
Received March 9, 2020, accepted April 2, 2020, date of publication April 14, 2020, date of current version May 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2987970

Decentralized Greedy-Based Algorithm for Smart
Energy Management in Plug-in Electric Vehicle
Energy Distribution Systems
ABBAS MEHRABI 1, (Member, IEEE), H. S. V. S. KUMAR NUNNA 2, (Member, IEEE),
ARESH DADLANI 2, (Member, IEEE), SEUNGPIL MOON3,
AND KISEON KIM 4, (Senior Member, IEEE)
1Department of Computing and Technology, Nottingham Trent University, Nottingham NG11 8NS, U.K.
2Department of Electrical and Computer Engineering, Nazarbayev University, Astana 010000, Kazakhstan
3Korea Electric Power Research Institute (KEPRI), Deajeon 34056, South Korea
4School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Abbas Mehrabi (abbas.mehrabidavoodabadi@ntu.ac.uk)

This work was supported by the Ministry of Oceans and Fisheries, South Korea, under the part of the project titled ‘‘Development of
Automatic Identification Monitoring System for Fishing Gears.’’

ABSTRACT Variations in electricity tariffs arising due to stochastic demand loads on the power grids have
stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs).
Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and
high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move
EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities
applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart
energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed
smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social
welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed
integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online
decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the
most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network
verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an
alternative scheduling strategy under the equal participation of EVs in charging and discharging operations.
Considering the best-case performance where only EV profit maximization is concerned, our solution also
achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the
existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the
overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city
scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management.

INDEX TERMS Electric vehicle-to-grid (V2G), distributed energy management, mixed integer non-linear
programming, greedy-based algorithm, smart cities.

I. INTRODUCTION
Overwhelming environmental concerns have triggered the
dramatic shift towards the electrification of public transporta-
tion in smart cities [1]. Electric vehicles (EVs), as cost-
efficient and eco-friendly substitutes for fossil fuel-operated
vehicles, have received significant attention in recent years
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from both, academia and industry [2]. Currently, there are
over 40 different EVs models in the UK with more expected
to join the public transportation fleet in near future [3], [4].
Depending on the operation mode, plug-in EVs that oper-
ate solely on battery power have advantages over conven-
tional vehicles. Along with the benefits, however, arise new
challenges associated with the unprecedented number of
EVs being injected into the electricity grid. One primary
issue relates to the power grid unreliability and transmission
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overhead from uncontrolled energy trading between EVs and
the grid at charging stations (CSs) [2], [5]–[10].

Several existing research efforts address issues associ-
ated with the charging/discharging of EVs given their pro-
found impact on the load regulation of vehicle-to-grid (V2G)
systems [6], [8], [11]–[14]. The bidirectional energy flow
between EVs and the grid enables load flattening by shifting
the EV charging demands from peak-load periods to the
valley intervals [7], [9], [15]. In light of the energy costs at
different time intervals and the uncertainty in EV arrivals,
smart scheduling solutions are required to not only boost the
obtainable profit for EVs, but also ensure the reliability of the
power grid infrastructure through ancillary services [8], [10].
Likewise, there are classes of works dedicated to spa-
tial scalability in EV scheduling and are mainly assorted
based on the configuration of the aggregators in the system.
Non-preemptive charging/discharging of EVs occur either
at one CS operated by a single aggregator with complete
prior knowledge of the EV energy needs and departure
times [8], [10], or at multiple CSs managed by a single aggre-
gator where the scheduling problem is tackled locally [9].

As the main limitation of major studies on EV schedul-
ing, the effective infrastructure and approaches for smart
scheduling of a large-scale network of on-move EVs in an
energy distribution system are not considered. In this line,
Internet of Vehicles (IoVs) along with recent advances in
cloud computing and software-defined networking technolo-
gies aim to facilitate the decentralization of EV scheduling
and the underlying communication infrastructure [16]–[19].
In spite of such advancements, the objective functions inves-
tigated mainly target the satisfaction criteria of EV drivers
such as waiting time at CSs or merely maximize the prof-
its of EVs. More specifically, the maximization of social
welfare of the entire distribution system including multiple
spatially-located CSs, each operated by individual aggre-
gators, has been overlooked in the aforementioned works.
Under such a setting, the EV owners enjoy the flexibil-
ity of selecting stations that yield the most achievable
profit.

Aware of the influential energy distribution system vari-
ables (such as the number of CSs and the percentage of V2G
penetration), it is thus, crucial to select optimal variables that
basically improve the operational costs of CSs. Moreover,
from the viewpoint of V2G management, it is necessary
to jointly optimize the achievable profit for both, EVs and
CSs in a controlled manner which, in turn, motivates energy
suppliers to invest on the deployment of CSs for energy trans-
mission to EVs. Given the limitations and motivations stated
above, the key contributions of this paper are summarized as
follows:
• The joint profit maximization of EVs and CSs, i.e., the
social welfare, in scheduling the charging/discharging
of EVs for a large-scale energy distribution system is
formulated as an MINLP optimization problem.

• A novel online and decentralized algorithm is designed
that initially solves the CS selection problem using a

greedy-based heuristic, therefore, reducing the original
intractable MINLP problem to a tractable form.

• Furthermore, the algorithm then determines the energy
trading between the EV and power grid at the selected
CS by solving the tractable problem using standard opti-
mization solver with the objective of providing desired
ancillary services to the power grid.

• As confirmed by our analytical investigations, the pro-
posed algorithm which is based on greedy approach
achieves the efficient solutions within a shorter running
time compared to sophisticated solutions which rely on
branch and bound (BB) or iterative mechanisms.

Results from simulations conducted on the IEEE 37 bus
distribution network reveal that under the best-case perfor-
mance, the proposed algorithm outperforms a baseline solu-
tion in terms of social welfare by about 30% on average and
the flatness of final grid electricity load by about 20%. The
results also exhibit the optimal number of deployed stations
and V2G penetration in the system for which EV owners
obtain maximum profit. Our findings can serve as guidelines
for V2G designers in smart cities to optimize the operational
costs incurred in large-scale distributed CS planning.

The rest of this paper is organized as follows. In Section II,
the related works are discussed. The system overview and
notations used in system modeling are given in Section III,
followed by the optimization problem in Section IV.
In Section V, the design and computational complexity of the
proposed algorithm is presented. Simulation results are given
in Section VI. Finally, the main discussions and conclusion
are drawn in Section VII and Section VIII, respectively.

II. RELATED WORK
A number of allocation strategies for EV charging/
discharging with different objectives have been reported in
the literature [6], [8]–[11], [13], [15], [17]. We refer the
interested reader to [2] for a comprehensive survey on EV
charging scheduling and its challenges.

