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Abstract

Marine protected areas (MPASs) are valuable tools for marine conservation that aim to limit
human impacts on marine systems and protect valuable species or habitats. However, as
species distributions shift due to ocean warming, acidification, and oxygen depletion from
climate change, the areas originally designated under MPAs may bear little resemblance to
their past state. Different approaches have been suggested for coping with species on the
move in conservation. Here, we test the effectiveness of different MPA designs, including
dynamic, network, and different directional orientations on protecting shifting species under
climate change through ecosystem modeling in a theoretical ecosystem. Our findings sug-
gest that dynamic MPAs may benefit some species (e.g., whiting and anchovy) and fishing
fleets, and these benefits can inform the design or adaptation of MPAs worldwide. In addi-
tion, we find that it is important to design MPAs with specific goals and to account for the
effects of released fishing pressure and species interactions in MPA design.

Introduction

Marine protected areas (MPAs) are among the most popular types of marine spatial planning
strategies to protect species and habitats from harmful human activities [1]. MPA designs vary
in shape and size, with some incorporating connected networks of MPAs. Positive social-eco-
logical impacts of MPAs within their boundaries include increasing fish biomass, density, and
size, maintaining species diversity, supporting food production, and providing aesthetic, recre-
ational, and spiritual values [2, 3]. Some of these benefits have been shown to also occur out-
side of the MPAs boundaries, with the spillover (i.e., positive net migration of fish from no-
take areas to the surrounding areas outside the MPA) of adult fish biomass occurring in waters
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up to two kilometers away, subsequently increasing fisheries yield in surrounding areas [4].
These potential fisheries benefits can lead to increased efficiency of fishing at the edges of
MPAs due to higher concentrations of fish biomass, partially compensating for the lost fisher-
ies revenue from the closed area. However, not all of these benefits are shared equitably and
often lead to positive outcomes for some users and negative outcomes for others [5-7], neces-
sitating a balance of trade-offs between different users.

There is vast evidence that marine species are shifting their distributions due to climate
change around the world [8-12]. Moreover, modeling exercises suggest such shifts will con-
tinue [13-17], even with strong mitigation of greenhouse gases such as under the Paris Agree-
ment [18]. Given that most MPAs have static locations and boundaries, MPAs may lose their
function to protect specific habitats or species on the move under climate change [19, 20],
which undermines the future benefits of MPAs and their ability to meet conservation goals
[21]. Thus, management needs to explicitly consider climate change to protect species with
shifting distributions [6, 21].

This paper responds to gaps in the MPA literature by examining the biological and eco-
nomic effects of varied MPA designs on protecting functional groups as they shift their distri-
butions under climate change [21-23]. While this has been identified as an area of necessary
research, the authors are not aware of any modeling study on the effects of climate change on
multiple MPA designs. Our aim was to explore the theoretical benefits of dynamic MPAs to
respond to the effects of climate change through an ecosystem modeling approach. We evalu-
ated these benefits in terms of three different outcomes: biomass, catch, and fisheries revenues.
These outcomes are relevant measures of success of the MPA [24] and for a main group of
resource users adjacent to many MPAs [25]. Therefore, this study had two central aims: i) to
determine how the outcomes of MPAs vary under climate change, and ii) to evaluate how dif-
ferent MPA designs (static vs. dynamic, network vs. individual) perform under climate
change.

