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Abstract
Ceramic paste extrusion process, such as 3D printing, is commonly used for fabricat-
ing high quality products, like catalyst pellets for heterogeneous catalytic reactors,
porous catalyst for cleaning gas released from an auto, ceramic block packing for im-
mediate heat conduction adsorption process. Ceramic pastes can be characterized as
non-Newtonian fluid. The extrusion of ceramic paste is complicated procedure which
is controlled by viscosity of the paste, form of the extruder and die, and other op-
eration restrictions. Meaningful part in performing the extrusion process to produce
high quality extrudates of requested shape, structure and resistance are modeling and
numerical analysis of extrusion process. The mathematical model is based on con-
tinuity and momentum equations which describe the motion of non-Newtonian fluid
characterized by the modified Herschel-Bulkley model. Numerical simulations of ram
extrusion process are provided in this work. Finite Element Method implemented in
the COMSOL Multiphysics software is used to simulate the paste flow in the ram
extruder. Numerical study shows that the die geometry and paste velocity signifi-
cantly affect the distribution of pressure. The outcomes of simulations in COMSOL
Myltiphysics software are presented in 1D, 2D and 3D plots. The velocity of ceramic
paste reaches its maximum value at the centre of the extrusion die and decreases to-
wards the die walls. Moreover, the viscosity of alumina paste in transition region was
computed numerically. The shear rate of the paste steadily decreases in the extrusion
die. As a result, the pressure of the fluid inside of extrusion die is constant and of
high magnitude in the barrel and it slowly decreases as the fluid moves to the die
outlet with a small diameter.
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Title: Assistant Professor
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Chapter 1

Introduction

Extrusion of ceramic pastes is complicated process that depends on rheological prop-

erties of paste, geometry of the extruder and die. Those properties are determined

by the volume, distribution and size of fraction particles, characteristic of the surface

and load and features of binder [2]. The processing and transport characteristics of

slurries in the ceramic industry are strongly dependent on their rheological proper-

ties [1]. Understanding of the rheological parameters is highly essential, especially

when transporting of a large amount of paste. A simplified scheme of 3D printing

device is illustrated in Fig. 1-1. Moreover measuring flow and viscosity curves, the

Figure 1-1: 3D printing device.
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yield point can be computed as well, e.g. by using the Herschel-Bulkley model. Esti-

mating the viscosity function and the yield point provides an important information

for better understanding of behaviour of paste flow in extruders. It is also helpful

for solving problems with slurry which is difficult to pump [3]. The extrusion process

for ceramic paste has been also studied in [1] where authors used the same modified

Herschel-Bulkley model. They have studied the influence and behaviour of the air

bubble that is trapped in the extrusion die during the preparation and loading of the

paste [1].

Meaningful part in performing the extrusion to produce high quality extrudates

of requested shape, structure and resistance are modeling and numerical analysis

of the mathematical extrusion model. In this work, the equation of the motion of

incompressible fluids whose viscosity depends nonlinearly on pressure and shear rate

will be discretized by Finite Element Method. There exists a wide class of fluids,

namely non-Newtonian fluids, whose properties can not be circumscribed by standard

Navier-Stokes equations. Fluids with shear rate and pressure-dependent viscosity are

essential part of non-Newtonian fluids. There are numerous applications where this

type of fluids can play a an important role, e.g., 3D printing, blood rheology, geology

and chemical engineering [4, 5]. Fluids with pressure-dependent viscosity appear in

various industrial applications, for instance where the high pressure occurs. This work

shows that applied computational modelling is a useful tool to design and optimize

complicated ceramic extrusion for 3D printing.
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Chapter 2

Herschel-Bulkley model

Extrusion process of ceramic pastes in 3D printing is complex approach which is based

on rheological properties of the fluid. Interpretation of parameters of the viscous

fluid is highly essential, especially in field of industry. Fluids with different types of

viscosity, i.e. Newtonian fluid and non-Newtonian fluid, will be considered in this

chapter. Models and flow curves for Bingham plastic and regularization, that we are

going to use for modeling of ceramic paste extrusion are also described further.

2.1 Newtonian fluid

Newtonian fluid is a fluid whose viscosity does not change with time, type or rate of

deformation. In other words, the fluid is called Newtonian if tensors characterising

the strain rate and the viscous stress are associated by constant velocity tensor which

is not dependent on velocity 𝑣 of the flow and stress state.

Sir Issac Newton first defined behavior of fluids by using linear relation of shear

rate and shear stress which is also well-known as Newton’s Law of viscosity, where

constant 𝜇 describes the dynamic viscosity of the fluid as

𝜏 = 𝜇𝛾̇

Here, 𝜏 is the viscous stress tensor and 𝛾̇ = ∇𝑣+ (∇𝑣)𝑇 stands for the rate-of-strain
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tensor. Examples of Newtonian fluid are air, water, alcohol, gasoline. The Newtonian

equation shows the behaviour of the flow of an ideal liquid. Dynamic viscosity, which

is also called as apparent viscosity, characterises fluid’s resistance of deformation. It

is the ratio of the shear stress magnitude to the shear rate magnitude

𝜇 =
𝜏

𝛾̇
.

The magnitudes of stress and rate-of-strain tensors are respectively defined as follows

[23]

𝜏 =

√︂
1

2
𝜏 : 𝜏 and 𝛾̇ =

√︂
1

2
𝛾̇ : 𝛾̇ ,

where : stands for the inner product of tensors. In the case of Newtonian fluid,

the dynamic viscosity provide a constant value 𝜇 which means a linear relationship

between 𝜏 and 𝛾̇.

2.2 Non-Newtonian fluid

On the contrary to Newtonian fluids, non-Newtonian fluids are characterized by the

non-linear dependence between shear rate and shear stress or have initial yield stress

or time-dependent viscosity. This is due to the complex structure and effects of de-

formation exhibited by the fluid materials. There are various types of non-Newtonian

fluids. They can be described as pseudoplastic, viscoplastic and dilatant fluids. The

graph presented below illustrates viscosity of Newtonian, shear thinning and shear

thickening fluids.
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Shear thinning

Newtonian

Shear thickening

Figure 2-1: The viscosity of Newtonian and non-Newtonian fluids.

2.2.1 Pseudoplastic Fluids

Shear thinning (pseudoplastic, 𝜕𝜇
𝜕𝛾̇

< 0) behaviour of fluid is observed if viscosity

inversely depends on shear rate. Pseudoplastic fluids become thinner while the shear

rate is increasing, till the viscosity of the fluid achieves the limit of viscosity [6]. This

behaviour is because of increasing the shear rate and the units suspended in the fluid

will move to the same direction of the current. There will be a deformation of the

fluid structure implying a breaking of aggregates at some shear rate and this will

be the reason of limit viscosity. For pseudoplastic fluid material the viscosity is not

affected by the time that shear rate is applied and these material don’t have memory

property i.e. if the force is applied and the structure is affected once, the material will

not restore that structure [6]. Those fluids are also known as pseudo-plastic which

is widespread in industrial and biological systems. Examples of shear thinning are

ketchup, blood, whipped cream and nail polish.

2.2.2 Viscoplastic fluids

Viscoplastic fluids behave similar to pseudoplastic fluids upon yield stress. They

need precalculated shear stress in order to start moving. Common example of these,

the Bingham plastic, that needs the shear rate to exceed a minimal yield stress value

instead of going from high viscosity to low [6]. After this changing a linear relationship
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between the shear rate and shear stress will take over. Examples of viscoplastic fluids

can be blood, ketchup and some sewage sludge’s.

2.2.3 Dilatant fluids

A fluid whose viscosity directly proportional to the shear rate is shear thickening

which is also called dilatant (𝜕𝜇
𝜕𝛾̇
> 0). Similar to the pseudoplastic fluids the stress

period hasn’t influence, i.e. if material is broken or the structure destroyed it will

not go backwards to its previous state [6]. Common examples of dilatant fluids are

honey, cement and ceramic mixture. Combination of cornstarch and water is typical

example of shear thickening behaviour of the fluid. If you squeeze this mixture it feels

like solid since molecules of fluid line up. Also cornstarch suspension act as a liquid

when no one applying the pressure on the surface because the molecules are relaxed

at that time.

