

The 8th International Conference on Nanomaterials and Advanced Energy Storage Systems (INESS-2020)

Silicon solar cells textured using gold of induced etching

<u>K.K. Dikhanbayev</u>*, Ye. Shabdan, Ye. Sagidolda, Sh. B. Bayganatova, G. K. Mussabek, Sh.A.Zhumatova Department of Physics and Technology, Al-Farabi Kazakh National University,

Almaty, 050000, Kazakhstan
*E-mail: nanotechkz2012@gmail.com
**E-mail: dksolar2017@gmail.com

As is known, a layer with a dielectric coating remains the standard of a photoelectric converter and many research groups are studying various alternative methods to achieve an antireflection effect in silicon for photovoltaic and other optoelectronic applications [1]. Some of these methods include electrochemical etching [2], sol-gel deposition [3], magnetron sputtering of metal oxide films [4], and anisotropic etching [5].

Ready-made structures with a p-n junction were used as the initial substrate, the specific resistivity of the n^+ layer was 0.008-0.01 Ohm·cm and the total plate thickness was 300 μ m. Then, the front side of the sample is chemically activated in a solution of 0.4 mM, HAuCl₄ for 3-5 s, after which it is thoroughly washed in deionized water.

The output parameters of solar cells were determined from the characteristics. In particular, open circuit voltage $U_{oc}=610$ mV, short-circuit current $I_{sc}=32$ mA / cm2, duty cycle $\xi=0.77$, light emission power $P_{max}=100$ mWt /cm², efficiency is $\sim15.03\%$.

References

- [1] Tsujino K., Matsumura M. Helical nano holes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst. // Electrochem Solid-State Lett. -2005. V. 8. P. 193-197.
- [2] Panes P. Lipinski M. Porous silicon layer as antireflection coating in solar cells // Optoelectronics review. -2000. –V. 8. \cancel{N} $\underline{0}.$ 1. P. 57-59.
- [3] Shabdan Yerkin, Kadyrjan Dikhanbayev, Nurxat Nuraje, Study of Electron Transport Mechanism for Engineered Carbon Nanotube/TiO₂ Nanofibers by Electrospinning // INESS 2017, 5th International Conference on nanomaterials and Advanced Energy Storage Systems, August 9-11, 2017, Nazarbayev University, Astana, Kazakhstan.