Methods

To undertake this analysis, we used a spatially explicit model in Ecospace, the spatial form of
the ecosystem modeling software Ecopath with Ecosim [26]. Ecospace models begin with the
parameterization of a static mass-balanced model (Ecopath), modified by a temporal scenario
(Ecosim), and finally spatialized to a certain habitat (Ecospace). This software allows for the
exploration of different MPA management strategies that incorporate ecological and social-
economic criteria [27]. We adapted the theoretical ecosystem of ‘Anchovy Bay’ for our analysis
[28]. This choice was made based on the finding that there are few developed Ecospace models
due to high data requirements [29]. To incorporate the changing nature of the ecosystems, we
assessed our proposed MPA designs under projected sea surface temperature change as a cli-
mate change driver. This simulation lends itself well to a theoretical ecosystem where we can
ignore the uncertainty of ecosystem model parameterization in favor of separating out the
effects of climate change and MPA design. We parameterized the model to represent the
Anchovy Bay ecosystem in 2000 and allowed the model to run for 100 years (between 2000
and 2100). We calculated mean biomass, catch and fisheries revenue considering the last 10
years of the projection (between 2090 and 2100).

We focused on two main MPA designs that have been identified as potential solutions to
the conservation of species on the move: dynamic and network MPAs [21, 20]. We tested
whether MPAs continue to have benefits under climate change (under 4°C sea surface temper-
ature increase), or whether the negative effects of climate change can be reduced by certain
MPA designs (Fig 1).
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Fig 1. Conceptual figure of methods used for this study. We chose the warming scenario (Visual from IPCC, 2019), that mimics a future under RCP 8.5, and fit it with
MPA designs to a spatialized ecosystem model. The ecosystem model includes predator-prey relationships between functional groups including fishing fleets. This model
incorporated price elasticity when estimating fishing fleet dynamics. The outputs of the model are abundance, catch, and fisheries revenue in each time step for each

functional group and fishing fleet.

https://doi.org/10.1371/journal.pone.0241771.9001

Model design

The baseline model parameters and food web structure of the Anchovy Bay Ecospace model
were adopted from [28]. The spatial layout of the ecosystem is a 20 by 20 grid (400 total cells),
where each cell represents a 20 km by 20 km square. This model is made up of 11 functional
groups, one of which has two age classes (juveniles and adults; Table 1). The input parameters
of the Ecopath model can be found in S1 Table and the diet matrix in S2 Table. Of the 11 func-
tional groups, six are targeted by fishing fleets. There are five fishing fleets that correspond to
these targeted groups (Table 1). In this model, the functional groups’ populations are

Table 1. Functional groups and corresponding fishing fleets included in the ecosystem model.

Functional group Fishing fleet
Anchovy Foragers
Benthos

Cod Trawlers
Detritus

Mackerel (adult) Seiners
Mackerel (juvenile)

Phytoplankton

Seals Sealers
Shrimp Shrimpers
Whales

Whiting Trawlers
Zooplankton

https://doi.org/10.1371/journal.pone.0241771.t001
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distributed based on the presence of prey and their temperature preference. In addition, some
functional groups have the physical ability to travel farther than other functional groups and
therefore the results of our modeling are specific to a functional groups’ ability to move as well
as its temperature preferences. In this modeling framework, the ability to move is termed ‘dis-
persal.’ The dispersal values used in this model are based on a previous study that covered
most of the functional groups in this ecosystem (S3 Table; [30]). Due to the theoretical nature
of our modeling as well as a lack of data availability for the creation of spatially explicit ecosys-
tem models that can incorporate climate change effects, we used an adapted model from a
hypothetical ecosystem to test our hypotheses.

Each Ecopath model starts in a mass-balanced steady-state. Simulating the ecosystem over time
allows the functional groups’ populations to expand and decline based on their suitability to the eco-
system and the relative abundance of their prey and predators. Thus, our model takes into account
predator-prey interactions over space and time. In addition to these ecological dynamics, fishing
effort is spatially distributed based on a cost model that incorporates distance from the fishing port
and the price for their target organism where fleets are dynamically driven to maximize their profits,
and limited in expansion and contraction of the fleet size based on capital investment rates.

The model was adapted from the original in the following ways: incorporation of climate
change impacts through forcing functions, inclusion of a north-south sea surface temperature
gradient, and the removal of habitat features to not constrain functional groups. The remain-
ing predator-prey dynamics between functional groups (including fisheries) were maintained.