In classical fluid mechanics, the Cauchy stress tensor 𝜏 depends on the velocity

gradient ∇𝑣 and the density 𝜌. Here, 𝑣 = (𝑣1, . . . , 𝑣𝑛) denotes the velocity field. By

the principle of material frame-indifference we can say that the stress tensor 𝜏 = 𝜏 (𝛾̇)

depends on symmetric part of the velocity gradient 𝛾̇ = 2𝐷𝑣 ∈ 𝑅𝑛×𝑛
𝑠𝑦𝑚 [10]

𝐷𝑣 =
1

2
(∇𝑣 + ∇𝑣𝑇 ) where (𝐷𝑣)𝑖,𝑗 =

1

2

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︂
.

The following constitutive equation shows the relation between the stress tensor 𝜏

and the rate-of-strain tensor [9]

𝜏 (𝛾̇) = −𝑝𝐼 + 𝜇(𝛾̇)𝛾̇ . (2.1)

In the particular case of 𝜇 = const the fluid is included to the class of Newtonian

fluids. In all other cases the fluid is considered as a non-Newtonian fluid. A significant

part of non-Newtonian fluids can be determined according to the relation 𝜇 = 𝜇(𝛾̇).

Examples of non-Newtonian models with shear dependent viscosity are listed below

[11].
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Ostwald-de Waele power law [12, 13]

𝜇(𝛾̇) = 𝜇0 𝛾̇
𝑛−2

Examples: molten chocolate, aqueous dispersion of polymer latex spheres, starch,

clay suspensions

Carreau Carreau-Yasuda [14, 15]

𝜇(𝛾̇) = 𝜇∞ +
𝜇0 + 𝜇∞

(1 + 𝛼𝛾̇𝛼)
𝑛
2

𝜇(𝛾̇) = 𝜇∞ + (𝜇0 − 𝜇∞)(1 + 𝛼 𝛾̇𝛼)
𝑛−1
𝛼

Examples: molten polystyrene, polyacrylamide [11].

Cross [16]

𝜇(𝛾̇) = 𝜇∞ +
𝜇0 − 𝜇∞

1 + 𝛼 𝛾̇𝑛

Examples: aqueous polyvinyl acetate dispersion, aqueous limestone suspension [11].

Eyring [17, 18]

𝜇(𝛾̇) = 𝜇∞ + (𝜇0 − 𝜇∞)
arcsinh(𝛼 𝛾̇)

𝛼 𝛾̇

Examples: napalm (co precipitated aluminum salts of naphthenic and palmitic acids,

jellied gasoline), 1% nitrocelulose in 99% butyl acetate [11].

Sisko [19]

𝜇(𝛾̇) = 𝜇∞ + 𝛼 𝛾̇𝑛−1

Examples: lubricating greases [11].

By analysing the flow index 𝑛 we can specify the behaviour of the fluid. As

the index 𝑛 approaches to 1, the behaviour of the fluid is going to pass from shear

thinning to shear thickening fluid [6]. In case if 𝑛 > 1, the fluid has shear thickening

behaviour. According to Seyssiecq and Ferasse [7] the fluid behaviour can be described
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as follows [6]

𝜏0 = 0, 𝑛 = 1 → 𝑁𝑒𝑤𝑡𝑜𝑛𝑖𝑎𝑛 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

𝜏0 = 0, 𝑛 < 1 → 𝑃𝑠𝑒𝑢𝑑𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

𝜏0 > 0, 𝑛 = 1 → 𝐵𝑖𝑛𝑔ℎ𝑎𝑚 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

𝜏0 = 0, 𝑛 > 1 → 𝐷𝑖𝑙𝑎𝑡𝑎𝑛𝑡 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟

Newtonian

Bingham pseudoplasticBingham plastic

Pseudoplastic

Dilatant

Figure 2-2: Classification of non-Newtonian fluids

2.3 Bingham model

Bingham plastic is a fluid that at low stresses acts as solid body but flows as a

viscous material at the high stress rate. The Bingham model describes the flow curve

of material with yield stress and constant viscosity at stresses above the yield (as

pseudo-Newtonian fluid). As a typical example of Bingham plastic we mention a

toothpaste. The yield stress 𝜏 can be defined as the initial force that must be applied

to in order to start moving. It represents the resistance of the fluid structure to

deformation or destruction. The yield stress is extremely important to consider the

case when mixing reactor materials, since the yield stress is affecting the physico-

chemical characteristics of the fluid. One should apply some pressure to the tube so

that the paste will extrude.
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(a) Newtonian fluid: 𝜏0 = 0 and 𝑛 = 1. (b) Pseudoplastic fluid: 𝜏0 = 1 and 𝑛 < 1.

(c) Bingham fluid: 𝜏0 > 1 and 𝑛 = 1. (d) Bingham fluid: 𝜏0 > 1 and 𝑛 < 1.

Figure 2-3: Graphs of flow curves of Herschel-Bulkey model represent the dependencies of shear
stress vs shear rate and viscosity vs shear rate for different values of yield stress, shear rate and flow
index [22].

Herschel and Bulkley [20] proposed the following model

𝜇(𝛾̇) = 𝑘 𝛾̇𝑛−1 +
𝜏0
𝛾̇

if 𝜏 ≥ 𝜏0

𝛾̇ = 0 if 𝜏 < 𝜏0

(2.2)

where 𝜇(𝛾̇) stands for the nonlinear viscosity, 𝛾̇ represents the shear rate of the fluid,
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𝑘 is the consistency factor and 𝑛 is the Herschel-Bulkley fluid index ( in our case 𝑛

is chosen as 0 < 𝑛 < 1 for shear-thinning) which also controls the fluid behavior [20].

The apparent viscosity is 𝜂 = 𝜇 = 𝜏
𝛾̇
. According to numerical values of the shear

stress and viscosity at the fixed parameter of the shear rate Fig. 2-3 shows the graphs

of 𝜏 versus 𝛾̇ and 𝜇 versus 𝛾̇ for Herschel-Bulkley model 𝜏 = 𝑘|𝛾̇| + 𝜏0. These plots

that demonstrate the dependency of shear rate and shear stress have been prepared

in [22] using online Wolfram Demonstration Project. The yield stress 𝜏0 is equal to

shear stress 𝜏 if shear rate 𝛾̇ is zero and the viscosity 𝜇 of the fluid is the slope of the

curve at stresses above the yield stress. For the Bingham plastic model shear stress

𝜏 is described as [21]

𝜏 = 𝜏0 + 𝜇𝛾̇𝑛

where 𝜏0 is the yield stress. If 𝜏0 = 0, then the fluid has Newtonian behaviour. If

𝜏0 > 1, then it has Bingham model behaviour. The equivalent relationship for Casson

fluid in case when 𝛾̇ > 0
√
𝜏 =

√
𝜏0 +

√︀
𝑘𝑐𝛾̇

where 𝑘𝑐 is viscosity parameter. Let us transform this equation into

𝜏 = 𝜏0 + [𝑘𝑐 + 2
√︀
𝜏0𝑘𝑐𝛾̇

−1/2]𝛾̇

For the Herschel-Bulkley fluid our model gets the following form

𝜏 = 𝜏0 + 𝑘𝐻 𝛾̇
𝑛−1𝛾̇

where 𝑘𝐻 denotes the viscosity parameter. The Herschel-Bulkley model is charac-

terized by the non-linear behavior and yield stress. The consistency parameter 𝑘𝐻

describes the fluid viscosity. In order to be able to analyze 𝑘𝐻 consistency index

parameters for various of fluids, they should have similar behaviour of the flow index

𝑛. All above models are illustrated in figure below
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Figure 2-4: Shear stress vs. shear rate in various constitutive models.

2.3.1 Regularization of viscosity

It is a well known fact that that the viscosity of the fluid depends on the deformation

process for non-Newtonian fluid. The Herschel-Bulkley model can be considered as

one of the most common definition of non-Newtonian fluids, as an example of fluid

with yield stress and nonlinear dependency of stress-strain in yielded region. It can

be counted as a mix of Bingham plastic and power law fluids [20]. The general model

is described as

𝜇(𝛾̇) = 𝑘𝛾̇𝑛−1 +
𝜏0
𝛾̇

if 𝜏 ≥ 𝜏0 ,

𝛾̇ = 0 if 𝜏 < 𝜏0 .

Bingham plastics are a particular example of Herschel-Bulkley fluids in the same way

as Newtonian fluids with viscosity model of power-law type.