In scenarios where the EV-related specifics, including EV
battery degradation factors, are known in advance, the prob-
lem of minimizing the overall cost in cooperative EV charg-
ing scheduling at smart CSs was investigated in [8]. Due to
the unpredictable EV departure times, a closed-form solution
was derived in [11] for the optimal charging power of an indi-
vidual EV under the time-of-use (ToU) pricing model. Sim-
ilarly, the authors in [6] proposed a performance-guaranteed
online algorithm to achieve sub-optimal charging scheduling
solutions which result in slightly higher costs compared to the
optimal counterpart. In [13], the bidirectional V2G operation
in a distributed network of CSswith the objective of providing
frequency and regulation support to the power grid and reduc-
ing EV charging costs was addressed. In smart home appli-
cations, EVs can be integrated into home appliances in order
to reduce the electricity costs of consumers. In this regard,
the minimization of overall household electricity payment
through participation in the demand response (DR) program
integrated with EV scheduling was studied in [15].
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In energy distribution systems, the interplay between vari-
ous non-deterministic factors complicate the design of effi-
cient scheduling mechanisms under uncertainty [20]–[22].
Particularly in V2G systems, the EV fleet size, the time
intervals in which they request for charging/discharging ser-
vices, and the percentage of V2G penetration are the main
sources of uncertainty. To this end, research efforts have
tackled uncertainty using approaches such as point esti-
mate method [21] and hybrid possibilities-probabilities [20].
Along with several stochastic parameters, another critical
factor that impacts the profits made by EV owners is the
degradation/fluctuation costs associated with EV batteries.
As detailed in [20] and [21], EV battery degradation accounts
for both calendar degradation, which depends not only on the
state of charge (SOC), but also on the battery temperature,
and cycle degradation. Battery cycle degradation depends on
the depth of discharge (DoD) and charging/discharging rates.
Another stochastic parameter that directly affects the par-

ticipation in DR programs is the price of electricity during
different times of the day. In [23], the authors investigated
the impact of different pricing models on the energy con-
sumption pattern of consumers in a price-based DR program
for residential microgrids. Among different pricing models,
the real-time pricing (RTP) strategy, where the electricity
price is impacted by instantaneous EV charging/discharging
patterns, has been widely adopted in V2G systems [10], [24].
Alongside this parameter, advanced optimization approaches
are required to handle the underlying constraints in schedul-
ing of EVs. The proposed algorithms should accommodate
the complex set of system variables (EVfleet size and battery)
as well as uncertainty in the energy demand.

A partial augmented Lagrangian optimization approach
was proposed in [4] to cope with the coupling constraints
among EVs in a distribution network. The convergence of the
proposed algorithm to the global optimal was analyzed and
its performance was studied under the IEEE 13-node distri-
bution test network with heterogeneous EVs. In [14], a two-
stage scheduling mechanism was proposed for large-scale
scheduling of EVs with the objective of reducing the negative
impact of their charging loads on the power grid. In the first
stage, the EV charging/discharging plan is determined to
minimize costs and the deviation of load curve on the grid
while, the EV load management is considered in the second
stage to follow the guiding load curve. Mixed optimization
formulations are the most common mathematical tools which
can effectively capture the complex set of constraints in EV
scheduling optimization problems [10], [25], [26]. Due to the
stochastic nature of variables as well as the intractability of
mixed optimization problems, the greedy approach has been
recognized as the most efficient method to obtain the near-
optimal scheduling solutions within a reasonably short time
period in online scheduling scenarios where information on
EVs is unavailable beforehand [10], [27].

With regard to V2G system scalability, the authors in [12]
studied the cost minimization problem of scheduling EV
charging at multiple CSs where aggregators at different CSs

co-ordinate with each other in energy trading. The problem
of optimal interval allocation for charging/discharging EVs
at homes and common parking lots for smart households
prosumers was addressed in [10]. In their proposed model,
majority of the EV population charged from the power grid
when at homes during the night, while theymainly participate
in discharging at office parking lots during day time. Addi-
tionally, recent technological advancements have facilitated
the emergence of more sophisticated solutions for scalable
V2G systems [1], [16]–[19]. Luo et al. [16] introduced the
role of cloud computing infrastructures in grid energy and
addressed some related challenges. The utilization of cloud
computing for efficient EV scheduling has been scrutinized
in [17]. For smart cities, the authors in [1] investigated
the power generation and management in EV power supply
equipment (D-EVSE) and proposed two algorithms to max-
imize the driver satisfaction in terms of service waiting time
and to minimize D-EVSE stress level.

In spite of all the solutions available, scheduling of a
large fleet of EVs in smart energy distribution systems where
EV drivers have the flexibility in charging/discharging at
different stations managed by individual aggregators has not
been well explored. Furthermore, most of the existing efforts
tend to maximize EV driver satisfaction or their profits, while
neglecting the social welfare of the whole distribution system.

In this paper, we focus on how the weighted profit max-
imization impacts the obtainable profit for each EV and CS
entity in a smart energy distribution system, where aggrega-
tors purchase required energy from the grid without the need
for coordination among them. Considering the realistic costs
for EV batteries, maintenance, and labor, we also obtain the
optimal points on some noticeable parameters under such a
setting. That is to say, we formulate the problem of social
welfare maximization for V2G scheduling in a large-scale
smart energy distribution system as an MINLP optimiza-
tion problem. As a widely used approach to obtain effi-
cient solutions with fast computational performance, we then
present an online two-step greedy-based algorithm to solve
the intractable optimization problem. Considering the best-
case performance, simulation results verify that, compared
to an alternative scheduling solution, our proposed algorithm
improves the system social welfare by about 30% on average
and the flatness of final grid electricity load by about 20% on
average. The results further show the existence of optimal CS
deployment and V2G penetration in the distribution system
which can indeed be insightful when designing distributed
V2G systems in smart cities.

III. SYSTEM MODEL DESCRIPTION
We consider a smart energy distribution system comprising
of K spatially-distributed CSs at a large geographical scale
in a smart city scenario. The energy trade between the CSs
and the power grid provisioned by individual aggregators
and under the control of smart meters is shown in Fig. 1.
The distribution system operator (DSO) manages the oper-
ations of all aggregators in interaction with the power grid.
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FIGURE 1. Bidirectional information/energy flow between the
aggregators and power grid in a smart distribution system.

Although the aggregators are connected by a single DSO unit,
they do not communicate or collaborate in energy or profit
trading and work independently.

The EV set, represented by M , is defined as M = MCG
∪

MDG
∪ MV2G, where MCG denotes the set of EVs that only

have charging demands from the power grid, MDG is the
set of EVs that want to only discharge energy to the grid,
and MV2G is the set of EVs that participate in bidirectional
V2G program. The vehicles participate in V2G or grid-to-
vehicle (G2V) during their daily commute from home towork
or vice versa. It is also assumed that the EVs in MDG have
sufficient energy for travelling to their destinations and are
interested in returning some quantum of battery energy back
to the grid or CS. The EVs participate in V2G operation in the
course of their commute. Therefore, they do not move to CSs
solely for the purpose of discharging and gaining profit [10].

The schedule for a single day is equally divided into |T |
discrete time slots, where each slot has the fixed duration
of 1t time units [8], [28]. The EV arrival and departure
time slots to and from charging station CSk are denoted
by Aa,k and Da,k , respectively. We assume non-preemptive
charging/discharging scheduling of EVs at each CS in our
system. The distance between EV a and CSk at the time of
departure from home and the constant electric motor force
are denoted respectively, as da,k and F . The battery capacity
of EV a and its SOC at time slot t are given by Ba and Bta,
respectively. Furthermore, the parameter 0<ra≤1 is defined
to control the final energy requirement of EV a based on its
battery capacity. The initial energy stored in the battery of
EV a at the time of departure from home and the final energy
requirement are denoted by E inita and Efina , respectively. The
amount of energy consumed dwhile commuting from home
to the CS is calculated as F·da,k . Also, the maximum number
of EVs that can be accommodated at CSk is given by Cmax

k
and the binary decision variable x ta,k indicates the allocation
of EV a to CSk at time slot t . With the maximum charging
and discharging powers of Pmaxc and Pmaxd in each time slot,
the amount of allocated charging/discharging power to EV a
in CSk at time slot t is indicated by real decision variable eta,k .
The service interval of EV a at CSk , i.e. the set of con-

secutive time slots for its charging/discharging operation,

is denoted by Ta,k with the first and last time slots given as
t fa,k and t

l
a,k , respectively. Each EV pays the maintenance cost

(MCk ) to the CSwhile on the other side, the CS should pay the
service cost (LCk ) to the labor in order to perform the main-
tenance. Due to high charging/discharging frequencies, our
system also takes into account the degradation (η1) and fluc-
tuations (η2) parameters which correspond to the auxiliary
costs associated with the EV battery [10]. For convenience,
the system notations and their descriptions are summarized
in Table 1.