We ran the model to simulate the ecosystem dynamics for a study period of 100 years. The
model was constructed to compare the results of different MPA designs under climate change.
We adopted an approximation for climate change effects on sea surface temperature based on
the results of the Intergovernmental Panel on Climate Change (IPCC) estimates [31]. This esti-
mate broadly encompasses a 4°C change in sea surface temperature by the end of the 21st cen-
tury (2100). We incorporated this estimate in the ecosystem model through forcing functions
that were applied to consumers and producers and were assumed to affect their ability to find
prey (i.e., search rate). This is a common method for implementing climate change effects in
Ecosim models to influence the survival of a functional group based on their temperature pref-
erences. The result of modifying the search rate of a functional group by temperature prefer-
ence is that as temperature moves farther away from a functional group’s optimal range, they
are less effective at finding prey and thus more vulnerable to predation.

We defined environmental response parameters for species based on depth and tempera-
ture preferences. We then applied the forcing function of changes to sea surface temperature
to the functional group specific response for the appropriate climate change scenario. To
mimic a temperature gradient at a small scale (assuming a Northern Hemisphere ecosystem),
we created a temperature gradient in the spatial ecosystem with colder temperatures in the
‘northern’ cells and warmer temperatures in the ‘southern’ cells. Therefore, functional groups
can relocate amongst this spatial grid based on their thermal preferences.

To estimate fisheries revenues, the model uses the first-sale prices for different functional
groups multiplied by their catch amount in each year. We used the defaults price values from
the original Ecopath model [28] (S4 Table). The price elasticity of supply, the response of
prices to increases or decreases in supply, was incorporated into the models based on known
price elasticities of similar species/commercial groups. The values were sourced from a synthe-
sis of the same product elasticity [32] and an average was taken where multiple values were
reported for a functional group (S5 Table). This average was applied within the ecosystem
model so that fishing effort behavior would respond to changes in prices and thus profitability
of their fishing operations. Incorporating price elasticity allows a relatively realistic response of
fishers changing incentives and behavior when coupled with distance-based fishing costs.
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More details on the model parameterization can be found in the (S1 File). We used a sce-
nario with no MPA as the baseline scenario for all simulations. Then, we applied alternative
scenarios with the climate change effects and different MPA designs.

MPA designs

We developed six MPA designs; four static MPAs (Square, Narrow Vertical, Narrow Horizon-
tal and Network) to compare with two dynamic MPA designs (Square Shifting and Network
Shifting) under climate change. (52 Fig). The two dynamic MPAs have the same dimensions
as their static counterparts, while moving by one cell height (20 km) every 20 years (S3 Fig).
This rate of movement may be conservative as current estimates are between 15.5 km/decade
and 25.6 km/decade for low and high-emissions scenarios, respectively [33]. We differentiate
between the Static Horizontal and Static Vertical MPAs as we hypothesize that vertically ori-
ented MPAs will be more likely to benefit species as they shift poleward due to climate change
[8, 9]. This differentiation is relevant to include because the vertical orientation could fulfill
similar roles to networks of protected areas that span across latitudinal gradients as species
shift poleward under climate change [34, 35]. We did not include dynamic counterparts to
these as the hypothesized goal of the Static Vertical MPA is to cover a wide range of tempera-
ture gradients providing protection as species migrate poleward. All designs with MPAs had
the same amount of spatial area closed (e.g., 42 out of 400 cells, roughly 10% of the ecosystem),
and visuals of the MPA designs can be found in the (52 and S3 Figs).

Statistics

We fit linear regression models to evaluate differences in aggregate levels of biomass, catch,
and revenue between various MPA designs and the baseline no MPA scenario. We present our
results comparing the average values of the present-day ecosystem (years 0-10) to the end of
the century ecosystem (years 90-100).