The general form of Herschel-Bulkley model does not consider the problem for

unyielded region (𝛾̇ > 0). This type of regularization was done by Tanner and

Milthorpe [32], who modified the original Bingham model by using bi-viscosity model,

where there are two slopes of finite viscosity, namely the viscosity 𝜇0 for 𝛾̇ < 𝛾̇𝑐 and

viscosity 𝜇 ≪ 𝜇0 for 𝛾̇ > 𝛾̇𝑐 [24]. In the case of 𝛾̇ < 𝜏0
𝜇0

solid substance behaves as

extremely viscous fluid whose viscosity is 𝜇0 [33]. When strain rate passes the yield
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stress threshold 𝜏0, the fluid behaves according to the power-law

𝜇(𝛾̇) =

⎧⎪⎪⎨⎪⎪⎩
𝜏0
𝛾̇

+ 𝑘
(︁

𝛾̇
𝛾̇𝑐

)︁𝑛−1

for 𝛾̇ ≥ 𝛾̇𝑐 ,

𝜏0
(2−𝛾̇/𝛾̇𝑐)

𝛾̇𝑐
+ 𝑘

[︁
(2 − 𝑛) + (𝑛− 1) 𝛾̇

𝛾̇𝑐

]︁
for 𝛾̇ < 𝛾̇𝑐 ,

where 𝑘 and 𝑛 denotes the consistency and power-law index, respectively. This regu-

larization was done by defining a slope of original Bulkley model at the critical yield

point 𝛾̇𝑐
𝑑𝜇

𝑑𝛾̇

⎮⎮⎮
𝛾̇=𝛾̇𝑐

= − 𝜏0
𝛾̇2𝑐

+ 𝑘(𝑛− 1)𝛾̇𝑛−2
𝑐 .

The Herschel-Bulkley model is used to interpret the materials like dough, toothpaste,

ketchup, mud, which need the initial yield stress. Fig. 2-5 describes the way how the

shear stress 𝜏 and shear rate 𝛾̇ in Herschel-Bulkley model relate between each other.

It is clear from the graph slope for 𝛾̇ < 𝛾̇𝑐 starts from point (0, 𝜏0
2
𝛾̇𝑐

+ 𝑘(2 − 𝑛)) and

at yield point (𝛾̇𝑐,
𝜏0
𝛾̇𝑐

+ 𝑘) behaviour of the fluid changes to Bingham model [8]. If

0 < 𝑛 < 1, the fluid possesses the property of the so-called shear thinning. The case

𝑛 > 1 is known as fluid with shear thickening behaviour. In the case of 𝑛 = 1 the

fluid with the constant viscosity 𝜇 belongs to the class of Newtonian fluids.

Yield point

0

Bingham (n=1)

0<n<1

n>1

Figure 2-5: Dependence of shear rate stress with shear rate for modified Herschel-Bulkley model
that was regularized by Tanner and Milthorpe [28]

Another well known regularization of Herschel-Bulkley model was presented by

Papanastasiou [25]. His modification was done by substituting the apparent viscosity

of the fluid by a function that can approximate the rheological behaviour, but keeps
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the boundaries for any small value of 𝛾̇. This change was done by entering new

parameter 𝜀 to apparent viscosity, which can describe the effect of the regularization.

For large value of strain rate the viscosity aims to 𝜇 if parameter 𝜀 is high. The

viscosity of the fluid produces high values which can lead to small rate of 𝛾̇ in the

unyielded region, therefore the movement of solid body is approximated. In the case

when shear rate tends to zero, the viscosity in (2.3) aims to the finite value 𝜀𝜏𝑦 + 𝜇

instead of zero [27]. The proposed regularization, which is also called as Bingham-

Papanastasiou model has the following form

𝜏 (𝛾̇) =

(︂
𝜇+

𝜏𝑦
𝛾̇

[︁
1 − 𝑒−𝜀𝛾̇

]︁)︂
𝛾̇ for all 𝛾̇ , (2.3)

where 𝜏𝑦 denotes the magnitude of the yield stress.

Figure 2-6: Variation of Shear Stress with Shear Rate For Bingham fluid according to Bingham-
Papanastasiou model for several values of the regularization parameter 𝜀 [24]
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Chapter 3

Navier-Stokes equations for 3D

printing

The mathematical model for extrusion process will be considered in this chapter. The

continuity and momentum equations in cylindrical coordinates will be presented and

simplified in the case of axis symmetry for non-Newtonian fluids. Also, the equation

of the motion of an incompressible fluids with non-Newtonian viscosity that depends

on the pressure and shear rate of the paste will be formulated in this chapter.

3.1 Navies-Stokes equations

Fluid dynamics describes the motion of liquids and gases which seem to be continuous

in structure by macroscopic research and whose unknown quantities like velocity and

pressure fields are assumed to be continuous functions of the spatial coordinates

and time. The Navier-Stokes equations are a set of nonlinear differential equations

that describes the velocity and pressure of fluid. These equations can be used for

simulations of weather, motion of the air in the atmosphere, water flow in tube,

as well as plenty other fluid flow phenomena. The Navier-Stokes equations depend

on time and consist of continuity equation for conservation of mass, conservation of

momentum equations and conservation of energy equation.

Generally, the Navier-Stokes equations can be solved analytically in a closed form
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only in a few cases. However, in some special cases the equations could be simplified

and approached analytically. In the present study we consider incompressible, steady-

state, laminar flow.

Incompressible fluid

The continuity equation in the case of incompressible fluid with no varying density

implies ∇ · 𝑣 = 0 where 𝑣 denotes the velocity field. This formulation is used for the

simplified model. In fact, all fluids are compressible up to a certain degree.

Steady flow

In the case of steady flow all changes of fluid properties with respect to the time are

equal to zero. Steady flows are applicable to wide class of problems, like flow through

a pipe, lift and drag on wing.

Laminar flow

The laminar flow is defined by fluid particles following smooth paths in layer where

each layer moves smoothly past the adjoining layers without mixing. In the laminar

flow the motion of the fluid is very ordered with particles cloud to solid surface flowing

in straight lines parallel to that surface.

The mass in the control volume can not be produced or ruined according to physical

laws. The conservation of mass which is also called the continuity equation describes

the mass flow rate difference through system between inlet and outlet section is equal

to zero, c.f. [34],
𝜕𝜌

𝜕𝑡
+ 𝜌(∇ · 𝑣) = 0 (3.1)

where 𝜌 denotes the density, 𝑣 stands for velocity and ∇ is the gradient operator

∇ = 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
. (3.2)

Here, 𝑖, 𝑗 and 𝑘 denote the canonical unit basis vectors in R3. The flow with con-

stant density is assumed to be incompressible and therefore the continuity equation
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is simplified [34] which specifies a steady-state process

𝜕𝜌

𝜕𝑡
= 0 =⇒ ∇ · 𝑣 =

𝜕𝑣1
𝜕𝑥

+
𝜕𝑣2
𝜕𝑦

+
𝜕𝑣3
𝜕𝑧

= 0 . (3.3)

The momentum in a control volume is kept constant implying conservation of mo-

mentum. This is justified by Newton’s Second Law of motion

𝐹 = 𝑚𝑎 (3.4)

where 𝐹 is the force that applied to any particle, 𝑚 is the mass, 𝑎 is the acceleration.

In terms of density it means

𝜌
𝜕𝑣

𝜕𝑡
= 𝑓 𝑏𝑜𝑑𝑦 + 𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (3.5)

where 𝑓 is the force acting on the fluid particle per unit volume, 𝑓 𝑏𝑜𝑑𝑦 is exerted on

the whole mass of fluid particles

𝑓 𝑏𝑜𝑑𝑦 = 𝜌 · 𝑔 (3.6)

where 𝜌 stands for the density of the fluid and 𝑔 is the gravitational acceleration.

𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is defined by the sum of pressure and viscous forces

𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = ∇ · 𝜏𝑖𝑗 =
𝜕𝜏𝑖𝑗
𝜕𝑥𝑖

= 𝑓 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝑓 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (3.7)

where 𝜏𝑖𝑗 denotes the stress tensor. According to Stokes’ law of Newtonian viscous

fluid [34], 𝜏𝑖𝑗 is formulated as:

𝜏𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇(
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

) (3.8)

Newton’s equation of motion could be established in the following form

𝜌
𝜕𝑣

𝜕𝑡
= 𝜌 · 𝑔 + ∇ · 𝜏𝑖𝑗 (3.9)

21



Consequently, we obtain the Navier-Stokes equations of Newtonian viscous fluid

𝜌
𝜕𝑣

𝜕𝑡
= 𝜌𝑔 −∇𝑝+

𝜕

𝜕𝑥𝑖

[︂
𝜇

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︂]︂
. (3.10)

In the case that density of fluid is constant, the equations are simplified with viscosity

coefficient 𝜇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 for Newtonian fluid and ∇ · 𝑣 = 0. Therefore, The Navier-

Stokes equations for an incompressible three-dimensional flow can be defined as

𝜌
𝜕𝑣

𝜕𝑡
= 𝜌𝑔 −∇𝑝+ 𝜇∆𝑣 . (3.11)

3.2 Navier-Stokes equations in Cartesian coordinates

Let us consider Navier-Stokes equations for Newtonian fluid in Cartesian coordinate

system with components of velocity vector 𝑣 = (𝑢, 𝑣, 𝑤) [35]. The continuity equation

in the case of the external force 𝑓 = (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) can be expressed as follows

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 .