TABLE 1. System notations and descriptions.

A. COMMUNICATION SYSTEM
As shown in Fig. 1, each CS is managed by a single
aggregator that establishes the information and energy inter-
actions between the power grid and EVs under the con-
trol of a smart meter. It is assumed that each aggregator
purchases the required energy from the power grid and
hence, no coordination between the aggregators is required.
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However, the price of purchase depends on the CS location.
EVs request for charging/discharging services when they
commute between home and work such that the time slots
at which they arrive at CSs are distributed over the schedul-
ing day. Before CS selection, the EV transmits a message
containing data such as its distance to CSs, arrival/departure
at each CS, initial/final energy requirements, and battery
capacity to all aggregators. The communication between EVs
and the aggregators is established via cellular (LTE, 4G/5G)
wireless communication based on the V2G network infras-
tructure in place [18], [19]. Depending on the demand load
and electricity price at each CS, the associated aggregator
then computes the achievable profit if the EV is allocated to
its CS and sends this information back to the EV. Therefore,
there is no need for directly transmitting the demand load or
the electricity price to the EV and only the achievable profit
is communicated with the EV. Upon receiving information
on the achievable profit from all K aggregators, the EV then
subscribes to the most profitable CS for energy trading.

B. ELECTRICITY PRICING MODEL
In smart EV scheduling, the instantaneous electricity price
is directly affected the charging/discharging power of EVs
at each time instant. Among the different pricing strategies,
the RTP schema has been well-accepted wherein the instanta-
neous price is determined based on overall electricity load at
each time slot [8], [28]. In the proposed distribution system,
we utilize the RTP model in which the time-dependent price,
p(k, t), is in linear relation with the load at that time slot,
i.e. p(k, t)= ck0 + c

k
1z
t
k for z

t
k ≥ 0, where ck0 and ck1 are non-

negative real numbers indicating the intercept (in $/kWh) and
slope (in $/kWh/kW ), respectively, of the RTP model at the
bus to which CSk is connected. The load on CSk at time slot t ,
denoted by ztk , is expressed in terms of the base load generated
at CSk by non-EV demands (L tk ) as follows:

ztk = L tk +
∑
a∈M

x ta,k · e
t
a,k , 1 ≤ k ≤ K ; 1 ≤ t ≤ |T | . (1)

Our system also considers the energy-buyback step func-
tion pricing model for when the electricity load on the grid
becomes negative due to high discharging load from the EVs.
Using step function pricing for the negative load motivates
the EVs to return back the surplus battery energy to the grid
(for preserving in the energy storage systems (ESSs)) while
paid less compared to the case when there is high demand
on the grid. Denoting ck2 and c

k
3 as the range (in kW ) and the

incremental price (in $/kWh) of the step function model at the
bus to which CSk is connected, respectively, the electricity
price at load ztk < 0 is given by p(k, t) = ck0 + d|z

t
k |/c

k
2e · c

k
3.

C. PROFIT COMPUTATION
In a distribution system, the social welfare is composed of
the weighted summation of profits obtained by both, EVs and
CSs participating in energy trading. The profit that each side
makes depends on its revenue and the associated costs [23].
On the EV side, the overall profit made by EV owners during

time slot t at CSk , denoted by PEV (k, t), is computed as the
total revenue from charging/discharging minus the mainte-
nance and battery degradation/fluctuation costs. The EVfleet
revenue at time slot t is given by [23], [28]:

RFleet (k, t) = −
∫ ztk

Ltk

p(k, τ ) dzτk . (2)

As mentioned earlier, p(k, τ ) follows the linear pricing model
as long as the load on power grid is positive and fol-
lows the energy-buyback step model when the grid bears
negative load. The negative sign in (2) is to confirm the
fact that EV owners get negative/positive revenue from
charging/discharging operations. In practice, the two major
auxiliary costs associated with EV charging/discharging
operation are the battery fluctuation/degradation [8], [28] due
to high charging/discharging powers and the EV mainte-
nance cost at the station. Therefore, the auxiliary cost of EV
a at time slot t in CSk is derived as the summation:

CFleet (k, t)=
∑
a∈M

x ta,k ·
(
MCk + η1 · DCta,k + η2 · FC

t
a,k
)
.

(3)

The degradation of EV battery depends on factors such as
the charging/discharging rate, environmental temperature,
and the battery DoD which negatively impact the battery
efficiency over the long time horizon [21]. Mathematically
speaking, the battery degradation cost DCta,k is computed as
the summation of calendar and cycle degradation costs [21]:

DCta,k = DCCALta,k + DCCYCta,k , (4)

and the battery fluctuation cost is obtained as follows:

FCta,k =
(
eta,k − e

t−1
a,k

)2
. (5)

The battery calendar degradation cost of EV a in CSk at time
slot t is computed using the following expression [21]:

DCCALta,k = Ba · eB
t
a/ω · eθa/γ ·

√
1t , (6)

where ω and γ are the fitting parameters for battery calendar
degradation, while θa is the constant temperature (in degrees)
of battery EV a. Bta represents the battery SOC at time slot t
which follows the relation given below,where the battery self-
discharge rate db and charging efficiency ηc (between zero
and one) are set to respectively, 0 and 1 [28]:

Bta = (1− db)Bt−1a + ηc ·1t · eta,k . (7)

In other words, the battery SOC at time slot t in our model is
simply based on the SOC at time slot t − 1 and the charging
or discharging power at time slot t . Also, the battery cycle
degradation cost can be expressed as follows [21]:

DCCYCta,k =

(
α1(Ba − Bta)

2
+ α2(Ba − Bta)+ α3

)
·

(
β1|eta,k |

3
+ β2|eta,k |

2
+ β3|eta,k | + β4

)
, (8)

where the coefficients α1, α2, and α3 are the fitting param-
eters of battery cycle degradation related to DoD, while the
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coefficients β1, β2, β3, and β4 are the fitting parameters of
battery cycle degradation related to charging/discharging rate
of EV at time slot t . Note that the parametric values for both
calendar and cycle degradation models are obtained using the
experimental plots in [29] for simulation.

From (2) and (3), we now calculate the overall profit (8)
of EVs at CSk during time slot t as below:

8Fleet (k, t) = RFleet (k, t)− CFleet (k, t) . (9)

For the CSs, the profit gained from charging/discharging of
EVs follows the same relation as (9), where the revenue of
CSs is the negative of (2) and the associated cost is given by:

CCS (k, t)=
∑
a∈M

x ta,k ·
(
LCk −MCk

)
. (10)

It should be noted that the revenue that CSs gain is only from
charging/discharging of EVs; therefore, the revenue of CSs
is the negative sign of EVs revenue (as given in (2)). It is
also noteworthy to mention that in (10), the net cost of CS
including the payment to labors and income from EV drivers
(paid for maintenance) is taken into consideration.

As the aim of the proposed framework is to maximize the
social welfare of the system, i.e. the overall profit of both EVs
and CS entities, an adjustable control parameter 0 ≤ δ ≤ 1
is introduced, such that the maximum profit is achieved for
EVs with δ = 0, while the CSs achieve the maximum profit
when δ=1. Hence, the overall profit during |T | time slots is
calculated as:

8tot= (1−δ)
K∑
k=1

|T |∑
t=1

8Fleet (k, t)+ δ
K∑
k=1

|T |∑
t=1

8CS (k, t).