Results

Our results suggest that there is a significant difference in biomass in only one MPA design
scenario, Square Shifting, compared to the no MPA scenario (Fig 2, S6 Table); however, the
magnitude of this difference in biomass is minimal (<5% difference in biomass under all
MPA designs) (S7 Table). Catches are slightly higher (mean value of 12%) under all MPA sce-
narios (p-values < 0.001) than under the no MPA scenario (S8 Table). No single MPA design
significantly outperforms the others in terms of both biomass and catch. Even with higher
catches, revenue is significantly lower (mean value of -10%, p-values < 0.001) under all MPA
scenarios than under the no MPA scenario (Fig 2) due to a combination of price elasticity
and lower-value species being caught. Overall, there is strong variation of catches by species
under different MPA designs, especially in the Network designs; however, the changes in
catches between MPA designs at the edges of MPAs are minimal when aggregated across
groups (Fig 3).

When comparing the dynamic MPAs to their static counterparts, we see that the Square
Shifting MPA outperforms the Square Static MPA on all aggregate measures. The Network
MPAs (Network Static and Network Shifting) perform similarly on all aggregate measures.
The Square Shifting MPA compared to the Static Square MPA has significantly higher catches
(15% compared to 11.8%, p-value < 0.001), revenue (-8.6% compared to -10.5%, p-
value < 0.001), and biomass (0.6% compared to 0.0%, p-value < 0.001). In contrast, the net-
work MPAs have <1% difference between their relative performance when compared against
the no MPA scenario and their 95% confidence intervals overlap for all of their measures (Fig
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2). Overall, the Square Shifting MPA also outperforms both network MPA designs signifi-
cantly in terms of total catch, revenue, and biomass (Fig 2, S7-S9 Tables).
We observe the change in species ranges through their average biomass at different latitudes
in our ecosystem (Fig 4). For many fished species, the introduction of the MPAs does not
No MPA Horizontal Static Vertical Static Square Static Square Shifting Network Static Network Shifting
15 l Biomass tkm®
Horizontal Static Vertical Static Square Static Square Shifting Network Shifting
15 15 . Catch vkm?
Fig 3. Biomass (t/km?) and catch (t/km?) of fished functional groups at the end of the 21*' century (years 90-100).
https:/doi.org/10.1371/journal.pone.0241771.g003
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fundamentally alter the species ranges. However, for adult mackerel, the effect of introducing
an MPA is dramatic, shifting the range to almost solely within the MPA areas regardless of
design (Fig 4 and S11 Fig). Comparing the Static Vertical and Horizontal MPAs, most func-
tional groups’ biomass are heavily concentrated in the ‘northern’ latitudes in the horizontal
MPA, but more evenly distributed in the Vertical MPA scenario. When comparing the Square
designs to the Network designs (Static and Shifting), the Network designs have higher biomass
levels in the Southern ranges than the Square designs.

Species-specific results

There are winners and losers for different species and fisheries under the combination of MPA
and climate change effects (S8-524 Figs). The spillover effect of increased catches adjacent to
MPAs is observable for those species that thrive within the MPA depending on the MPA
design (e.g., for whiting under all MPA designs, S17 Fig). This effect of increasing biomass
within the MPA is mediated by the predator-prey interactions that may be affected by whether
some species are primarily protected from fisheries. For example, shrimp are negatively
affected within the MPAs due to the protection of their predator, whiting. Anchovy and whit-
ing are the two groups that benefit the most compared to the no MPA scenario under all MPA
scenarios (Fig 5) with average increases in biomass of 26% and 28%, respectively. The non-
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Fig 5. Percent change in biomass of select functional groups compared to no MPA scenario at the end of the 21* century. Error bars
represent 95% confidence intervals of the mean percent change.

https://doi.org/10.1371/journal.pone.0241771.9005

network scenarios (the Static Vertical, Horizontal, and Square and the Dynamic Square sce-
narios) appear to generate more extreme positive outcomes for anchovy, whiting and whales
and larger negative outcomes for mackerel (juvenile and adult) and shrimp. This strong nega-
tive effect on mackerel is consistent across MPA scenarios (average decline of -65% for adult
mackerel).

