiments were executed on a FIFA 20 dataset using Python 3 programming

language.

3.1 Dataset

The FIFA dataset was collected from the website “𝑓𝑖𝑓𝑎𝑖𝑛𝑑𝑒𝑥.𝑐𝑜𝑚” by using 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

and 𝐵𝑒𝑎𝑢𝑡𝑖𝑓𝑢𝑙𝑆𝑜𝑢𝑝4 packages. Dataset contains characteristics of all football players

(2940 rows) from TOP-5 league clubs of Europe of season 19/20. 58 columns of the

dataset are the football players’ name, country, current rating, potential rating, height,

weight, and etc. Worth mentioning that some columns of the dataset have 𝑠𝑡𝑟𝑖𝑛𝑔 type

data.

22

In pre-processing stage, to initiate 𝑋 matrix following columns were used: “Height

(cm)”, “Weight (kg)”, “Age”, “Weak Foot”, “Skill Moves”, “Contract Length”, “Ball Con-

trol”, “Dribbling”, “Marking”, “Slide Tackle”, “Stand Tackle”, “Aggression”, “Reactions”,

“Att. Position”, “Interceptions”, “Vision”, “Composure”, “Crossing”, “Short Pass”, “Long

Pass”, “Acceleration”, “Stamina”, “Strength”, “Balance”, “Sprint Speed”, “Agility”, “Jump-

ing”, “Heading”, “Shot Power”, “Finishing”, “Long Shots”, “Curve”, “FK Acc.”, “Penalties”,

“Volleys”, “GK Positioning”, “GK Diving”, “GK Handling”, “GK Kicking”, “GK Reflexes”.

To initiate 𝑌 vector we used column “Value (€)”. Worth mentioning that “Current Rat-

ing”, “Potential Rating”, and “Wage (€)” columns are being excluded from 𝑋 matrix be-

cause of a strong correlation with “Value (€)”. Afterwards, in order to make calculations

of models faster and more robust feature standardization for the 𝑋 matrix was applied by

subtracting column’s entries by column’s mean, then dividing them by column’s standard

deviation (𝑥𝑖−𝜇𝑖

𝜎𝑖
) and normalization for the 𝑌 vector dividing all entries by 1000000. At

the end of the pre-processing, we utilized 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 from 𝑠𝑐𝑖𝑘𝑖𝑡 − 𝑙𝑒𝑎𝑟𝑛 for the

data where proportions of a training set is equal to 0.8; evaluation set is equal to 0.1; and

test set is equal to 0.1. Code as follows:

import pandas as pd

import numpy as np

import matp lo t l i b . pyplot as p l t

import seaborn as sns ; sns . s e t ()

from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler

from sk l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

p l ay e r s = pd . read_excel (’ p l ay e r s (ex tens i on) . x lsx ’ , index_col = 0)

23

cr ea t i n g X−matrix and Y−vector

x = p laye r s . l o c [: , [’ Height (cm) ’ , ’Weight (kg) ’ , ’Age ’ , ’Weak Foot ’ ,

’ S k i l l Moves ’ , ’ Contract Length ’ , ’ Ba l l Control ’ , ’ Dr ibbl ing ’ ,

’Marking ’ , ’ S l i d e Tackle ’ , ’ Stand Tackle ’ , ’ Aggress ion ’ ,

’ Reactions ’ , ’ Att . Pos i t ion ’ , ’ I n t e r c ep t i on s ’ , ’ Vis ion ’ ,

’Composure ’ , ’ Cross ing ’ , ’ Short Pass ’ , ’ Long Pass ’ ,

’ Acce l e ra t i on ’ , ’ Stamina ’ , ’ Strength ’ , ’ Balance ’ ,

’ Spr int Speed ’ , ’ Ag i l i t y ’ , ’ Jumping ’ , ’ Heading ’ ,

’ Shot Power ’ , ’ F in i sh ing ’ , ’ Long Shots ’ , ’ Curve ’ ,

’FK Acc . ’ , ’ Pena l t i e s ’ , ’ Vol leys ’ , ’GK Pos i t i on ing ’ ,

’GK Diving ’ , ’GK Handling ’ , ’GK Kicking ’ , ’GK Ref l exes ’]] . va lue s . copy ()

y = p laye r s . l o c [: , ’ Value () ’] . va lue s . copy ()