(11)

In practical terms, the weighting parameter δ is determined
by the CS aggregators depending on the EV arrival pattern
and the profit interests of both sides of the deal. In situations
when there are more EV arrivals for charging/discharging at
certain CSs, the corresponding aggregators determine δ such
that it reduces the profit obtained by EVs to the extent where
the maximum system social welfare is achieved. In contrast,
with lesser EVs arriving at a CS, the aggregator decides on
the δ value that favors the EVs in gaining profit.

IV. SOCIAL WELFARE MAXIMIZATION PROBLEM
From the network operation point of view, it is important to
achieve scheduling solutions that maximize shared benefits
of both participating sides in the energy distribution system.
Following this principle, the objective of our system model
is to schedule the allocation of EVs to CSs so as to achieve
the maximum shared profits for both, EVs and CSs. In this
section, we define the social welfare maximization problem
for EV charging/discharging scheduling in an offline manner
where all information about the EVs are known in advance.
As stated before, mixed optimization models are the most
efficient tools that can capture the system behavior involving
different types of decision variables and constraints. Thus, for

all a∈M , 1≤k 6=k ′≤K , t ∈Ta,k , t ′∈Ta,k ′ , and 1≤ t≤|T |, the
problem is formulated as the following MINLP optimization
model:

Maximize 8tot (12)

subject to:

x ta,k=0, t ∈
[
1,t fa,k−1

]⋃[
t1a,k+1,|T |

]
, (13)

K∑
k=1

t1a,k∑
t=t fa,k

x ta,k ≥ 1, (14)

∏
t,t ′
x ta,k · x

t ′
a,k=0, (15)

∑
t∈Ta,k

x ta,k=
( ∏
t∈Ta,k

x ta,k

)
·|Ta,k |, (16)

∑
a∈M

x ta,k ≤ C
max
k , (17)

ztk= L tk+
∑
a∈M

x ta,k · e
t
a,k , (18)

0≤E inita −da,k ·Fa+
∑
t ′∈S ta,k

x ′a,k·e
t ′
a,k≤Ba, (19)

Efina =E
init
a −da,k ·Fa+

K∑
k=1

∑
t∈Ta,k

x ta,k·e
t
a,k=ra ·Ba,

(20)

0 ≤ eta,k≤P
max
c , a∈MCG, (21)

−Pmaxd ≤e
t
a,k≤0, a∈MDG, (22)

−Pmaxd ≤e
t
a,k≤P

max
c , a∈MV2G. (23)

The objective function (12) maximizes the overall joint
profit of EVs and CSs given in (11). The equality con-
straint (13) ensures that every EV is allocated to a CS
only during the time slots within its charging/discharging
interval at that CS. Constraints (14)-(16) guarantee the non-
preemptive allocation of EVs to only one CS, and (17)
enforces an upper bound on the number of EVs that can
plug-in to a CS at every time slot. Also, (18) states the
instantaneous electricity load at each CS and (19) ensures that
the EV battery energy level during its charging/discharging
interval (considering the initial energy at the time of departure
from home and the consumed energy from home to CS) is
non-negative and below its battery capacity. Equation (20)
guarantees that the final energy stored in the EV battery
matches with the initial demand determined by EV driver.
Finally, depending on the vehicle type, (21)-(23) specify
the lower and upper charging/discharging power bounds in
each slot.

In spite of some similarities with the EV battery-associated
costs reported in [18], [24], [28], it should be noted that the
proposed optimization problem significantly differs in the
following aspects. First, our objective function aims to maxi-
mize the weighted social welfare from charging/discharging
of EVs in energy distribution system, while the model in [24]
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minimizes the operational costs of CSs integrated with ESSs.
Similarly, the other models either minimize the overall costs
of wind power imbalances and EV-related expenses in energy
purchase [28] or only maximize the profit of EVs [18]. More-
over, our systemmodel considers the charging/discharging of
on-move EVs in a geographically large-scale which, unlike
the above models, accounts for the EV energy consumption
during traveled distances, the CS capacity, the EV service
costs, and the battery energy level constraints.

V. ONLINE GREEDY-BASED ALGORITHM
The maximization problem in (12)-(23) belongs to the class
of intractable problems since the allocation of EVs to CSs are
integer variables. Besides, the non-convexity of the problem
limits the use of standard solutions for convex optimization
problems. Linear programming (LP) relaxation combined
with BB can be leveraged to find the optimal solutions to
the offline problem formulation [25]. The challenge in using
BB, however, lies in the significant computation complexity
incurred, specially when the size of the problem including
the number of time slots, the number of CSs or the number
of EVs increases. As another challenge faced in real-time
implementation, the information on future EV requests are
not accessible in advance which makes BB an infeasible solu-
tion. To overcome such practical issues, we design an effec-
tive online and distributed greedy-based algorithm with low
computational complexity, namedGreedy Multiple Charging
Stations (GreedyMCS), given in Algorithm 1.

Algorithm 1 GreedyMCS

Input: Data(a, k) , (Aa,k ,Da,k ,Ta,k ,E inita ,Ba,E
fin
a , ra) for

EV a∈M and CS k ∈ K , and parameter δ.
Output: Assignment of EV a to candidate CS.
1: while vehicle a ∈ M requests for service do
2: Broadcast message with Data(a, k) to all CSs.
3: for each CSk , 1 ≤ k ≤ K do
4: if ∀t ∈

[
Aa,k ,Da,k

]
, N t

k + 1 ≤ Cmax
k then

5: if a ∈ MCG then
6: Run ComputeProfit_Charging(a, k).
7: else if a ∈ MDG then
8: Run ComputeProfit_Discharging(a, k).
9: else
10: Run ComputeProfit_V2G(a, k).
11: end if
12: end if
13: end for
14: Send back message containing φEV (a, k) and

φCS (a, k) from each aggregator to vehicle a.
15: Transmit reservation message to CSk ′ , where k ′ =

argk max{(1− δ)φEV (a, k)+ δφCS (a, k)}.
16: N t

k ′ = N t
k ′ + 1, ∀t ∈

[
Aa,k ′ ,Da,k ′

]
17: Solve NLP problem (24) to find the optimal service

plan for EV a at CSk ′ .
18: end while

The key idea is that instead of solving the complexMINLP
problem, Algorithm 1 initially solves the integer optimization
part of the problem by selecting the most suitable CS using a
greedy-based heuristic. After CS selection, the algorithm then
determines the amount of energy to be traded at each time slot
between the EV and power grid in the selected CS by solving
a local optimization problem using standard optimization
solver. It is noteworthy to mention that after resolving the
integer part of the problem (i.e. CS selection), the problem is
converted to NLP and hence, solving it using standard solver
does not incur high complexity. Also note that our solution
also accounts for the uncertainty in system parameters similar
to techniques given in [20]. In what follows, we discuss each
phase of the proposed algorithm.

A. CS SELECTION STRATEGY
Once a charging/discharging service is requested by EV a, its
contextual data is transmitted to all aggregators wirelessly.
Each aggregator then runs a local heuristic depending on
the EV type to regulate its charging/discharging plan as
well as the local profit obtainable at that CS. Algorithm 2
shows the pseudocode for the heuristic, referred to as Com-
puteProfit_Charging, which deals only with the charg-
ing demands. The partial revenue that EV a obtains from
charging/discharging at CSk in time slot t ∈ Ta,k is achieved
by integrating the price relation over the electricity load
which changes from the current ztk to the accumulated load
ztk + e

t
a,k . Considering the auxiliary costs of maintenance and

battery degradation/fluctuation over the entire service inter-
val of EV a, its achievable profit is then calculated similar
to equation (9). The partial profit of CSk obtained by allo-
cating EV a is also computed in a similar manner. Note that
functions 8Fleet and 8CS in the problem formulation which
take the CS and time instant as input arguments returns the
obtainable profit when a fleet of EVs are allocated to a CS at
a given time slot. Nonetheless, in the online implementation
of the algorithm, the functions φEV and φCS which take the
EV and CS as input arguments return the obtainable profits
when a particular EV is allocated to a given CS.