The momentum equations are given if the following form

u-momentum:

𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑥
+ 𝜇

(︂
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2

)︂
+ 𝑓𝑥 ,

v-momentum:

𝜌

(︂
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑦
+ 𝜇

(︂
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2

)︂
+ 𝑓𝑦 ,

w-momentum:

𝜌

(︂
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑧
+ 𝜇

(︂
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2

)︂
+ 𝑓𝑧 .
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3.3 Navier-Stokes equations in cylindrical coordinates

The Navier-Stokes equations for Newtonian fluid in cylindrical coordinates (𝑟, 𝜃, 𝑧)

for the velocity vector 𝑣 = (𝑣𝑟, 𝑣𝜃, 𝑣𝑧) [35] become the following form of continuity

equation
1

𝑟

𝜕𝑣𝑟
𝜕𝑟

+
1

𝑟

𝜕𝑣𝜃
𝜕𝜃

+
𝜕𝑣𝑧
𝜕𝑧

= 0 ,

and the momentum equations are given by

𝑟-momentum:

𝜕𝑣𝑟
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+
𝑣𝜃
𝑟

𝜕𝑣𝑟
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

− 𝑣𝜃
2

𝑟

= −1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜇

[︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑟
𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑣𝑟
𝜕𝜃2

+
𝜕2𝑣𝑧
𝜕𝑧2

− 𝑣𝑟
𝑟2

− 2

𝑟2
𝜕𝑣𝜃
𝜕𝜃

]︂
+ 𝑓𝑟 ,

𝜃-momentum:
𝜕𝑣𝜃
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝜃
𝜕𝑟

+
𝑣𝜃
𝑟

𝜕𝑣𝜃
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝜃
𝜕𝑧

− 𝑣𝑟𝑣𝜃
𝑟

= −1

𝜌

𝜕𝑝

𝜕𝜃
+ 𝜇

[︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝜃
𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑣𝜃
𝜕𝜃2

+
𝜕2𝑣𝜃
𝜕𝑧2

− 𝑣𝜃
𝑟2

− 2

𝑟2
𝜕𝑣𝑟
𝜕𝜃

]︂
+ 𝑓𝜃 ,

𝑧-momentum:
𝜕𝑣𝑧
𝜕𝑡

+ 𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+
𝑣𝜃
𝑟

𝜕𝑣𝑧
𝜕𝜃

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= −1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜇

[︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑧
𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑣𝑧
𝜕𝜃2

+
𝜕2𝑣𝜃
𝜕𝑧2

]︂
+ 𝑓𝑧 .

3.4 Nondimensionalization

Rewriting the Navier-Stokes equations in cylindrical coordinate system in the dimen-

sionless form simplifies the equations and underlines the most important parameters.

At first we choose characteristic values defining the flow, like characteristic velocity

𝑉 represents the fluid velocity in the flow domain, characteristic length 𝐿 defines

the length over which velocity is changing proportional to characteristic velocity 𝑉 ,

characteristic pressure 𝑝∞ and temperature 𝑇 in the case of non-isothermal fluid [36].

During nondimensionalization of governing equations, the structure of the Navier-

Stokes equations generally leads to the definition of the Reynolds number. Let us
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introduce the dimensionless parameters for Navier-Stokes equations in the radial and

longitudinal directions as follows

𝑟* =
𝑟

𝐿
, 𝑧* =

𝑧

𝐿
, 𝑣*𝑟 =

𝑣𝑟
𝑉
, 𝑣*𝑧 =

𝑣𝑧
𝑉
, 𝑝* =

𝑝𝐿

𝜇𝑒𝑓𝑓𝑉
, 𝑅𝑒 =

𝜌𝑉 𝐿

𝜇𝑒𝑓𝑓

. (3.12)

The dimensionless form of governing equations can be achieved by using these sub-

stitutions. For instance, the momentum equations in 𝑟 and 𝑧 directions for the in-

compressible steady-state flow of Newtonian fluid can be converted in the following

way

𝑟-momentum:

𝜌

(︂
𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑟
+ 𝜌𝑔𝑟 + 𝜇

[︂(︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑟
𝜕𝑟

)︂)︂
− 𝑣𝑟
𝑟2

+
𝜕2𝑣𝑟
𝜕𝑧2

]︂
𝑧-momentum:

𝜌

(︂
𝑣𝑟
𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇

[︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑧
𝜕𝑟

)︂
+
𝜕2𝑣𝑧
𝜕𝑧2

]︂
.

Reynolds number defines the ratio between the diffusive and convective terms of mo-

mentum equations. The value of 𝑅𝑒 determines whether the convection or diffusion

dominates. Nondimensionalization is useful to get a deeper understanding of the rel-

ative size of the different terms presented in the Navier-Stokes equations. Identifica-

tion of smaller terms in the equation is relevant for the proper choice of dimensionless

parameters for scaling process. In our case the nondimensionalized Navier-Stokes

equations without heat transfer depends on Reynolds number.

3.5 Navier-Stokes equation in axial symmetry

In the case of axial symmetric flows, the velocity in 𝜃 direction is constant and can

be neglected [33]. In the following, the ram extruder for ceramic paste is elaborated

as an axisymmetric model. If the pressure of the fluid 𝑝 and the cylindrical velocity

components 𝑣 = (𝑣𝑟, 𝑣𝜃, 𝑣𝑧) of Navier-Stokes equations are independent of the angular

variable 𝜃, then flow is called axisymmetric.

24



Navier-Stokes equations for steady, laminar, incompressible flow of non-Newtonian

fluid in cylindrical coordinates in radial and longitudinal directions are formulated in

the following form [1]

𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= 𝑓𝑟 −
1

𝜌

𝜕𝑝

𝜕𝑟
+

1

𝜌𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟) −

1

𝜌

𝜏𝑟𝑟
𝑟

+
1

𝜌

𝜕𝜏𝑟𝑧
𝜕𝑧

,

𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= 𝑓𝑟 −
1

𝜌

𝜕𝑝

𝜕𝑧
+

1

𝜌𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) +

1

𝜌

𝜕𝜏𝑧𝑧
𝜕𝑧

,

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝑧
𝜕𝑧

= 0 ,

(3.13)

where 𝑣𝑟 and 𝑣𝑧 are the components of the velocity 𝑣 = (𝑣𝑟, 𝑣𝑧) in 𝑟 and 𝑧 directions.

In (3.13) the expressions 𝜏𝑟𝑧 = 𝜇(𝛾̇) and 𝛾̇ = 𝜕𝑣𝑧
𝜕𝑟

are identical with the stress ten-

sor and shear rate in Herschel-Bulkley model for Bingham plastics. The analytical

solutions for fully developed flow have been obtained for example in [1], i.e., 𝑣𝑟 = 0,
𝜕𝑣𝑧
𝜕𝑧

= 0 and 𝜕𝜏𝑧𝑧
𝜕𝑧

= 0.

3.6 Governing model equations for the ceramic paste

extrusion

The Navier-Stokes equations for an incompressible, non-Newtonian fluid are defined

in the material domain Ω ⊂ 𝑅𝑑 as [37]:

𝜌
𝜕𝑣

𝜕𝑡
−∇ · 𝜏 (𝛾̇) + 𝜌(𝑣 · ∇)𝑣 + ∇𝑝 = 𝑓

∇ · 𝑣 = 0

(3.14)

where 𝑣 and 𝑝 are unknown velocity and pressure, 𝜌 defines the density of the fluid,

𝑓 is the bulk force. Note that 𝜏 depends on the symmetric part of velocity gradient

𝛾̇ = 2𝐷𝑣 = ∇𝑣 + ∇𝑣𝑇 .

Model assumptions

(i) Due to low extrusion velocity and high viscosity of the fluid, the Reynolds

Number will have small value, thus the flow is considered as laminar.
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(ii) The developing section of the fluid flow is quiet short, because of small Reynolds

number, we assume that flow is fully developed.

(iii) The extrusion die is totally filled by ceramic paste

(iv) The paste is taken as an incompressible.

(v) The fluid temperature is constant. Hence, the viscosity is presented as a function

of shear rate and density depends only on pressure.

