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Abstract The Reissner–Nordström black hole – moving
mirror correspondence is solved. The beta coefficients reveal
that charge makes a black hole radiate fewer particles (neutral
massless scalars) per frequency. An old Reissner–Nordström
black hole emits particles in an explicit Planck distribution
with temperature corresponding to the surface gravity of its
outer horizon.

1 Introduction

Does the Reissner–Nordström (RN) black hole radiate fewer
neutral massless particles than the Schwarzschild black hole?
It is well-known that charged black holes are colder and
smaller than their neutral cousins (of the same M). Consider
the range of sizes of the outer horizon of a RN black hole
and the temperature range,

1

2
<

r+
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< 1, 0 <
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where the s-subscript refers to Schwarzschild, rs ≡ 2M and
Ts = (4πrs)−1. The inner and outer horizons of the RN black
holes are
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2

(
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r2
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q

)
, (2)

which are dependent on the two parameters (M, Q), where
r2
q ≡ Q2, and the temperature of the outer horizon is [1]

T+ = κ+
2π

= 2r+ − rs
4πr2+

= Ts − Ts

(
T̄+
Ts

− 1

)2

, (3)

where T̄+ := (4πr+)−1 > Ts . In this note, we consider
whether the number of neutral massless particles radiated is
reduced too. By modeling the RN black hole by a moving
mirror [2–4], we solve for the beta coefficients for all times,
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which is the spectrum of the collapsing star [5] up to gray
body factors and different dimensionality (for a recent review
see [6]). This paper is organized as follows: Sect. 2 contains
the RN metric and matching condition for collapse. Sec-
tion 3 reveals the moving mirror, and computes the dynam-
ics resulting in asymptotic infinite acceleration. Section 4
demonstrates the all-time spectrum and compares with the
Schwarzschild and extremal Reissner–Nordström spectra. In
Sect. 5, we conclude. Appendix A has an elementary model
with reduced particle creation. Units are G = h̄ = c = 1.

2 Reissner–Nordström metric

The outside metric of the RN collapse system, is given by
the RN geometry,

ds2 = − f (r) dt2 + f (r)−1 dr2 + r2 d�2, (4)

where our f (r) ≡ fq is given by

fq = 1 − rs
r

+ r2
q

r2 = (r − r+)(r − r−)

r2 . (5)

To find the form of the correct moving mirror motion asso-
ciated with the RN metric Eq. (4), we first transform the
RN metric with light-cone coordinates using the canonical
Regge–Wheeler (tortoise) spatial coordinate. For a double
null coordinate system (u, v), utilizing u = t − r∗, and
v = t + r∗, the appropriate tortoise coordinate [7] is,

r∗ = r + 1

2κ+
ln

∣∣∣∣
r − r+
r+

∣∣∣∣ + 1

2κ−
ln

∣∣∣∣
r − r−
r−

∣∣∣∣ , (6)

where the surface gravities are defined as,

κ± ≡ r± − r∓
2r2±

. (7)

One then has the metric for the outside collapse geometry,

ds2 = − fq du dv + r2 d�2. (8)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08761-7&domain=pdf
http://orcid.org/0000-0002-0460-1941
mailto:michael.good@nu.edu.kz
mailto:ycong@yzu.edu.cn


 1169 Page 2 of 5 Eur. Phys. J. C          (2020) 80:1169 

We will now coincide the inner and outer regions of the
incipient charged black hole (see e.g. Wilczek [8]). The
matching condition, as is similar to the textbook case of
the Schwarzschild matching in [7], between the flat interior
geometry, described by the interior coordinates, U = T − r ,
and V = T + r , is the trajectory of the nascent black hole
origin. The position of the origin is dynamic from the point
of view of the outside coordinates. The equation of motion of
the center of the black hole is succinctly expressed in terms
of the exterior function, u(U ), dependent on interior coordi-
nate, U :

u(U ) = U −
ln

∣∣∣− 2r++U−v0
2r+

∣∣∣
κ+

−
ln

∣∣∣− 2r−+U−v0
2r−

∣∣∣
κ−

. (9)

This matching, r∗(r = (v0 −U )/2) = (v0 − u)/2, happens
along the light-like shell, v0, which is a single advanced time
null-ray. Here v0−vH ≡ 2r+ because u → +∞ atU = vH .
We set the horizon to zero, vH = 0, and obtain the trajectory
of the origin:

u(U ) = U − 1
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∣∣∣∣−
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∣∣∣∣ − 1

κ−
ln

∣∣∣∣
r+
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− 1 − U

2r−

∣∣∣∣ .
(10)

Having obtained the origin trajectory u(U ), in terms of light-
cone retarded coordinates, we are now in a position to con-
sider its physical effect on the quantum field. The quantized
scalar field is not only described by its wave equation of
motion but crucially, it must also vanish at r = 0. This
is called the regularity condition of the field. Regularity at
the r = 0 location forces the form of the field modes to
behave like a moving mirror (no field behind r < 0: reflect-
ing off r = 0). It reveals the form of field modes, such that
U ↔ v identification can be made for the Doppler-shifted
right movers [7] in an analog flat spacetime system. The mir-
ror trajectory, f (v) ↔ u(U ) is then a known function of
advanced time, which we examine in the next section.