norma l i za t i on o f the matrix X

s c a l e r = StandardSca ler () . f i t (x)

x_scaled = s c a l e r . t rans form (x)

norma l i za t i on o f the vec to r Y

y = y / 1000000

tra in , v a l i d a t i o n and t e s t s p l i t s

x_train , x_val_test , y_train , y_val_test = \

t r a i n_te s t_sp l i t (x_scaled , y , t e s t_s i z e = 0 . 2 , random_state = 42)

x_val , x_test , y_val , y_test = \

t r a i n_te s t_sp l i t (x_val_test , y_val_test , t e s t_s i z e = 0 . 5 ,

24

Figure 3-1: Distribution of 𝑌 vector.

random_state = 42)

3.2 Linear Regression

Initially, linear regression (baseline) has been implemented. Code is below:

from sk l e a rn import ∗

model = linear_model . L inearRegre s s i on ()

model . f i t (x_train , y_train)

Graphs of 𝑟𝑒𝑔𝑝𝑙𝑜𝑡𝑠 and 𝑑𝑖𝑠𝑡𝑝𝑙𝑜𝑡𝑠 are below (train, validation, and test sets, respec-

tively).

25

Figure 3-2: Graphs of linear regression.

26

3.3 Manifold Tangent Classifier

In this section, there is code of MTC with 1 and 2-hidden layers of auto-encoder.

3.3.1 Autoencoders

Code of auto-encoder with 1-hidden layer is below:

import t en so r f l ow as t f

d imens i ona l i t y = tensor_x_train . shape [1] # d imens i ona l i t y = 40

code_size = 20

k = 7 # dimension o f mani fo ld

ep s i l o n = 0 .1

gamma = 1.0

epochs = 1500

l ea rn ing_rate = 0 .1

Autoencoder

de f i n e parameters o f autoencoder

W = t f . Var iab le (i n i t i a l_va l u e = t f . random . truncated_normal (shape = \

(d imens iona l i ty , code_size) , mean = 0 , stddev = 0 . 1))

b = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(code_size)))

b_r = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(d imens i ona l i t y)))

27

de f i n e autoencoder

de f autoencoder (X) :

embedding_mapping = t f . math . s igmoid (t f . l i n a l g . matmul (X, W) + b)

recovery_mapping = t f . l i n a l g . matmul (

embedding_mapping , W, transpose_b = True) + b_r

return recovery_mapping

de f i n e Jacobian

de f j acob ian (X) :

embedding_mapping = t f . math . s igmoid (t f . l i n a l g . matmul (X, W) + b)

sigma_prime = t f . math . mult ip ly (

embedding_mapping , 1 − embedding_mapping)

diag_sigma_prime = t f . l i n a l g . d iag (sigma_prime)

jacobian_matrix = t f . l i n a l g . matmul (

diag_sigma_prime , W, transpose_b = True)

re turn jacobian_matrix

smoothness pena l ty term o f autoencoder ’ s l o s s func t i on

rand_x_train = tensor_x_train + t f . random . truncated_normal (

shape = (tensor_x_train . shape) , mean = 0 , stddev = ep s i l o n)

jacobian_x_train = jacob ian (tensor_x_train)

jacobian_rand_x_train = jacob ian (rand_x_train)

de f i n e autoencoder ’ s l o s s func t i on

de f autoencoder_loss_funct ion (X, Xhat) :

28

r e turn t f . math . reduce_mean (t f . math . square (X − Xhat)) + \

gamma ∗ t f . math . reduce_mean (

t f . square (jacobian_x_train − jacobian_rand_x_train))

t r a i n autoencoder

l o s s_va lue s = l i s t ()

f o r epoch in range (epochs) :

with t f . GradientTape () as tape :

xhat = autoencoder (tensor_x_train)

los s_va lue = autoencoder_loss_funct ion (tensor_x_train , xhat)

l o s s_va lue s . append (los s_va lue)

get g rad i en t s

g r ad i en t s = tape . g rad i en t (loss_value , [W, b , b_r])

compute and ad jus t weights

W. assign_sub (g rad i en t s [0] ∗ l ea rn ing_rate)

b . assign_sub (g rad i en t s [1] ∗ l ea rn ing_rate)

b_r . assign_sub (g rad i en t s [2] ∗ l ea rn ing_rate)

bases o f the tangent spaces

bases_tangent_spaces = l i s t ()

f o r x_train_i in jacob ian (tensor_x_train) :

_, _, v = t f . l i n a l g . svd (x_train_i)

bases_tangent_spaces . append (v [: , : k])

tensor_bases_tangent_spaces = \

t f . convert_to_tensor (bases_tangent_spaces)

29

Figure 3-3: Cost function of auto-encoder with 1-hidden layer.