Fishery results

Our results suggest that catches were higher under all MPA scenarios and fisheries revenues
were lower under all MPAs compared to the no MPA scenario. This is because catches of
high-value species are lower (e.g., shrimp), while low-value species are higher (e.g., anchovy
and whiting) (Fig 6). The increase in biomass is followed by an increase in catches with the
same fishing effort, thus leading to higher catch per unit effort of these fleets (S8-524 Figs).
Thus, the ‘foragers’ fleet for anchovy and the trawlers for whiting see their catches increase by
between 15% and 30% depending on the scenario. In contrast, the mackerel fleet experiences
much lower catches, not only because of the area closed to fishing, but also due to the lowered
mackerel populations. These changes in the catch profiles under MPA scenarios lead to an
aggregate loss in fisheries revenues, even though there are higher total catches. Only the
anchovy fleet experiences economic benefits under all the MPA scenarios (Fig 6). The remain-
ing fleets experience almost no change from the no MPA scenario (trawlers for cod) or
declines in revenue (all other fleets).

MPAs lead to an aggregate loss in revenue under climate change when compared to a no
MPA scenario, which is due to a reduction in fishing area. However, some designs perform
better than others (Fig 2). By the end of the 21*' century under 4°C warming, the Square Shift-
ing design, followed by the Network Shifting and the Horizontal Static MPA (which are com-
parable to each other) perform the best in terms of revenue and experience the smallest loss
relative to the no MPA scenario. These three designs perform significantly better than the
alternatives (Fig 2), but not for all fishing fleets. For example, the Square Shifting MPA has the
best result in terms of anchovy fleets (+33%) but the worst result in terms of mackerel fleets
(-91%; Fig 6).

Discussion

Our findings show an increase in biomass in some MPA scenarios (notably Vertical Static,
Network Static and Square Shifting), suggesting that, even under climate change, MPAs could
provide benefits regionally. However, our model shows that there is no silver bullet design for
maintaining ecological functions and the fisheries that depend on them under climate change.
Various MPA designs performed relatively similarly to each other in terms of aggregate catch
and revenue in comparison to the no MPA scenario, suggesting that MPAs could be beneficial
regardless of the design. In terms of fisheries revenue, our MPA designs did not outperform
the no MPA scenario under climate change. This finding reinforces the current understanding
that trade-offs between species protection and fisheries are often needed [36, 37]. However,
our model does demonstrate higher catches on the edges of MPAs that allow fishers to capital-
ize on the spillover effects of MPAs.

The Vertical and Square Shifting MPA scenarios may mitigate the negative impact of cli-
mate change on biomass by protecting species as they migrate to cooler waters because the
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Fig 6. Percent change in revenue of each fishing fleet compared to no MPA scenario at the end of the 21* century. Error bars represent 95%
confidence intervals of the mean percent change.

https://doi.org/10.1371/journal.pone.0241771.9006

Vertical MPA covers a larger temperature gradient than the other scenarios, and the Square
Shifting MPA moves towards a colder temperature gradient. This may partially address cur-
rent concerns expressed by [19] of species thermal thresholds being exceeded in current tropi-
cal MPAs. However, this will not be true in all cases, where species migration to cooler waters
is not poleward [38]. The Network Static MPA increased aggregate biomass, yet it negatively
impacted some species more than other MPA designs due to fisheries being able to exploit the
spillover effect. In line with this finding, the Network MPAs were the best performing designs
for fishery revenues over time.