(vi) There is no slip on the wall, therefore the velocity of the fluid at the wall is

equal to zero.

(vii) The pressure at the outlet of the extrusion die is 101325 Pa, that is 1 atm.

The initial conditions to model equation (3.14) are given as

𝑣(0, ·) = 𝑣0 in Ω , (3.15)

and the no-slip boundary condition

𝑣|Γ𝑤 = 0, (3.16)

for all 𝑡 > 0 from the considered time interval. Other types of boundary conditions

are also relevant for extrusion, e.g., the outlet boundary condition. The momentum

equation in isothermal case reads as follows [2]

𝜌

(︂
𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣

)︂
−∇ · 𝜎 = 𝑓 (3.17)

The stress tensor can be defined as a combination of the volumetric and deviatoric

stresses in the following way

𝜎 = −𝑝𝐼 + 𝜏 (3.18)

where the deviatoric stress 𝜏 is given as

𝜏 = −𝑝𝐼 + 𝜇(𝛾̇)𝛾̇, . (3.19)
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Here, 𝜇 represents the dynamic viscosity of the fluid that depends of the equiva-

lent strain rate 𝛾̇. The viscosity depends on the deformation process in case of

non-Newtonian fluid. To this end, different models for viscoplastic fluids have been

established. In this study, we consider the Herschel-Bulkley model (2.2), which com-

bines the yield stress 𝜏0 with power-law model for viscosity [33]. The deviatoric stress

tensor is given as

𝜏 (𝛾̇) =

(︂
𝑘𝛾̇𝑛−1 +

𝜏0
𝛾̇

)︂
𝛾̇ if 𝜏 ≥ 𝜏0 ,

𝛾̇ = 0 if 𝜏 < 𝜏0 .

(3.20)

where 𝜏 =
√︁

1
2
𝜏 : 𝜏 . When the rate of deformation approaches to zero, there is a

singularity in equation (3.20). Instead of solving the model equations numerically,

we consider the regularized version of the Herschel-Bulkley model [51], which were

described in Section 2.3

𝜇(𝛾̇) =

⎧⎪⎪⎨⎪⎪⎩
𝜏0
𝛾̇

+ 𝑘
(︁

𝛾̇
𝛾̇𝑐

)︁𝑛−1

for 𝛾̇ > 𝛾̇𝑐 ,

𝜏0
(2−𝛾̇/𝛾𝑐)

𝛾̇𝑐
+ 𝑘

[︁
(2 − 𝑛) + (𝑛− 1) 𝛾̇

𝛾̇𝑐

]︁
for 𝛾̇ < 𝛾̇𝑐 .

Let us apply non-dimensional parameters to regularized Herschel-Bulkley model

𝛾̇* =
𝐿

𝑉
𝛾̇ , 𝐵𝑛 =

𝜏0 · 𝐿
𝜇𝑒𝑓𝑓𝑉

, 𝑘* =
𝑘

𝜇𝑒𝑓𝑓

, 𝜏 * =
𝜏𝐿

𝜇𝑒𝑓𝑓𝑉
.

Here, 𝐵𝑛 denotes the dimensionless parameter Bingham number which is used to

study the flow of Bingham plastics. The value of 𝐵𝑛 is defined as a ratio of yield

stress and characteristic length to characteristic velocity and viscosity of the fluid [26].

In the following, we omit the asterisk notation. The dimensionless form of regularized

Herschel-Bulkley model is reduced to

𝜏 (𝛾̇) =

⎧⎪⎪⎨⎪⎪⎩
(︁

𝐵𝑛
𝛾̇

+ 𝑘 𝛾̇𝑛−1

𝛾̇𝑛−1
𝑐

)︁
· 𝛾̇ for 𝛾̇ ≥ 𝛾̇𝑐 ,(︁(︁

2𝐵𝑛
𝛾̇𝑐

+ 𝑘(2 − 𝑛)
)︁

+
(︁
𝑘 (𝑛−1)

𝛾̇𝑐
− 𝐵𝑛

𝛾̇2
𝑐

)︁
· 𝛾̇

)︁
· 𝛾̇ for 𝛾̇ < 𝛾̇𝑐 .
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The system of equations modeling the problem are given as follows

𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= 𝑓𝑟 −
1

𝜌

𝜕𝑝

𝜕𝑟
+

1

𝜌𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑟) −

1

𝜌

𝜏𝑟𝑟
𝑟

+
1

𝜌

𝜕𝜏𝑟𝑧
𝜕𝑧

,

𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

= 𝑓𝑟 −
1

𝜌

𝜕𝑝

𝜕𝑧
+

1

𝜌𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧) +

1

𝜌

𝜕𝜏𝑧𝑧
𝜕𝑧

,

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝑧
𝜕𝑧

= 0 ,

𝜏 (𝛾̇) =

⎧⎪⎪⎨⎪⎪⎩
(︁

𝐵𝑛
𝛾̇

+ 𝑘 𝛾̇𝑛−1

𝛾̇𝑛−1
𝑐

)︁
· 𝛾̇ for 𝛾̇ ≥ 𝛾̇𝑐 ,(︁(︁

2𝐵𝑛
𝛾̇𝑐

+ 𝑘(2 − 𝑛)
)︁

+
(︁
𝑘 (𝑛−1)

𝛾̇𝑐
− 𝐵𝑛

𝛾̇2
𝑐

)︁
· 𝛾̇

)︁
· 𝛾̇ for 𝛾̇ < 𝛾̇𝑐

(3.21)

subject to the initial and no-slip and outflow boundary conditions. Due to the com-

plexity of Navier-Stokes equations for the ceramic paste extrusion it is almost im-

possible to solve them analytically. Hence, we are going to apply an appropriate

numerical method for the fluid flow problems. In the next chapter we introduce the

finite element method by which the solution to the above system of model equations

can be approximated numerically.
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Chapter 4

Numerical methods

4.1 Computational Fluid Dynamics

Fluid flow problems are usually defined by partial differential equations whose ana-

lytical solution can be established in closed form only in special cases. To find ap-

proximate solutions numerically, we use discretization methods which lead to systems

of algebraic equations whose solutions can be obtained using iterative methods and

computers. Generally a solution method is determined for a specific model problem

and set of equations. The next step is selecting an appropriate discretization method,

that is a method to approximate the set of differential equations by a system of al-

gebraic equations for a variables at the set of discrete locations in space. Among the

various approaches, the most common in fluid dynamics are Finite Difference Method

(FDM), Finite Volume Method (FVM) and Finite Element method (FEM) [29].

4.2 Finite Element Method

The idea of ’finite elements’ can be tracked back to the approaches that were used

in evaluation of stress in solid mechanics. The structure is divided into tiny bases of

different shape and collected again after analysis of every ’element’ of the structure.

This method was improved and regular development led to the foundation of Finite

Element Method.
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The space discretization is characterized by a set of units, which we call elements

in FEM and it is in contrast to the number of points in Finite Difference Methods. In

Finite Element Method the domain consist of the set of finite elements that are usually

unstructured. In 2D problems those elements are mostly triangles or quadrilaterals

and in 3D there are tetrahedral or hexahedra. Finite Element method assumes an

integral formulation as the first stage which can be taken into account as a generaliza-

tion of the Finite Volume Methods [29]. The characteristic feature of Finite Element

Methods is the fact that the equations are multiplied by a weight functions and then

integrated over the entire domain. The number of unknown function values at each

Figure 4-1: A global piecewise linear finite element basis function defined over the triangular mesh.

node and their derivatives are usually called the degrees of freedom or nodal values of

the numerical problem. The field variables can be approximated by linear combina-

tions of shape functions, interpolation functions or trial functions [39]. An

example of a global finite element shape function defined over the triangular mesh

is presented in Fig. 4-1. In our model we will use the following ansatz for the finite

element velocity and pressure approximations

𝑣ℎ(𝑥) =

𝑁ℎ∑︁
𝑗=1

𝑣𝑗𝜙𝑗(𝑥) , 𝑝ℎ(𝑥) =

𝑀ℎ∑︁
𝑗=1

𝑝𝑗𝜓𝑗(𝑥) ,

where for the standard Galerkin method to produce a well-posed discrete algebraic
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system, we have to satisfy 𝑀ℎ < 𝑁ℎ. Moreover, a discrete inf–sup stability condition

restricts the choice of the finite element velocity and pressure spaces for the finite

element approximations of the velocity and pressure unknowns. An inf-sup stable

pairs of approximation spaces for velocity and pressure can be constructed by using

lower degree basis functions or coarser mesh for the pressure. Notice that the use of

equal-order interpolations for the velocity and pressure lead to oscillatory solutions

unless stabilization terms are added to the discrete continuity equations. [58–60]

Integral formulation can be achieved from system of differential equation via weak

formulation or in other words the method of weighted residuals . In the case of

simple finite element methods, the solution can be approximated using a linear shape

functions in each element such that it provides continuity of the solution through the

boundaries of elements. Such a linear shape function can be defined from its values at

the vertices of the elements [39]. Next step is to substitute this approximation into the

weighted integral of conservation law. The best discrete solution is chosen in the set

of allowed functions (that is with minimum residual). One of meaningful advantage

of Finite Element methods is the opportunity to deal with various geometries. The

grids can be easily refined, every element is divided into sub-elements in a certain

way. Finite Element methods are suitable to analyze numerically and can show the

optimality features for specific type of equations. The main disadvantage compared

to any other method is that matrices of linearized equations are not well organized

as for regular grids, which makes it difficult to find effective solution approach in the

general case of coupled model equations.