Code of auto-encoder with 2-hidden layers is below:

import t en so r f l ow as t f

d imens i ona l i t y = tensor_x_train . shape [1] # d imens i ona l i t y = 40

code_size1 = 20

code_size2 = 10

k = 7 # dimension o f mani fo ld

ep s i l o n = 0 .1

gamma = 1.0

epochs = 1500

l ea rn ing_rate = 0 .1

Autoencoder

de f i n e parameters o f the autoencoder

W1 = t f . Var iab le (i n i t i a l_va l u e = t f . random . truncated_normal (shape = \

30

(d imens iona l i ty , code_size1) , mean = 0 , stddev = 0 . 1))

b1 = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(code_size1)))

W2 = t f . Var iab le (i n i t i a l_va l u e = t f . random . truncated_normal (shape = \

(code_size1 , code_size2) , mean = 0 , stddev = 0 . 1))

b2 = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(code_size2)))

W3 = t f . Var iab le (i n i t i a l_va l u e = t f . random . truncated_normal (shape = \

(code_size2 , code_size1) , mean = 0 , stddev = 0 . 1))

b3 = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(code_size1)))

W4 = t f . Var iab le (i n i t i a l_va l u e = t f . random . truncated_normal (shape = \

(code_size1 , d imens i ona l i t y) , mean = 0 , stddev = 0 . 1))

b4 = t f . Var iab le (i n i t i a l_va l u e = t f . constant (0 . 1 , shape = \

(d imens i ona l i t y)))

de f i n e autoencoder

de f autoencoder (X) :

embedding_mapping1 = t f . math . s igmoid (

t f . l i n a l g . matmul (X, W1) + b1)

embedding_mapping2 = t f . math . s igmoid (

t f . l i n a l g . matmul (embedding_mapping1 , W2) + b2)

recovery_mapping1 = t f . math . s igmoid (

t f . l i n a l g . matmul (embedding_mapping2 , W3) + b3)

recovery_mapping2 = t f . l i n a l g . matmul (recovery_mapping1 , W4) + b4

31

r e turn recovery_mapping2

de f i n e Jacobian

de f j acob ian (X) :

embedding_mapping1 = t f . math . s igmoid (

t f . l i n a l g . matmul (X, W1) + b1)

embedding_mapping2 = t f . math . s igmoid (

t f . l i n a l g . matmul (embedding_mapping1 , W2) + b2)

sigma_prime1 = t f . math . mult ip ly (

embedding_mapping1 , 1 − embedding_mapping1)

diag_sigma_prime1 = t f . l i n a l g . d iag (sigma_prime1)

grad1 = t f . l i n a l g . matmul (

diag_sigma_prime1 , W1, transpose_b = True)

sigma_prime2 = t f . math . mult ip ly (

embedding_mapping2 , 1 − embedding_mapping2)

diag_sigma_prime2 = t f . l i n a l g . d iag (sigma_prime2)

grad2 = t f . l i n a l g . matmul (

diag_sigma_prime2 , W2, transpose_b = True)

jacobian_matrix = t f . l i n a l g . matmul (grad2 , grad1)

re turn jacobian_matrix

smoothness pena l ty term o f autoencoder ’ s l o s s func t i on

32

rand_x_train = tensor_x_train + t f . random . truncated_normal (

shape = (tensor_x_train . shape) , mean = 0 , stddev = ep s i l o n)

jacobian_x_train = jacob ian (tensor_x_train)

jacobian_rand_x_train = jacob ian (rand_x_train)

de f i n e autoencoder ’ s l o s s func t i on

de f autoencoder_loss_funct ion (X, Xhat) :

r e turn t f . math . reduce_mean (t f . math . square (X − Xhat)) + \

gamma ∗ t f . math . reduce_mean (

t f . square (jacobian_x_train − jacobian_rand_x_train))

t r a i n autoencoder

l o s s_va lue s = l i s t ()

f o r epoch in range (epochs) :

with t f . GradientTape () as tape :

xhat = autoencoder (tensor_x_train)

los s_va lue = autoencoder_loss_funct ion (tensor_x_train , xhat)

l o s s_va lue s . append (los s_va lue)

get g rad i en t s

g r ad i en t s = tape . g rad i en t (loss_value ,

[W1, b1 , W2, b2 , W3, b3 , W4, b4])

compute and ad jus t weights

W1. assign_sub (g rad i en t s [0] ∗ l ea rn ing_rate)

b1 . assign_sub (g rad i en t s [1] ∗ l ea rn ing_rate)