3 Trajectory and dynamics

Now we will state the mirror trajectory and analyze its
dynamics, preparing for a computation of the particle pro-
duction in Sect. 4. The light-cone coordinate mirror trajec-
tory f (v) in flat spacetime is the light-cone coordinate black
hole origin trajectory u(U ) in curved spacetime. Let us study
the massless scalar quantum field in (1 + 1)-dimensional
Minkowski spacetime in similar spirit to prior studies, e.g.
[9]. The corresponding RN moving mirror trajectory from
Eq. (10) is

f (v) = v −
ln

(
1
2

√
v2

r2+

)

κ+
−

ln

(
1
2

√
(2r−−2r++v)2

r2−

)

κ−
, (11)

Fig. 1 Trajectories Eq. (11), in a spacetime plot. The horizon has been
set to vH = 0, the charge is Q = 0, Q = √

3/2 = 86% and Q = 99%,
for M = 1. The mirrors starts asymptotically static, but have infinite
proper acceleration in the far future. As can be seen, effectively, charge
does not significantly alter the qualitative behavior of the curves

expressed in null coordinates (u, v) where f (v) is a func-
tion of null coordinate advanced time v. This is a rather
involved dynamics even though the system only has two
parameters: (M, Q). Setting M = 1, but more notably, set-
ting the charge to a specific value that is particularly con-
venient: Q = √

3/2 = 86%, simplifies the dynamics for
illustration (r− = 1/2, r+ = 3/2):

f (v) = v − 9

4
ln

(
v2

9

)
+ 1

4
ln(v − 2)2. (12)

Keep in mind the horizon has been set to vH = 0, and so
v spans −∞ < v < vH . The trajectory in spacetime coor-
dinates is plotted in a spacetime plot Fig. 1. A conformal
diagram of the accelerated boundary is given in Fig. 2. For
an even more simplified vacuum solution model that gives
the same result as the RN metric, see Appendix A.

The rapidity, η = − 1
2 ln f ′(v); and proper acceleration,

α = eη(v)η′(v); are monotonic functions that diverge in the
limit that advanced time approaches the horizon time, v →
vH = 0. The limit in the far past, v → −∞ is (η, α) → 0; the
mirror is past asymptotically static. The mirror rapidly travels
left, off to the speed of light. In the limit that charge goes to
zero, Q → 0, the function, u(U ) ↔ f (v), of Eq. (10),
recovers the Schwarzshild mirror [10–13], as one expects:

f (v) = v − 4M ln

∣∣∣∣
vH − v

4M

∣∣∣∣ . (13)
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Fig. 2 The trajectory Eq. (11) in a Penrose conformal diagram. The
horizon has been set to vH = 0. For illustrative emphasis on the asymp-
totic behavior, the ratio Q/M = 86% is fixed, but the mass is changing,
M = 2, 1, 2−1, 4−1, 8−1; for cyan, black, purple, brown, pink, respec-
tively. The mass dramatically affects the conformal trajectory, demon-
strating the horizon approach is more rapid at late times for higher value
of the mass

We will utilize the Schwarzschild surface gravity, κ ≡
(4M)−1 in the following.

4 Spectrum and particles

The beta Bogoliubov coefficient can be found via [14],

βωω′ = −n0

∫ vH

−∞
dv e−iω′v−iω f (v)(ω f ′(v) − ω′), (14)

by setting the horizon vH = 0 for convenience and def-
initeness, (horizon position will not affect the spectrum
because of complex conjugation). The normalization factor
is n−1

0 = 4π
√

ωω′. We will use the RN and Schwarzschild
surface gravities are (κ±, κ) and also, κ̄−1 ≡ 2(r+ − r−).
An integration by parts simplifies Eq. (14) by ignoring the
non-contributing surface terms. To obtain the spectrum, we
complex conjugate,

Nωω′ ≡ |βRN
ωω′ |2. (15)

which is the particle count per mode-mode squared,

|βRN
ωω′ |2 = 1

2πκ+
ω′

ω2
p

1

e2πω/κ+ − 1
e−πω/κ−|U |2, (16)

Fig. 3 The particle spectrum, Eq. (18), in a semi-log plot, demon-
strating less particles emitted as the charge is increased. An infrared
divergence, for ω → 0 is present, which signals the usual infinite total
particle count due to the soft particles at ω = 0. The plot includes the
Schwarzschild spectrum, Q = 0, Eq. (19). Here we set M = 1

where ωp ≡ ω +ω′ and the confluent hypergeometric Kum-
mer function of second kind is,

U ≡ U

(
iω

κ−
,
iω

κ
,
iωp

κ̄

)
. (17)

Here κ−1 = 4M , and κ̄−1 = 2(r+ − r−) = 4
√
M2 − Q2.