4.2.1 Variational formulation

The finite element discretization of the Navier-Stokes problem for Herschel-Bulkley

fluid is related to the variational formulation which was for the first time proposed by

Duvaut-Lions [43]. Let us now introduce the notations. Let Ω = (0, 𝐿)𝑑, 𝐿 ∈ (0,∞)

be a cube in 𝑅𝑑, 𝑑 = 2, 3 with boundary 𝜕Ω and Γ𝑗 = 𝜕Ω ∩ {𝑥𝑗 = 0},Γ𝑗+𝑑 =

𝜕Ω ∩ {𝑥𝑗 = 𝐿} for 𝑗 = 1, ..., 𝑑. For 𝑇 > 0 𝑄𝑇 is the time-space cylinder 𝐼 × Ω, where

𝐼 = (0, 𝑇 ) is a time interval. By (𝐿𝑟(Ω), ‖ · ‖𝑟) and (𝑊 𝑘,𝑟(Ω), ‖ · ‖𝑘,𝑟) we specify the
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Sobolev spaces of periodic functions [30]. Due to incompressible condition ∇ · 𝑣 = 0

we also define the spaces of divergence free functions

𝒱 = {𝜓 ∈ 𝐶∞
𝑝𝑒𝑟(Ω)𝑑 : ∇𝜓· = 0} ,

and

𝐻 = closure of 𝒱 w.r.t. 𝐿2(Ω)𝑑 − norm ,

𝑉𝑟 = closure of 𝒱 w.r.t. 𝑊 1,𝑟(Ω)𝑑 − seminorm,

where 𝑟 ∈ (1,∞).

We say that the vector function 𝑣(𝑥, 𝑡) is a weak solution of Navier-Stokes equa-

tions on [0, 𝑇 ) for 𝑝 ∈ (1, 2] [30] if

𝑣 ∈ 𝐿∞(𝐼;𝐻) ∩ 𝐿𝑝(𝐼;𝑉𝑝) (4.1)

for all 𝑡 ∈ 𝐼 and all 𝜑 ∈ 𝒱 satisfies∫︁
Ω

𝜌
𝜕𝑣

𝜕𝑡
· 𝜑 𝑑𝑥+

∫︁
Ω

𝜏 (𝐷(𝑣),𝑣) ·𝐷(𝜑) 𝑑𝑥+

∫︁
Ω

𝜌(𝑣 · ∇)𝑣 · 𝜑 𝑑𝑥 =

∫︁
Ω

𝑓 · 𝜑 𝑑𝑥 . (4.2)

The existence and stability of solution for fluids with non-Newtonian viscosity has

been proved by Malek and Rajagopal [30]. Authors proposed new approaches for

stability of the rest state of shear dependent fluids for any initial conditions. Notice,

that the reconstruction of the weak pressure follows using an appropriate choice of

the pressure space due to the Ladyzhenskaya-Babushka-Brezzi inf-sup condition. Also,

there is presented a discussion regarding the existence and regularity of solutions to

such a problem with small data. The equations for non-stationary Herschel-Bulkley

fluid were also studied by H. Eberlein and M. Ruzicka in [31] where the existence

of weak solution to the problem was proved. Equations (3.21) are at the centre of

modeling of ceramic paste flows. Solving these equations for a specific set of boundary

conditions, i.e. inlet, outlet and wall of the extruder, determines the velocity and the

pressure of the fluid in a extruder domain. Navier-Stokes equations can be solved
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analytically only in a very few cases. Therefore, appropriate numerical schemes have

to be applied. The common practice in engineering and scientific computing is to

study Navier-Stokes equations via simulation and use of advanced software.

4.3 COMSOL - Multiphysics Software Package for

Computational Fluid Dynamics

COMSOL Multiphysics software allows to compute approximate solutions of coupled

equations from physics, for example, fluid momentum transfer with heat transfer mod-

els can be created for the same body and solved numerically at the same time. COM-

SOL is a software for simulation of physics in which Partial Differential Equations

are approximately solved using Finite Element Methods. COMSOL Multiphysics is

able to generate 1D, 2D and 3D models where one can define geometry of the do-

main, physics with all required equations and boundary conditions, and specify the

mesh and visualize the results using solely this software. The Computational Fluid

Dynamics (CFD) Module is a standard package which serves COMSOL Multiphysics

software for modeling environment with specialized physics interfaces and processes

optimized for the analysis of any type of fluid flows.

In this study the Laminar Flow interface in CFD was used for computation of

fluid velocity and pressure for a steady-state fluid based on the modified Herschel-

Bulkley model. A flow of the fluid is considered as laminar if the Reynolds number is

lower than a specific critical value. This critical value of Reynolds number depends

on the concrete model. The Navier-Stokes equations (3.21) including conservation of

momentum equations are solved in the laminar flow regime. The physics interface

supports flows of non-Newtonian type which is in our case the Modified Herschel-

Bulkley model presented in the previous chapter. The Volume Force defines applied

volume force of the fluid, which is on the right-hand side of the governing momentum

equation (3.21). The parameters of the force corresponds to those from [2]. There is

only one vertical component and the force is taken per volume.
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In this study, we will use the laminar flow module of CFD in COMSOL software to

produce simulations of extrusion process of alumina paste. To this end, first we need

to build a new geometry of the die with axis symmetry to reduce the number of degrees

of freedom and consequently the computation time. Authors in [2] and [41] have

done similar simulations of extrusion using COMSOL software but for the different

die geometry. In this research, continuous piecewise quadratic approximation for

the velocity and continuous linear approximation for the pressure was used, which is

also known as Taylor-Hood element [59]. In the next step, all required parameters

in laminar flow physics will be set. The boundary conditions will be specified at

the inlet, outlet and wall of the die. Mesh of the extrusion dies was built by linear

triangular elements. Also, the input data for the modified Herschel-Bulkley model for

alumina paste will be defined. Using the idea of finite element approach, we need to

construct an appropriate mesh for a die which is represented in axis symmetric case

by a two-dimensional domain. The COMSOL software computes the finite element

solution to the fluid model problem and produces graphical results that describe

velocity, pressure and shear rate of the paste. The simulation results of lid-driven

cavity flow problem, non-Newtonian fluid flow in cylindrical pipe, pressure driven

flow in pipe are presented in the next section.

4.4 Lid-driven cavity flow

The lid-driven cavity is a standard CFD problem for Newtonian and non-Newtonian

incompressible fluid flows. We consider square cavity which consists of tree solid walls

with no-slip boundary condition and lid-driven top wall with tangential unit velocity,

see Fig. 4-2(a). Let us consider the dimensionless Navier-Stokes equations

(𝑣 · ∇)𝑣 = −∇𝑝+
1

𝑅𝑒
∆𝑣 (4.3)

where 𝑅𝑒 is the Reynolds number which is defined as 𝑅𝑒 = 𝜌𝑈𝐿
𝜇

. Here, 𝑈 denotes the

magnitude of the characteristic velocity, and 𝐿 stands for the characteristic length. As
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(a) The boundary conditions for the square
cavity problem.

(b) Mapped mesh for the lid-driven cavity
model.

Figure 4-2: The boundary conditions for the square cavity problem and the mesh used for simula-
tions.

