Amorphous silicon dioxide as an anode material for Li-ion batteries

Kydyr Askaruly1,1,1, Seitékhan Azat1,2,3, Zhantikeyev Ulan2,3, Mukhtar Yeleuov1,3

1Satbayev University, Almaty, Kazakhstan
2Al-Farabi Kazakh National University, Almaty, Kazakhstan
3Institute of Combustion Problems, Almaty, Kazakhstan
*E-mail: k.askaruly@gmail.com

In recent decades, progress in Li-ion batteries (LIBs) has grown dramatically. In 2016, about 6.4 billion cells were sold of LIBs and this is equivalent to 90 GWh [1], even the Nobel Prize in Chemistry in 2019 was awarded to John Goodenough (USA), Stanley Whittingham (Great Britain) and Akira Yoshino (Japan) for the development of lithium-ion batteries. But work on improving the Li-ion batteries is still ongoing.

SiO_2 is one of the most widely used materials on earth. SiO_2 is one of the most widely used materials on earth and is uses in the fields of medicine, cosmetics, agroindustry, electronics [2,3], and has also begun research on the use of SiO_2 as an anode material in lithium-ion batteries [4]. It has a high theoretical capacity (1965 mAh•g\(^{-1}\)) [5].

SiO_2 obtained by us is amorphous and the source is rice husk (RH) from Kazakhstan (Kyzylorda region). Material synthesis is divided into two stages. Stage 1 includes washing pre-treatment by HCl and calcination at 600°C (SiO_2-1). Stage 2 includes purification by dissolving in NaOH and extraction pure (SiO_2-2) by adding HCl and washing by distilled water. The use of 1 stage material as an anode material in lithium-ion batteries has shown good stability. Microstructure of SiO_2-1 and SiO_2-2 differs from each other. SiO_2-2 at the beginning showed good stability, but from the 10th cycle, it began to lose capacity.

Acknowledgement
This research was supported by grant «Best teacher of higher educational institutions of the Republic of Kazakhstan 2019»

References