W2. assign_sub (g rad i en t s [2] ∗ l ea rn ing_rate)

33

b2 . assign_sub (g rad i en t s [3] ∗ l ea rn ing_rate)

W3. assign_sub (g rad i en t s [4] ∗ l ea rn ing_rate)

b3 . assign_sub (g rad i en t s [5] ∗ l ea rn ing_rate)

W4. assign_sub (g rad i en t s [6] ∗ l ea rn ing_rate)

b4 . assign_sub (g rad i en t s [7] ∗ l ea rn ing_rate)

bases o f the tangent spaces

bases_tangent_spaces = l i s t ()

f o r x_train_i in jacob ian (tensor_x_train) :

_, _, v = t f . l i n a l g . svd (x_train_i)

bases_tangent_spaces . append (v [: , : k])

tensor_bases_tangent_spaces = \

t f . convert_to_tensor (bases_tangent_spaces)

Figure 3-4: Cost function of auto-encoder with 2-hidden layers

34

3.3.2 Tangent Propagation

Afterward, tangent spaces at every training data points are implemented in regulariza-

tion term of regression model. Code is below:

from ten so r f l ow . keras import ∗

de f model (X_train , Y_train , X_val , Y_val , a c t i va t i on , neurons ,

l earn ing_rate , epochs , lmbda ,

tensor_bases_tangent_spaces = tensor_bases_tangent_spaces) :

r e s u l t s = { ’ cost_tra in ’ : [] , ’ cost_val ’ : [] }

Regres s ion model

m = Sequent i a l ()

l ay e r s

m. add (l a y e r s . Input (shape = (X_train . shape [1] ,)))

f o r neuron in neurons :

i f a c t i v a t i o n == ’ re lu ’ :

m. add (l a y e r s . Dense (neuron , a c t i v a t i o n = ’ re lu ’ ,

k e r n e l _ i n i t i a l i z e r = t f . keras . i n i t i a l i z e r s . HeNormal ()))

e l i f a c t i v a t i o n == ’ tanh ’ :

m. add (l a y e r s . Dense (neuron , a c t i v a t i o n = ’ tanh ’ ,

k e r n e l _ i n i t i a l i z e r = t f . keras . i n i t i a l i z e r s . GlorotNormal ()))

e l s e :

r a i s e Exception (’ a c t i v a t i o n must be e i t h e r r e l u or tanh ’)

m. add (t f . ke ras . l a y e r s . Dense (1 , a c t i v a t i o n = ’ re lu ’))

35

cos t funt i on (va l)

de f co s t (y , yhat) :

r e turn t f . math . reduce_mean (

t f . math . square (t f . math . subt rac t (y , yhat)))

cos t func t i on (t r a i n)

de f cost_with_reg (y , yhat , m_gradients , tensor_bases_tangent_spaces) :

r e g u l a r i z e r = 0

f o r grad ient , basis_tg_space in \

z ip (m_gradients , tensor_bases_tangent_spaces) :

r e g u l a r i z e r += t f . math . reduce_mean (

t f . math . square (t f . l i n a l g . matmul (t f . reshape (grad ient , \

shape = [1 , g rad i en t . shape [0]]) , basis_tg_space)))

re turn t f . math . reduce_mean (

t f . math . square (t f . math . subt rac t (y , yhat))) + \

lambda ∗ (1/y . shape [0]) ∗ r e g u l a r i z e r

t r a i n model

f o r epoch in range (epochs) :

with t f . GradientTape () as tape1 :

prepare components o f r e g u l a r i z e r

var_X_train = t f . Var iab le (X_train)

m_gradients = tape1 . g rad i en t (m(var_X_train) , var_X_train)

with t f . GradientTape () as tape2 :