Reynolds number grows, the inertial term becomes more significant then the viscous

term of the equation. We see that the inertial term in equation is nonlinear, however

viscous term is linear, so the cavity problem becomes more nonlinear as Reynolds

number increasing. To demonstrate nonlinear ramping for this problem we perform

auxiliary sweep for various Reynolds numbers. In this way we can compare the

velocity and pressure profiles for multiple Reynolds numbers. The problem is steady-

state, without inlet or outlet, where pressure could be defined. There is a reference

pressure point 0 at the lower left corner of the square, and it fits to an absolute

pressure of 1 atm.
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(a) 𝑅𝑒 = 100 (b) 𝑅𝑒 = 400

(c) 𝑅𝑒 = 1000 (d) 𝑅𝑒 = 3200

(e) 𝑅𝑒 = 5000 (f) 𝑅𝑒 = 10000

Figure 4-3: The velocity fields for the lid-driven cavity flow problem and various Reynolds numbers.

The mapped mesh was used to discretize the domain of the square cavity, see

Fig. 4-2(b). For this type of problem we use adaptive elements near the no-slip

walls where boundary layers may occur which is essential for solving the algebraic

systems for larger Reynolds numbers. Fig. 4-3 shows the velocity profiles for the lid
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driven cavity flow problem for different values of Reynolds number (100, 400, 1000,

3200, 5000, 10000). In each case one can observe that the velocity is approaching 1

close to the top wall and 0 at walls with no-slip and bottom side. Streamlines show

that central vortex spins faster for higher value of Reynolds number since inertial

force of the fluid flow is increasing. There are regions with the low velocity in the left

corners and bottom side of the square where secondary vortexes occur. Fig. 4-4 shows

the velocity profiles for the flow in the square cavity along a horizontal and vertical

line which pass through the center of cavity. By using auxiliary sweep in COMSOL

Multiphysics we can measure velocity profiles for different values of 𝑅𝑒. Note that

this software does not show error for high Reynolds number. The graph of velocity

profile along the horizontal line starts from zero and ends up at zero value due to

no-slip boundary condition (𝑣 = 0). There is significant growth of velocity on the left

and right sides where is the central vortex region, see Fig. 4-3. A similar effect is for

the velocity profiles along the vertical line. The velocity graph starts growing from

zero value (at the bottom side 𝑣 = 0) and passes through the vortex flow reaching

the value 1 at the top wall.

(a) The velocity profiles along the horizontal
line. (b) The velocity profiles along the vertical line.

Figure 4-4: The velocity profiles for the lid-driven cavity flow problem along the horizontal and
vertical cut lines for various Reynolds numbers.

Fig. 4-5 illustrates the pressure profiles for the lid-driven cavity flow model for

various Reynolds number. The pressure curve smoothly decreases in the middle of
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the cavity and increases up to the same value for the case where the pressure was

plotted along the horizontal line passing through the center of the square. The similar

picture we got for the pressure along the vertical line except that the initial pressure

value was almost zero, gradually decreasing till the center point and increasing only

up to −0.06 Pa. The profiles were prepared for different values of the Reynolds

number 𝑅𝑒 such that the difference of profiles corresponding to the small and higher

values of 𝑅𝑒 can be observed.

(a) The pressure along the horizontal line. (b) The pressure along the vertical line.

Figure 4-5: The pressure profiles for the lid-driven cavity flow problem along the horizontal and
vertical cut lines for various Reynolds numbers.

4.4.1 The Herschel-Bulkley model for the lid-driven cavity flow

The modified Herschel-Bulkley model in dimensionless form is considered for the lid-

driven cavity flow problem. The dimensionless form of the Bingham plastic viscosity

depends only on the Bingham number. In this section the parameter study for var-

ious Bingham numbers is performed. The velocity and pressure profiles along the

horizontal and vertical lines passing through the center are presented. E. Mitsoulis

and Th. Zisis in [42] have studied flow of Bingham plastics in a lid-driven square

cavity applying regularized Bingham-Papanastasiou model.

Fig. 4-6 illustrates the velocity profile along the horizontal and vertical centerlines

for the modified Herschel-Bulkley model and different values of the Bingham number.

The velocity along the horizontal line rapidly grows up to 0.22 m/s with a small decline
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in the center region and decreases to zero value at the no-slip wall. The velocity along

the vertical cut line starting from zero velocity slightly increases in the middle of the

square cavity, passes the vortex region and reaches its maximum value of 1 m/s at the

top wall. In general, the curve of the velocity for the Herschel-Bulkley model is similar

to the velocity profile in standard case of the lid-driven flow, see Fig. 4-4. In Fig. 4-

6(a)-(c) there is no significant difference between profiles corresponding to various

Bingham numbers. However, the zoomed image shows the slight changes in velocity

profiles for various 𝐵𝑛 number. In other words, the change in velocity is not significant

for various Bingham numbers. The pressure profiles for the modified Herschel-Bulkley

(a) The velocity along the horizontal center-
line.

(b) The zoomed velocity profiles.

(c) The velocity along the vertical centerline. (d) The zoomed velocity profile.

Figure 4-6: The velocity profiles for the Herschel-Bulkley viscosity model applied to the lid-driven
cavity flow problem and their zoomed parts.

model are also studied for various Bingham numbers. The shape of the pressure curve
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for this case, see Fig. 4-7, is similar to Fig. 4-5. Clearly, the increasing Bn number

strongly affects the curve amplitude, i.e., the higher the Bingham number the higher

pressure value.

(a) The pressure along the horizontal line. (b) The pressure along the vertical line.

Figure 4-7: Plots of pressure profiles for the Herschel-Bulkley model applied to the lid-driven cavity
flow problem presented along the horizontal and vertical centerlines.

4.4.2 Newtonian and non-Newtonian fluids for lid-driven cavity flow

model

In previous section we have studied the modified Herschel-Bulkley model applied to

the cavity flow problem. Let us consider a simple Newtonian fluid flow and compare

it to the Herschel-Bulkley model.

The plots presented in Fig. 4-8 show the velocity profiles for the Newtonian fluid

(a) and the modified Herschel-Bulkley model (b) in dimensionless form. The Newto-

nian fluid is a standard fluid model for the lid-driven cavity problem. One can observe

that due to the high viscosity in the non-Newtonian fluid there is no central vortex

as in the Newtonian model.
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(a) The velocity field for the Newtonian
model.

(b) The velocity field for the modified
Herschel-Bulkley model.

Figure 4-8: Plots of velocity profiles for the Newtonian and modified Herschel-Bulkley models applied
to the lid-driven cavity flow problem.

The line graphs presented in Fig. 4-9 describe the velocity profiles for the New-

tonian (green line) and modified Herschel-Bulkley (blue line) models. Since in the

Newtonian fluid model the viscosity is constant, the velocity varies greatly with sharp

decline in the center of the cavity. In contrast to the Newtonian model, the velocity

for the modified Herschel-Bulkley model does not exceed 0.2 m/s.

(a) The velocity along the horizontal line. (b) The velocity along the vertical line.

Figure 4-9: Plots of velocity profiles for the modified Herschel-Bulkley and Newtonian models applied
to the lid-driven cavity flow problem presented along the horizontal and vertical centerlines.

The pressure profiles are presented in Fig. 4-10. The difference between two

models Newtonian (green line) and non-Newtonian (blue line)can be clearly noticed.
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The pressure for the Newtonian fluid along the horizontal centerline has only small

decrease in the middle of the square cavity. However, the pressure profile for the

modified Herschel-Bulkley model has greater amplitude with small decline from the

left side, a rapid growth up to 500 Pa and a slight drop to the right side. The graph

shows that the pressure profiles for the non-Newtonian model significantly differ from

those corresponding to the Newtonian flow model.

(a) The pressure along the horizontal line. (b) The pressure along the vertical line.

Figure 4-10: Plots of pressure profiles for the modified Herschel-Bulkley and Newtonian models
applied to the lid-driven cavity flow problem presented along the horizontal and vertical centerlines.

4.5 Non-Newtonian fluid flow in cylindrical pipe

In this section we simulate the non-Newtonian flow based on the modified Herschel-

Bulkley model in a cylindrical straight tube. The model is considered as steady-

state, incompressible, laminar with no-slip at the wall. The tube die is a cylindrical

pipe with radius 3 mm and height 24 mm. The viscosity of the fluid based on

the modified Herschel-Bulkley model is considered in dimensionless form using the

Bingham number.

Fig. 4-11 shows the velocity field and profile for the non-Newtonian fluid in a

straight tube. It is clear that the velocity in the pipe smoothly decreases close to

the boundary due to the no-slip condition, i.e. 𝑣 = 0 at the wall. For this kind of

viscous fluid the maximum velocity is attained in the middle of the tube and it does
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not exceed 0.1 m/s, see the velocity profile in Fig. 4-11(b).

(a) The velocity field. (b) The velocity profile.

Figure 4-11: Plots of velocity field and profile for the modified Herschel-Bulkley model in the cylin-
drical pipe.