The subroutine for computing the profit at each CS
employs an updating heuristic to determine the charging/
discharging plan for the EV. Subject to the EV participation,
the local schedulers execute the related profit computation
subroutine in order to determine the local profit that the
EV and CSs obtain considering the instantaneous electricity
price and the EV contextual data such as its arrival/departure
times, battery capacity, and initial/final energy demands.
Firstly, the average electricity price in all time slots during
the charging/discharging interval of the EV is computed.
The energy demand is subsequently divided equally among
all time slots of the interval (lines 2-4). For the number of
iterations equal to the interval length (line 5), the power
of the EV is upgraded in each time slot proportional to
the gap between average and current prices (lines 6-7).
The charging/discharging power in the remaining slots is
then updated to satisfy both (19) and (20) (lines 8-22).
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Algorithm 2 ComputeProfit_Charging(a, k)

1: if ∀t ∈
[
Aa,k ,Da,k

]
, N t

k + 1 ≤ Cmax
k then

2: for t = t fa,k to t
l
a,k do

3: eta,k ← (Efina − E inita )/|Ta,k |.
4: end for
5: for t ′ = t fa,k to t

l
a,k − 1 do

6: avgPrice←
∑

t∈Ta,k p(k, t)/|Ta,k |.

7: et
′

a,k ←

(
2·avgPrice−p(k,t ′)

)
·et
′

a,k
avgPrice .

8: if et
′

a,k > Pmaxc then
9: et

′

a,k ← Pmaxc .
10: end if
11: if et

′

a,k < 0 then
12: et

′

a,k ← 0.
13: end if
14: totalCharge←

∑t ′

t=t fa,k
eta,k .

15: avgCharge← Efina −E inita −totalCharge
|Ta,k |−t ′

.
16: if avgCharge > Pmaxc then

17: 1e←
(t la,k−t

′)(avgCharge−Pmaxc )

t ′−t fa,k
.

18: avgCharge← Pmaxc .
19: else if avgCharge < 0 then

20: 1e←−
(t la,k−t

′)avgCharge

t ′−t fa,k
.

21: avgCharge← 0.
22: end if
23: eta,k ← eta,k +1e, ∀t ∈

[
t fa,k , t

′
]
.

24: eta,k ← avgCharge, ∀t ∈
[
t ′ + 1, t la,k

]
.

25: Update ztk with e
t
a,k , ∀t ∈

[
t fa,k , t

f
a,k

]
.

26: p(k, t)← c0 + c1ztk , ∀t ∈
[
t fa,k , t

f
a,k

]
.

27: end for
28: Compute φEV (a, k) and φCS (a, k).
29: end if
30: return φEV (a, k) and φCS (a, k).

In consonance with (1), the electricity load on the grid is
then updated and eventually, the procedure returns the local
obtainable profits.

Similar heuristics are executed for cases when EVs par-
ticipate in discharging (ComputeProfit_Discharging) and
V2G (ComputeProfit_V2G) operations. In the case of dis-
charging, the only difference is that the discharging load of
the EV is distributed over the entire time interval such that
larger discharging power is assigned to time slots with higher
electricity load on the grid and vice versa. On the other hand,
for EVs participating in V2G, the charging and discharging
powers assigned to time slots with, respectively, low and high
grid electricity loads are adjusted based on the difference
between the current and average load on the power grid.

Depending on the EV type, a reply message containing
the computed profit achievable by the EV is sent by all CS
aggregators. As stated in Algorithm 1, upon receiving the
reply message, the EV compares the profits to decide on the

most appropriate CS that yields the highest social welfare.
The EV then responds to the target CS with a reservation
message indicating its willingness for service at that station.

It should be noted that in the GreedyMCS algorithm,
solving the optimization problem using the heuristics is per-
formed in a distributed manner at local aggregators and
finding the most suitable CS is performed at the EV side.
Although a centralized solution integrates the computa-
tional operations in a single point and simplifies the inter-
communication burden, the methodologies which rely on
running huge computational tasks in a centralized way suffer
from low reliability due to the single point of failure and
also high computational complexity. Since the comparison
operation to find the most suitable CS is light-weighted
compared to running the heuristics at the aggregators, the
GreedyMCS algorithm is a decentralized approach and thus,
easily scalable to large-scale V2G systems.

B. POWER CHARGE/DISCHARGE AT TARGET CS
When EV a is plugged-in to the target station CSk ′ , the energy
traded between the power grid and the EV is handled by the
aggregator which finds the optimal solution to the following
local optimizer based on root mean square deviation (rmsd):

Maximize

√∑
t∈Ta,k′

(ztk ′ + e
t
a,k ′ − z̄k ′ )

2

|Ta,k ′ |
, (24)

with constraints (19)-(23) by replacing station index k ′ in
the equations. In the objective function (24), z̄k ′ is the
average load over all time slots at CSk ′ . The aggregator of
target station interacts with power grid for energy exchange
which is regulated and monitored by the smart meter at that
station.

C. COMPLEXITY ANALYSIS
According to Algorithm 1, each EV sends its data to all CSs
in O(1) time. Once the profit is computed locally at all CSs,
the aggregators respond with the calculated profit resulting in
message complexity ofO(1). That is to say, with |M | vehicles
andK CSs in the distribution system, the message complexity
of GreedyMCS is O(|M | · K ) in the worst case.

The total computational time of the algorithm includes
the time for computing the profit at CSs and the search
time for the maximum profit made by the EV locally. Since
the CSs compute the profit independent of each other, we
investigate the profit computation time taken by a single
CS. In the worst case, the charging/discharging interval of
the EV covers the entire scheduling day including |T | time
slots. Inclusive of time spent on selecting the most profitable
station as well as the time for solving the local optimization
problem (24), denoted by topt , it is observed that the worst
case time complexity of GreedyMCS is of order O

(
|M | ·

(|T |2 + K + topt )
)
. We once again highlight that after the CS

selection phase, the problem is converted to NLP and solving
it using standard solver at the target CS does not incur high
complexity.
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D. REMARKS ON OPTIMALITY
Recall that the formulated social welfare maximization prob-
lem belongs to the class of intractable problems. It has been
shown that reducing the search space of mixed optimization
problems using an efficient heuristic provides some guide-
lines to judge the optimality gap of such problems [30]. In this
work, we exploit the GreedyMCS algorithm to reduce the
original MINLP problem to a tractable NLP problem and
then solve it using a standard optimization solver. We expect
the gap between the solution returned by GreedyMCS and
the optimal solution obtained by directly solving the original
MINLP problem to be small. This is due to the fact that using
a sub-optimal heuristic to determine the energy trade between
EV at a selected CS and the power grid yields much degraded
performance compared to finding the optimal CS for the EV
using a heuristic. Since our algorithm solves the CS selection
part using a heuristic and the amount of traded energy is
decided using the standard solver, we expect a small gap with
respect to the optimal MINLP solutions. Verifying this fact
for small instances of the problem is an interesting direction
which we consider as future work. It is also worth mentioning
that although the proposed algorithm is sub-optimal, it finds
the solutions to the problem (12)-(23) with a reasonably low
computational complexity.