The potential benefits of dynamic MPAs are likely complicated by the ecological reality of
predator-prey interactions and shifting fishing effort. This reinforces earlier findings that the
potential benefits of MPAs vary by species [2]. While MPAs are often introduced to protect
the marine ecosystem, they appear, in this analysis, to modify a previously fished ecosystem
which can exacerbate predator-prey interactions to the point of increasing some populations
and dramatically reducing others. An example of this in our model can be seen with mackerel,
where even though they were protected from fishing within the MPA, mackerel were still
driven to very low biomass levels due to an increase in their predators (whales). Therefore, the
idea of MPAs restoring ecosystems to a previous state is complicated by ecological reality.
Consequently, MPA design necessitates economic and ecological trade-offs that modify the
ecosystem functioning and thus translates into effects on the fishers and others that rely upon
these ecosystems [39]. While dynamic MPAs may have ecological benefits [40, 41], they may
be difficult in practice near coastal areas where a wide-variety of human activities occur and
many people rely on the coastal environment for their livelihoods [42]. This source of conflict
is reduced in the High Seas where dynamic MPAs could benefit many threatened species [20].

The results of our study confirm the importance of analyzing predator-prey interactions,
and the need for managers to consider these interactions before implementing an MPA. Eco-
system-based management can be particularly helpful instead of single-species based manage-
ment as the former accounts for species interactions [43, 44]. Our model shows that the
implementation of an MPA can shift the balance of an ecosystem in favor of some functional
groups over others. To apply this finding, it is important to understand that the establishment
of an MPA disrupts a current ecosystem that includes fishing pressure and that the species’
populations will be modified by these spatial restrictions of fishing pressure. These dynamics
can be examined by modeling how food webs will respond if heavily fished species or an apex
predator is released from fishing pressure [45]. Thus, it is important to design MPAs with spe-
cific goals in mind, whether it is the protection of a single species, certain species, or overall
protection of the ecosystem.

Limitations

Our work uses a simple spatial ecosystem model with a sea surface temperature change as a cli-
mate change driver. The model allows us to explore trade-offs between social-ecological out-
comes resulting from MPA design. This research is not an empirical analysis, thus the results
should be interpreted as demonstrative of potential principles and outcomes rather than a
strictly literal interpretation. The model as it has been implemented is not subject to other
challenges of fisheries and spatial management including non-compliance with no-take areas,
especially for dynamically managed areas. The simplified model we adapted does not control
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for habitat preferences of different functional groups outside temperature. This was done
intentionally to isolate the effect of the MPA design from whether the MPA design overlapped
with a species habitat. In addition, the temperature effects are driven by changes in sea surface
temperature which are more relevant for some functional groups (e.g., anchovy and mackerel)
than others (e.g., cod and whiting).

Our models produce spillover effects and the presence of higher catches under all MPA sce-
narios indicates that spillover compensates for the loss in catch in areas closed to fishing inside
MPA boundaries. This finding demonstrates that our parameterized model predicts spillover
catches and benefits to fisheries based on the dispersal values used and tested in our sensitivity
analysis (see S1 File). The spillover in our model is demonstrated to be non-trivial based on
dispersal values used, and these results are robust to alternative spillover values (S5 Fig). How-
ever, the strength of the spillover effect is likely to vary by species [2], and this is dependent on
the species within the MPA and surrounding region.

Our modeling can help inform the potential benefits and costs of different MPA designs.
However, the findings may not be accurate for all ecosystems. Therefore, it is important to
consider the specifics of the ecosystem during the MPA design process and to potentially apply
this type of modeling framework where possible. This reinforces our understanding of the
value of information during MPA design [46].

Conclusion

Our results suggest that there is no one optimal solution in the face of climate change, but dif-
ferent MPA designs could potentially bring about regional benefits in terms of biomass and
catch. In this study, dynamic single MPAs outperformed dynamic or static networks of MPAs.
In addition, some species ranges can be maintained over an extended area through MPAs that
extend over an environmental gradient. As our study shows, MPA managers must anticipate
the effects of released fishing pressure and species interactions on the goals of their MPA. In
the face of a changing climate, research that models the potential trade-offs of MPAs for sus-
tainable fisheries management remains relevant on local and global scales.
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