36

compute model ’ s l o s s func t i on

yhat = m(X_train)

l o s s_t ra i n = cost_with_reg (

Y_train , yhat , m_gradients , tensor_bases_tangent_spaces)

r e s u l t s [’ cost_tra in ’] . append (l o s s_t ra i n)

get g rad i en t s

l o s s_grad i en t s = tape2 . g rad i en t (l o s s_tra in , m. weights)

compute and ad jus t weights

f o r grad ient , weight in z ip (l o s s_grad i ent s , m. weights) :

weight . assign_sub (g rad i en t ∗ l ea rn ing_rate)

l o s s_va l = cos t (Y_val , m(X_val))

r e s u l t s [’ cost_val ’] . append (lo s s_va l)

rsquare

r e s u l t s [’ r2_train ’] = r2_score (Y_train , m(X_train))

r e s u l t s [’ r2_val ’] = r2_score (Y_val , m(X_val))

r e turn r e s u l t s , m

In order to obtain the best accuracy of regression model grid search has been applied.

Set of hyper-parameters is below:

param_grid = {

’ a c t i va t i on ’ : [’ r e lu ’] ,

’ neurons ’ : [[5] , [2 0] , [5 , 5] , [1 0 , 1 0] , [2 0 , 2 0]] ,

’ l earn ing_rate ’ : [0 . 0 0 0 5] ,

37

’ epochs ’ : [1 0 000] ,

’ lmbda ’ : [1 . 0 , 0 . 1 , 0 . 0]

}

Main disadvantage of grid-search approach is slow speed of code running.

Following that, graph of optimal regression model’s cost function with 1-hidden layer

of auto-encoder is below:

Figure 3-5: Cost function with 1-hidden layer of auto-encoder.

Graphs of 𝑟𝑒𝑔𝑝𝑙𝑜𝑡 and 𝑑𝑖𝑠𝑝𝑙𝑜𝑡 are below (train, validation, and test sets, respectively):

38

Figure 3-6: Graphs of regression model with 1-hidden layer of auto-encoder.

39

Finally, graph of optimal regression model’s cost function with 2-hidden layers of auto-

encoder is below:

Figure 3-7: Cost function with 2-hidden layers of auto-encoder.

Graphs of 𝑟𝑒𝑔𝑝𝑙𝑜𝑡 and 𝑑𝑖𝑠𝑝𝑙𝑜𝑡 are below (train, validation, and test sets, respectively):

40

Figure 3-8: Graphs of regression model with 2-hidden layers of auto-encoder.

41

3.4 Results

𝑅2 is selected as a metric that determines the accuracy of regression model where 𝑅2

= 1 is the highest possible value which implies perfect predictions.

Results
Metrics Linear

Regression
Standard Neural
Network

1-Layer
MTC

𝑅2 0.34 0.89 0.91

Table 3.1: Results.

Results
Metrics 2-Layer

MTC
2-Layer
AS

𝑅2 0.91 0.93

Table 3.2: Results.

42

Chapter 4

Conclusion

We have considered auto-encoder as a manifold learning technique in Machine Learning

with its possible difficulties in minimization of 𝑐𝑜𝑠𝑡 function. We implemented an addi-

tional penalty term (based on Alternating Scheme algorithm) to the Manifold Tangent

Classifier’s 𝑐𝑜𝑠𝑡 function in order to compress the data into a lower-dimensional hidden

manifold. Hypothetically, this approach gives a better performance than MTC does.

In previous section, we have obtained that AS shows the best performance and MTC

shows better performance than Standard Neural Network (without regularization) does.

43

Bibliography

[1] Yu. A. Yanovich A. P. Kuleshov, A. V. Bernstein. Manifold learning based on ker-
nel density estimation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-
Matematicheskie Nauki, 2018, Volume 160, Book 2, 327–338.

[2] A. V. Bernstein. Manifold learning in statistical tasks. Uchenye Zapiski Kazan-
skogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2,
229–242.

[3] Cayton L. Algorithms for manifold learning //univ. of california at san diego tech.
Rep. – 2005. – . 12. – №. 1-17. – . 1.

[4] W. Tu. Loring. "An introduction to manifolds.". (2011), Springer.

[5] Verleysen M. Learning high-dimensional data. in: Ablameyko s. et al. (eds.). Limita-
tions and Future Trends in Neural Computation, IOS Press, 2003. pp. 141-162.

[6] Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller.
The manifold tangent classifier. Advances in neural information processing systems,
24:2294–2302, 2011.

44