VI. SIMULATION RESULTS
In this section, we evaluate the performance of GreedyMCS
through simulations in terms of social welfare of the sys-
tem, the obtainable profits for each participant in the system
(EVs and CSs, and the ancillary services provided to the
power grid. For comparison purpose, we adopt the Random
Multiple Charging Stations (RandomMCS) [31] approach
as the best baseline solution . In RandomMCS, each time
an EV requests for charging/discharging service, it is ran-
domly assigned to a CS that does not violate its service
demand. We further evaluate the system performance con-
sidering the uncertainty in system parameters by utilizing
the possibilities-probabilities approach given in [20]. Partic-
ularly, we investigate the impact of parameters such as the
number of EVs, different EV departure times, the number of
CSs, and the V2G penetration probability on the system per-
formance and provide some insights on the obtained results.
The algorithms are implemented in MATLAB and the CVX
solver package [32] is used to solve the local rmsd-based opti-
mization at each CS. It is noteworthy to mention that all the
data for EVs and CSs used in the simulations are generated
by programs written in MATLAB and are described in the
following sub-section.

A. SIMULATION SET-UP
A single V2G scheduling day is considered, which is divided
into |T | = 24 equal time slots with 1t = 1 hour.
In our setting, 1000 EVs depart from homes towards offices
in the morning at random times taken from the uniform
interval U [5 a.m., 12 p.m.]. The maximum number of EVs

accommodated in each CS at each time slot is chosen from
the uniform interval U [105, 110]. Also, 10 CSs are located
on a 4.8 kV distribution network (IEEE 37 bus) shown
in Fig. 2. The CS locations are identified with the help
of OpenDSS and are optimal in terms of minimal power
loss and required voltage profile (0.93 p.u. to 1.03 p.u.)
under maximum loading condition at each station during
the system peak. Unless otherwise stated, it is assumed
that 50% of EVs participate in V2G, while the remaining
equally engage in charging/discharging operations. The dis-
tance from home to CSk (da,k ) for EV a is chosen from
the uniform interval [2 km, 5 km], its average speed from
the interval [50 km/h, 60 km/h], and the electric motor force
from the interval U [3 kWh/km, 5 kWh/km] [10]. The time at
which the EVs arrive at each CS varies depending on distance
and their average speed.

FIGURE 2. The IEEE 37 bus distribution system with 10 CSs.

Each EV decides on a desired time duration for service at
each CS based on its future trip plan which, for simplicity,
we suppose follows the uniform distribution U [3 h, 6 h]. The
first and last time slots of charging/discharging interval for
EV a at CSk are determined by the CS operator with integer
values from uniform intervals U

[
dAa,ke, dAa,ke+b(bDa,kc −

dAa,ke)/2c
]
andU

[
bDa,kc−d(bDa,kc−dAa,ke)/2e,Da,k

]
[10].

The initial battery energy level of EV a at its departure
time from home is chosen from the interval U [0.7Ba, 0.9Ba],
while the available battery energy upon its arrival to each CS
is dependent on the distance travelled and its motor force.
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For EVs with charging requests, the target energy deter-
mined by the driver falls within the uniform inter-
val U [0.7Ba, 0.9Ba] and for discharging, the battery
energy level after discharging is taken from the interval
U [min{0.4Ba,E inita −da,k ·Fa},min{0.6Ba,E inita −da,k · Fa}].
All EVs are assumed to have the ideal battery capacity of
100 kWh with maximum charging and discharging powers of
15 kW and 10 kW in each time slot, respectively. Hence, the
maximum charging power coincides with the charging rate of
15/100 = 0.15C in [33].

The CS locations in IEEE 37 bus distribution network are
chosen optimally to minimize the overall system loss and to
maintain the voltage profile and line flowswithin the required
limits. For this optimal study, we consider each CS to be
capable of handling a maximum demand of 2MW, i.e. more
than 15 kW×110, in each time slot when all plug-in chargers
are in use. Considering the overall system peak load, this
shows that the grid is capable of handling the maximum load
imposed by EVs at CSs without violating the grid operational
limits. Moreover, CSs not only handle V2G, but G2V as well,
which alleviates the load on the system.

Li-ion battery-equipped EVs with temperature (θ ) within
range U [−20◦C, 60◦C] [29] are considered in our simula-
tions. Battery degradation/fluctuation coefficients are set to
η1 = 10−3 $/kWh2 and η2 = 2 × 10−3$/kWh2 following
the simulation study in [10]. The fitting parameters for bat-
tery calendar and cycle degradation costs are taken from the
experimental degradation plots reported in [29]. Solving the
system of equations, we obtain the fitting values of ω =
−3.8898 and γ = −6.9242 for the calendar degradation
cost in (6), and α1 = 4.24 × 10−8, α2 = −4.42 × 10−7,
α3 = 8.2 × 10−6, β1 = −1.2, β2 = 3.84, β3 = −2.3, and
β4 = 0.66 for cycle degradation cost in (8). The linear and
step-function pricing model coefficients are selected from the
uniform intervals ck0 ∈ U [10−3 − 0.0005 $/kWh, 10−3 +
0.0005 $/kWh], ck1 ∈ U [2× 10−3 − 0.0005 $/kWh/kW, 2×
10−3 + 0.0005 $/kWh/kW], ck2 ∈U [5 kW, 10 kW], and ck3 ∈
U [0.1 $/kWh, 0.3 $/kWh] at all buses where the CSs are
located. A typical daily base load forecast that fluctuates
between 10 kW (low) and 70 kW (high) is also adopted at
each CS [10]. An instance of the average base load at all
10 CSs over a summer day is shown in Fig. 3. We also assume
that the EV maintenance and service costs have uniform

FIGURE 3. Typical base load profile for a single summer day.

distributionsU [$ 0.3, $ 0.5] andU [$ 0.2, $ 0.4], respectively,
in each time slot at every CS [10]. To evaluate the perfor-
mance of GreedyMCS under such a setting, we need to
initialize the set of deterministic variables used in the system
and optimization problem (12)-(23). The initial values for
the system variables used in the simulations are summarized
in Table 2. The simulation results that follow have been
averaged over 10 runs within 90% confidence interval.

TABLE 2. Simulation parameters and values.

B. ELECTRICITY PRICING AND EV DISTRIBUTION
The EV charging/discharging behavior in the energy distri-
bution systems directly impacts the electricity price during
different time intervals of the day. It is therefore, essential for
V2G system designers to devise efficient scheduling mech-
anisms that adjust the time-dependent electricity price in a
controlled manner. As our first simulation, we investigate
the impact of EV charging/discharging on the instantaneous
electricity price using our proposed algorithm.

Fig. 4 plots the mean electricity base load and EV charg-
ing/discharging power load at each 1t for all CSs during
time interval [7 a.m., 6 p.m.]. It is evident from Fig. 4(a) that,
on average, EVs demand for high charging power at time
slots with low base load, while they return back the energy
to the grid when the base load is high. In particular, stations
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FIGURE 4. (a) Mean electricity base load and EV charging/discharging
load (b) Average EV population and electricity price at each CS during
time interval [7 a.m.,6 p.m.].

