The 8th International Conference on Nanomaterials and Advanced Energy Storage Systems (INESS-2020)

"Quenched" Polyampholytes as Catalysts and Supercapacitors

Sarkyt Kudaibergenov^{1,2*}

 ¹ Satbayev University, Laboratory of Engineering Profile, Almaty, 050013, Satpayev Str. 22, Republic of Kazakhstan
² Institute of Polymer Materials and Technology, Almaty, 050019, Microregion "Atyrau 1", Bld. 3/1, Republic of Kazakhstan E-mail: skudai@mail.ru

The "quenched" or strongly charged polyampholytes represent amphoteric macromolecules consisting of static positive and negative charges [1,2]. The volume-phase, swelling-deswelling, self-healing, viscoelastic, and mechanical properties of "quenched" polyampholyte gels are discussed in aqueous-salt solutions together with their stimuli-responsive character [3]. Application aspects of "quenched" polyampholytes cover biotechnology, biomedicine, oil recovery, desalination, catalysis and supercapacitors [4,5]. Understanding of the fundamental relationships between the microstructure and property of crosslinked amphoteric macromolecules will open renewed interest to polyampholytes in whole and "quenched" polyampholytes in particular.

Acknowledgements

Financial support from the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. IRN AP05131003, 2018-2020) is greatly acknowledged.

References

[1] Kudaibergenov S.E. Polyampholytes: Synthesis, Characterization and Application. New York: Kluwer Academic/Plenum Publishers. 2002, 220 p.

[2] Fouillet C.C., Greaves T.L., Quinn J.F., Davis T.P., Adamcik J., Sani M-A., Separovic F., Drummond C.J., Mezzenga R. Copolyampholytes produced from RAFT polymerization of protic ionic liquids. *Macromolecules*, 2017. Doi: 10.1021/acs.macromol.7b01768.

[3] Toleutay G., Su E., Kudaibergenov S., Okay, O. Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. *Colloid Polym. Sci.* 2020, *298*, 273-284.

[4] Li. X., Dong F., Zhang L., Xu Q., Zhu X., Liang S., Hu L., Xie H. Cellulosic protic ionic liquid hydrogel: A green and efficient catalyst carrier for Pd nanoparticles in redcution of 4-nitrophenol in water. *Chem. Eng. J.* 2019, *372*, 516-525.

[5] Li X., Wang X., Ok Y.S., Elliott J.A.W., Chang S.X., Chung H-J. Flexible and self-healing aqueous supercapacitors for low temperature applications: Polyampholyte gel electrolytes with biochar electrodes. *Sci. Rep.* 2017, *7*, 1685. Doi: 10.1038/s41598-017-01873-3.