The spectrum, which is the main result of this paper, is then,

Nω =
∫ ∞

0
Nωω′dω′, (18)

which is plotted in Fig. 3.

Spectrum in Schwarzschild limit

The spectrum for the beta coefficient squared for the RN
mirror in the limit that the charge, Q → 0, is the limit where
the inner radius goes to zero, r− → 0. The result is confirmed
to be

lim
r−→0

|βRN
ωω′ |2 = |βS

ωω′ |2

= rsω′

π(e4πrsω − 1)(ω′ + ω)2 . (19)

In the high frequency regime, where the modes are extremely
red-shifted, ω′ 
 ω, one has Nωω′ := |βωω′ |2,

Nωω′ = 1

2πκω′
1

eω/Ts − 1
. (20)

This confirms that the particle spectrum of Eq. (16), gives
the known answer [15] in the zero charge limit.

Spectrum in the extremal limit

In the opposite limit for high charge, the results should con-
form to the extremal Reissner–Nordström (ERN) black hole
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spectrum [16],

|βωω′ |2 = 4M2e−4Mπωω′

π2ωp

∣∣Ka
(
4M

√
ωωp

)∣∣2
, (21)

in the correct limit, where a ≡ 1 + 4Miω, and Ka is the
modified Bessel function of the second kind. Indeed, taking
the maximal charge limit Q2 → M2 or r± → rs/2 = M of
the integrand of Eq. (14) and then integrating over advanced
time, the ERN spectrum is obtained. In the high frequency
limit, this amounts to

|βωω′ |2 = 4M2

π2

∣∣∣K1

(
4M

√
ωω′

)∣∣∣
2
, (22)

which, for a uniformly accelerated mirror [17], is the spec-
trum with κUA ≡ 1/(2M), distinctly non-thermal [3,4,18],
as expected since the ERN black hole has “zero” (i.e. unde-
fined) Hawking temperature [19,20].

Spectrum in the late-time limit

Finally, one can check that at late time, thermal behavior is
obtained for the beta coefficient squared, as expected:

lim
ω′
ω

|βRN
ωω′ |2 = 1

2πκ+ω′
1

eω/T+ − 1
, (23)

with temperature, T+ = κ+/(2π).

5 Conclusions

We have solved for the particle spectrum of the RN black
hole by use of the moving mirror model solving for the
beta Bogoliubov coefficients. In the limits of zero charge
and maximum charge, the Schwarzshild and the ERN results
are obtained, respectively. In the high frequency regime cor-
responding to late time the spectrum is thermal with temper-
ature T+ = κ+/(2π).

The result demonstrates that during the formation of the
RN black hole, charge inhibits the radiation of massless scalar
neutral particles relative to an equal mass Schwarzschild
black hole. The thermal count establishes the supposition
(and confirms explicitly through particle production) that the
distribution of particles from a RN black hole is the Planck
spectrum.

Acknowledgements Much thanks to Paul Anderson for input on
an early draft of this manuscript. Funding from state-targeted pro-
gram “Center of Excellence for Fundamental and Applied Physics”
(BR05236454) by the Ministry of Education and Science of the Repub-
lic of Kazakhstan is acknowledged. MG is also funded by the ORAU
FY2018-SGP-1-STMM Faculty Development Competitive Research
Grant no. 090118FD5350 at Nazarbayev University. YCO thanks
the National Natural Science Foundation of China (nos. 11922508,
11705162) and the Natural Science Foundation of Jiangsu Province
(no. BK20170479) for funding support.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Truncated method

The essential physics is actually encapsulated in the truncated
trajectory:

f (v)Trun = v − 1

κ+
ln

∣∣∣∣
v

2r+

∣∣∣∣ , (A1)

which results in a significant simplification. This motion is a
good preliminary model for investigation of a spectrum that
has the correct Schwarzschild limit and late-time limit. The
corresponding exterior metric is

ds2
Trun =

(
1 − 1

2κ+r

)
du dv + r2 d�2, (A2)

which has surface gravity κ+ like the RN metric. But unlike
the RN metric this is a vacuum solution, Gμν = 0 (so one
could argue that Q is no longer the electric charge), with
horizon at r = 1/(2κ+) = r2+/(r+ − r−) �= r+. Plugging
Eq. (A1) into Eq. (14) results in a spectrum that is simply,

|βTrun
ωω′ |2 = ω′

2πκ+(ω′ + ω)2

1

eω/T+ − 1
. (A3)

The Schwarzschild zero charge limit holds,

lim
Q→0

|βTrun
ωω′ |2 = |βS

ωω′ |2, (A4)

and the late-time thermal limit also holds,

lim
ω′
ω

|βTrun
ωω′ |2 = 1

2πκ+ω′
1

eω/T+ − 1
, (A5)

with temperature,
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T+ = κ+
2π

. (A6)

Since κ+ < κ , the particle production is mitigated by the
presence of charge.
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