CS6 and CS10 that have the lowest base loads receive more
demands for EV charging as compared to the other stations.
Similarly, the average charging load of CS5 is higher than
that of CS3 and CS4 due to its relatively lower base load.
Although the base load at CS2 is slightly higher than that at
CS1, it bears more charging load as higher number of EVs
have been allocated to it due to some unexpected situations
that will be explained in the subsequent section. Fig. 4(b)
depicts the mean distribution of allocated EVs and real-time
electricity price at each time slot for all CSs during the time
interval [7 a.m., 6 p.m.]. As seen in this figure, the real-time
electricity price fluctuates after charging/discharging at each
CS in accordance with the number of plugged-in EVs at the
stations. We also observe that the average electricity price
after charging/discharging and the average EV charging load
(Fig. 4(a)) exhibit very similar patterns. This reveals the
dependency of real-time electricity pricing on the charging
load of plugged-in EVs. Interestingly, though EVs have simi-
lar home departure times during the day, the reason why most
EVs are allocated to CS6, whereas the minimum to CS8 is due
to uncertainty in EV arrivals and distance to the CSs.

Fig. 5 shows the voltage profile of the system buses during
peak and light EV load periods for one day. During simula-
tion, the other loads on the system followed the load profile
given in [34] to mimic a more realistic scenario. From this
figure, it is quite evident that the voltage profile of the system
is within the specified boundaries, i.e. [0.93 p.u.− 1.03 p.u.].

C. ACHIEVABLE SYSTEM PROFIT
We now compare GreedyMCS with RandomMCS in terms
of social welfare of the system by adjusting the weighting
parameter (δ). The results obtained by changing parameter δ
from 0 to 1 with a step-size of 0.1 are shown in Fig. 6(a).
As seen from the results,GreedyMCS outperforms the base-
line algorithm by nearly 30%, on average, for different δ
values. This is because our algorithm takes advantage of the
updating heuristics to tactfully forward each vehicle to the
most profitable CS.

In addition to the social welfare, behavior analysis of the
algorithms in sharing the profits between both, EVs and CSs

FIGURE 5. Voltage profile of the system buses during peak and light load
conditions.

FIGURE 6. Comparison of GreedyMCS with RandomMCS in terms of
(a) the overall social welfare and (b) the joint EVs and CSs profit for
varying δ values.

under varying δ values is also imperative. Fig. 6(b) plots
the net profit jointly earned by the EV owners and CSs for
varying δ values. Unlike the baseline solution, GreedyMCS
allocates EVs to CSs in a way that each entity relatively
achieves the maximum profit based on δ. Particularly, when
using GreedyMCS for EV scheduling, EV owners gain
higher profit for δ < 0.5, whereas for δ > 0.5, the CSs make
more profit. Therefore, selection of an appropriate δ that
minimizes the profit loss on each side is critical to the local
schedulers. For instance, it can be observed from Fig. 6(b)
that δ = 0.4 results in a minimum profit of approximately
$ 350 for CSs with at most $ 2, 200 profit loss for the EV
owners. Conversely, a minimum profit of about $ 500 can be
achieved for CSs with little loss in EV profit when δ = 0.6.
It goes without saying that results of Fig. 6 alongside the EV
arrival patterns, which is learned by aggregators over time,
and the profit interests of each entity in the system can be used
as guidelines by aggregators to decide on the most suitable
value for δ in online scheduling scenarios.

Under tight constraints on the EV service type and their
profit interests, Fig. 7 shows how the rise in EV popula-
tion can compensate for the increase in battery costs. For
this simulation scenario, we only consider EVs demand-
ing for discharging service with the interest in maximizing
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FIGURE 7. Comparison of obtainable EV profits against the associated
battery costs.

their own profits (i.e., δ = 0). This figure clearly show-
cases the achievable EV profits and the related battery
fluctuation/degradation costs. As can be observed, the
growth in EV profit by increasing their number from 100 to
500 compensates for the rise in associated battery costs by an
average of about 2.5 times higher in terms of profits. Obvi-
ously, this observation confirms the robustness of proposed
model in motivating EVs for participation in the DR program.

D. COMPUTATION TIME
The GreedyMCS and RandomMCS algorithms are now
compared in terms of computation time for different number
of EVs and under fixed number of CSs. Fig. 8 compares
the worst-case time complexity for a large-scale network of
EVs. In this figure, the comparison results are shown for
number of EVs varying from 103 to 104 and 10 CSs. Another
parameter that impacts the complexity of the algorithms is the
time taken to solve the local optimization problem of (24).
In other words, the computation time for both algorithms
shown in Fig. 8 are in terms of EV population and time
value topt (in millisecond) which varies from 10ms to 100ms
(depending on the underlying hardware).

FIGURE 8. Comparison between GreedyMCS an RandomMCS algorithms
in terms of computation time.

As seen in Fig. 8,GreedyMCS surges with the same order
of complexity as RandomMCS under fixed number of CSs
and dramatic increase in the EV population. This is due to
the dominating role of the number of CSs in the complexity
of GreedyMCS. In practice, since the increase in EV pop-
ulation is indubitably higher than the number of deployed
CSs, both algorithms achieve the same rate of computation

time as the number of EVs increases substantially. Therefore,
our proposed algorithm enhances the social welfare of the
system (Fig. 6(a)) with the same rate of complexity growth
as compared to its counterpart. It should be also noted that in
very large-scale EV scheduling, the computational time can
be greatly reduced in practical scenarios using high powerful
processors as schedulers at the aggregators.

E. IMPACT OF EV POPULATION AND DEPARTURE TIME
Next, we investigate the profits achievable by each participant
in the system under the influence of the EVfleet size and their
home departure times. Depending on penetration type, it is
interesting to observe how the EV population in energy dis-
tribution system affects their obtainable profits and whether
it compensates for the increase in auxiliary costs.

Fig. 9 demonstrates the impact of the number of EVs on
the overall system profit that can be earned. With increase in
the number of EVs from 500 to 1000 Fig. 9(a), we observe
that the achievable profit decreases when δ = 0 (i.e., only
EV profit is considered). Such behavior arises due to the
fact that higher penetration of EVs with charging service
type causes the real-time electricity price to increase which
subsequently, reduces the revenue obtained by the EV fleet
from their charging service. In contrast, CSs on the other hand
obtain higher profits (when δ = 1) as EVs pay more for the
charging service.

FIGURE 9. Achievable system profits impacted by (a) the number of EVs
and (b) their home departure times.

The impact of changing the time of EV home departures
on the overall achievable system profit is shown in Fig. 9(b).
By fixing the number of EVs to 1000, the figure marks
the simulation results for six different home departure times
(mean of uniform distribution). The profit of both EVs and
CSs increases with larger mean home departure time because
when themean of home departure time increases, more charg-
ing and discharging EV loads are shifted to low and high
base loads on the grid, respectively, which in turn, improves
the profit made by EVs. Likewise, CSs will also have more
flexibility in offering charging/discharging prices that not
only favor the EVs, but also result in improving their own
profits. Moreover, Fig. 9(b) reveals that increase in EV profit
is lesser compared to that for CSs. The results in Fig. 9(a)
and Fig.9(b) imply that increasing the EV penetration tends
to effectively boost the achievable profits for CSs.
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F. IMPACT OF CS SCALABILITY AND V2G PENETRATION
In addition to the density of EVs in the energy distribu-
tion system, it is also compelling to analyze how increasing
the number of deployed CSs and increasing the percentage
of EVs participating in the V2G program can affect the
obtainable profits for both system participants. Based on
these observations, the V2G system designer can accordingly
invest on the optimal deployment of CSs or V2G penetration.

With regard to this objective, we scrutinize the effect of
the number of deployed CSs in the distribution system on
the overall obtainable profit. By increasing the number of
CSs from 10 to 110, the total system profit is boosted for
δ = 0 as shown in Fig. 10(a). This tells us that with increase
in CSs, the vehicles find wider options in selecting a CS
yielding higher profit for charging operations. Nevertheless,
for δ = 1, the profit that the CSs obtain drops when their
number increases; although the CSs obtain higher revenue
in the presence of more number of stations, their associated
auxiliary costs grows relatively higher which in turn, reduces
their net profit. As seen in Fig. 10(a), the profit growth is very
small when more than 70 CSs are deployed, which confirms
it as the optimal number of stations to be deployed in the
distribution system for this particular set-up.

FIGURE 10. Achievable system profit under the impact of (a) the number
of deployed CSs and (b) the percentage of V2G penetration.

The impact of increasing the penetration percentage of EVs
belonging toMV2G is depicted in Fig. 10(b), where 1000 EVs
and 10 CSs are considered. The V2G penetration increases
up to 100%, while the remaining penetration percentage of
EVs is equally divided between EVs with only charging and
only discharging demands. For instance, when V2G penetra-
tion is at 40%, the penetration of EVs with only charging
and discharging demand is equally 30%. As observed for
δ = 0, the overall profit initially increases due to the two-
way energy exchange between EVs and the power grid as
an ancillary service. However, the overall profit gradually
drops as δ approaches 1. This is because the total revenue
of CSs reduces as they have to pay more to the increas-
ing number of EVs for the energy they return back to the
power grid. Also note that for δ = 0, the overall profit falls
beyond an optimal V2G penetration point. In Fig. 10(b), this
optimal penetration percentage is shown to be around 40%.
The reason is that increasing the influx of EVs with V2G
service needs increases the EV battery fluctuation costs due

to consecutive charging/discharging operations after some
point which consequently, results in profit reduction.

G. POWER GRID ANCILLARY SERVICES
In this sub-section, we examine the ancillary services, namely
the peak load reduction and load shifting, provided to the
power grid using our algorithm. An advantage of the DR
program is the participation of EVs in V2G operation and
the ability to return back the stored energy in their battery
to the power grid during the peak-load hours in order to
improve the grid stability. To verify this advantage through
simulation, we first investigate the impact of EV penetration
percentage with V2G type on peak load reduction using
GreedyMCS. For this simulation, we considered 20% and
30% penetration levels, δ = 0, EV departure time chosen
from the uniform interval U [8 a.m., 10 a.m.], and the stay
duration at CSs selected from interval U [6 hrs, 9 hrs].
The average peak reduction percentage over the time inter-

val 10 a.m. to 6 p.m. at all CSs is shown in Fig. 11. Note
that following the definition in [5], the peak load reduction
percentage within a given time period at any station is derived
as the gap between the highest base load and the maximum
load created by the algorithm over the period at the station.
The results in Fig. 11 reveal that further peak load reduc-
tion can be achieved by increasing the penetration of V2G
vehicles since they sell their battery energy to the grid during
peak electricity demands. In here, average peak reductions
of 14.32% and 26% are achieved for the penetration levels
of 20% and 30%, respectively, during the given time interval.
In practical scenarios, the planning of V2Gpenetration during
different times of the day can be decided by system designers
depending on the desired percentage of peak load reduction.

FIGURE 11. Impact of V2G penetration on average peak load reduction
for (a) 20% and (b) 30% penetration levels.

Finally, the comparison between GreedyMCS and Ran-
domMCS in terms of the final mean load accumulated on
the grid (load shifting) at all CSs within the time interval
[3 p.m., 9 p.m.] when δ = 0 is tabulated in Table 3. Here,
50% of EVs require only charging and the remaining 50%
are interested in only discharging energy. Also, the home
departure time is taken from U [1 a.m., 12 p.m.] and the time
duration spent at the CSs is similar to the preceding scenario.

We note that the root mean square deviation (rmsd) of
the generated load by an algorithm from the highest base
load over a given time period is used as the criteria for load
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TABLE 3. Single day average load shifting at all CSs.

shifting at any station [5]. From the data in Table 3, the rmsd
values of 16.65 and 20.45 are obtained for GreedyMCS and
RandomMCS algorithms, respectively, during the time inter-
val [3 p.m., 9 p.m.]. Therefore, we conclude that our greedy-
based approach is superior in terms of flattening the final
grid electricity load as compared to the uncontrolled random
counterpart. This is because GreedyMCS allocates the EV
charging demands to the time intervals with low electricity
load on the power grid in a controlled manner in order to
maximize the obtainable profit. Ultimately, this helps to shift
the charging load to the valley intervals and avoid power grid
overloading during peak hours. Averaged over all CSs, an
improvement of nearly 20% in load shifting during the above
time interval is achieved when our algorithm is adopted. It is
worth mentioning that the advantage of effective load shifting
brought by our algorithm is more valuable in large-scale EV
networks with charging demands.

VII. DISCUSSIONS
As the main challenge in real-world implementation of the
proposed distributed EV scheduling algorithm, one may refer
to the proper adjustment of the weighting parameter δ by the
aggregators. In practice, this adjustment can be learned by
aggregators over the system operational period. The learning
process can utilize the parameters such as the daily commute
patterns of EVs and their profit interests in order to improve
the efficiency. The sub-optimality of the algorithm can be
pointed out as another limitation of the proposed model.
The generation of efficient near-optimal solutions with fast
computational performance reasonably compensates for this
limitation specially in large-scale energy distribution systems
where fast solutions are preferred by system designers rather
than optimal solutions.

Factors such as very high uncertainty in EV commuting
patterns and their energy demand or the unexpected environ-
mental impacts on EV battery fluctuation and degradation
costs may slightly affect the measurement confidence of 90%
for our obtained results in practice. Despite of such factors,
this high confidence interval obviously confirms the suitabil-
ity of our results as some guidelines for V2G distribution sys-
tem designers in practical scenarios. Using these findings, the
aggregators can agree on an appropriate value for δ where the
desired amount of profits is obtained for both EVs and CSs
depending on EV density and the type of their participation in

V2G operations. In addition, system designers can effectively
adjust the EV population and particularly, V2G penetration in
real-world scenarios to attain the desired peak-load reduction
or load shift as the ancillary services for the power grid.

VIII. CONCLUSION AND FUTURE WORK
Motivated by smart city applications, this paper investigated
the decentralised scheduling of EVs in a large-scale smart
energy distribution system comprising of multiple spatially-
located CSs, each managed by individual aggregators. The
proposed scheme offers high flexibility in CS selection for
EVs with different service preferences. From the aspect
of V2G management, a mixed integer non-linear program-
ming (MINLP) optimization problem was formulated to gen-
eralize existing social welfare maximization models. Indeed,
a distributed online greedy-based scheduling algorithm with
low-complexity was proposed to adjust the overall achiev-
able profit and efficient updating heuristics were adopted
to tactfully guide each EV to the most profitable CS. The
proposed algorithm reduces the original MINLP model to
a non-linear programming model and then determines the
energy exchange between EV and CS with the provision
of desired grid ancillary services by taking advantage of
a root mean square deviation based optimizer at each CS.
The superiority of the proposed algorithm with respect to a
baseline solution was verified through simulations conducted
on the IEEE 37 bus distribution network. Particularly, an
average 30% improvement in social welfare of the system
was achieved using our algorithm under equal participation
of EVs in charging and discharging services. Considering the
best-case performance, where the maximization of only EVs
profit is concerned, the final electricity load on the power
grid was further flattened by up to 20%. Based on the system
configuration, our results further revealed the existence of
an optimal number of CSs to be deployed which is key
to optimizing investments for large-scale distributed energy
management in smart cities.

Due to their limited processing capacity, the aggregators
in V2G systems stand the risk of being overloaded with large
number of EV requests. As an interesting extension to this
work, mobile edge computing could be exploited to address
this issue in large-scale EV charging/discharging schedul-
ing. Integration of renewable energy with CSs and efficient
electricity loadmanagement mechanisms are other promising
research directions relevant to social welfare maximization.
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