The pressure is slowly increasing from the bottom of tube upwards, see Fig. 4-12

(a) The pressure field. (b) The pressure profile.

Figure 4-12: Plots of pressure field and profile for the modified Herschel-Bulkley model in the
cylindrical pipe.

4.5.1 Pressure driven fluid flow in cylindrical pipe

Let us consider the Poiseuille fluid flow which is defined as steady-state, incompress-

ible, laminar flow of viscous fluid between parallel plates divided by length ℎ. The

Poiseuille flow or pressure-driven flow occurs by pressure difference between inlet and

outlet of the channel. Taking into account that the flow inside two parallel plates is
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laminar, velocity can be determined in the following way

𝑢 =
∆𝑝(ℎ2 − 𝑟2)

2𝜇𝐿

where ∆𝑝 denote pressure difference, ℎ is depth of the channel, 𝑟 is the radius of the

pipe, 𝐿 is length of the tube, 𝜇 stands for the viscosity of the fluid. Using the above

formula, we consider the Poiseuille flow with the parabolic inflow and no-slip at the

wall. The pressure on the inlet is set to 1 atm and zero at the outlet. The graphs

presented in Fig. 4-13 describe velocity distribution for the non-Newtonian fluid in

the pressure driven flow. The viscous fluid flows smoothly with maximum velocity of

0.024 m/s at the center of tube and decreases at the no-slip wall.

(a) The velocity field.

(b) The velocity profile.

Figure 4-13: Plots of velocity field and profile for the modified Herschel-Bulkley model in Poiseuille
flow

Since there are no external additional forces, e.g., gravity, the fluid in the pipe

moves due to the pressure difference between the inlet and outlet. The pressure

profile for the modified Herschel-Bulkley fluid in the Poiseuille flow is presented in

Fig. 4-14. The pressure slowly decreases down to the outflow. The pressure profile in

Fig. 4-14(b) shows how the pressure changes along the symmetry line.
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(a) The pressure field.

(b) The pressure profile.

Figure 4-14: Plots of pressure fields and profiles for the modified Herschel-Bulkley model in the
Poiseuille flow.

4.5.2 Newtonian and non-Newtonian fluid in pressure driven pipe flow

In this section we will compare the Newtonian fluid flow model for the Poiseuille flow

to the non-Newtonian one.

Fig. 4-15 shows the velocity profiles for the two different models. There is a

significant difference between Newtonian and non-Newtonian flows. The maximum

velocity of 0.16 in Fig. 4-15(a) appears in the middle of the tube. Then, the velocity

gradually decreases to zero at the no-slip wall where 𝑣 = 0. However, the maximum

velocity for the Herschel-Bulkley flow, see Fig. 4-15(b), does not exceed the value of

0.03 due to the high viscosity of the non-Newtonian fluid.
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(a) The velocity field for the Newtonian flow. (b) The velocity field for the non-Newtonian
flow.

Figure 4-15: The velocity fields for the Newtonian and modified Herschel-Bulkley Poiseuille pressure
driven flows in the cylindrical pipe.

Fig. 4-16 shows the pressure fields for the Newtonian and non-Newtonian fluids

in the Poiseuille flow. The distribution of the pressure in the two models is almost

the same except the small oscillations close to the boundary in the non-Newtonian

model. The maximum pressure slowly decreases up to zero at the outlet.

(a) The pressure field for the Newtonian
Poiseuille flow.

(b) The pressure field for the non-Newtonian
Poiseuille flow.

Figure 4-16: The pressure fields for the Newtonian and modified Herschel-Bulkley models applied
to the pressure driven Poiseuille flow in the cylindrical pipe.

The comparison between Newtonian and non-Newtonian models for the Poiseuille

flow is presented in Fig. 4-17. The velocity profile for the Newtonian model (green
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line) is much higher than the corresponding profile for the modified Herschel-Bulkley

model (blue line). The plots of the velocity profiles confirm the fact that maximum

velocity for the non-Newtonian model does not exceed 0.03, while the Newtonian

fluid has approximately the maximum velocity 0.16. Fig. 4-17(b) shows the pressure

profiles for the two models along the axis line. The pressure profiles almost overlap

with each other. In other words, there is no much difference between pressure for the

Newtonian and non-Newtonian Poiseuille flows in a cylindrical pipe.

(a) The velocity profiles. (b) The pressure profiles.

Figure 4-17: The velocity and pressure profiles for the Newtonian and modified Herschel-Bulkley
Poiseuille pressure driven flows in a cylindrical pipe.
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Chapter 5

Simulation results in COMSOL

After describing the rheology of ceramic paste, the next stage of our study are flow

simulations for various geometries. The objective of this study is to visualize the

velocity and pressure distribution of the flow over the domain. The Finite Element

simulations for the flow of ceramic paste in the axis symmetric case were performed

using the COMSOL Multiphysics and the non-Newtonian model. In this chapter

results of simulations for the extrusion process of ceramic paste ram extruders of

various geometrical forms will be presented.

5.1 Simulation results for extrusion dies of various

geometries

5.1.1 Die Model 1

In the following we present simulation results for the ceramic paste extrusion in the

case of three different extrusion die axis symmetrical geometries. The modeling and

numerical approach for the ceramic paste extrusion has been presented in [2] for

different geometries of the extrusion die where authors studied the effects of process

parameters on the flow pressure and velocity.

The extrusion die from [2] consists of wide barrel with radius 10.0 mm which

proceeds by right angle to the narrow part with radius 1 mm. The length of the
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thin tube is 12.5 mm while the total die length is equal to 23.5 mm, see Fig. 5-1. In

this study a triangular mesh was used to resolve the boundary layers at the walls of

extrusion die [44]. The mesh consists of quite fine triangular cells in order to obtain

the finite element solutions of high accuracy.

(a) The geometry of extrusion die. (b) The mesh for the extrusion die.

Figure 5-1: The geometry for the first model of extrusion die (axis symmetry) and its mesh.

Herschel-Bulkley model

Let us analyze the extrusion process of ceramic paste using modified version of

Herschel-Bulkley model in non-dimensional form. The experimental data of veloc-

ity are from [38] where the paste contains 50 volume %of alumina, 25 volume % of

high density polyethylene, 23 volume % of paraffin wax and 2 volume % of stearic

acid. The fitted parameters from [2] are presented in Table 5.1. The velocity fields

Parameter Value
Critical shear rate, [1/s] 10.0
Yield stress, [Pa] 1103.0
Consistency index, [kg/m s] 248.7
Power-law index, [-] 0.668
Bingham number, [-] 10.0

Table 5.1: Parameters for the modified Herschel-Bulkley model.

for the Bingham plastics in extrusion die are presented in Fig. 5-2. Fig. 5-2 describes

the velocity distribution in the main barrel. The velocity attains its maximum in the

center region of die and slows down close to the boundary. Notice that in this die
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geometry there is a region with zero velocity. The fluid does not move at the corner.

The next graph shows velocity distribution in the narrow die. The fluid moves with

high velocity in die and decreases at the wall due to the no-slip boundary conditions.

The following plots shown in Fig. 5-3 represent the velocity profiles along the cut-line

(a) The velocity field in the barrel. (b) The velocity field in the narrow die.

Figure 5-2: The velocity distributions in the ram extruder for the modified Herschel-Bulkley model.

at the center of wide barrel and the tube with a small radius. In the center of die fluid

has velocity 0.16 m/s. Then it is rapidly decreasing such that in half arc length veloc-

ity of the fluid is 4 times less then maximum. Close to boundary of the die velocity is

approaching to zero because of there is no slip on the wall. Plot (b) presents parabolic

velocity profile in tube with smaller radius. Velocity of the fluid smoothly decreases

to the die boundary. The COMSOL Multyphysics software computes the solution to

(a) The velocity profile in the barrel. (b) The velocity profile in the narrow die.

Figure 5-3: The velocity profiles in the ram extruder for the modified Herschel-Bulkley model.

the laminar flow problem for velocity components (𝑣𝑟, 𝑣𝜃, 𝑣𝑧) and the relative pressure
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𝑝. However, in this study, we have used boundary condition defined by the absolute

pressure 1 atm at the outlet. The plot of pressure distribution in the extrusion die is

presented in Fig. 5-4(a). The pressure is constant and of high magnitude in the wide

barrel and decreases towards the outlet. The plot of the pressure profile presented in

Fig. 5-4(b) confirms this finding. The pressure linearly increases in the thin tube and

then remains maximal in a wide part of the extrusion die.

(a) The pressure field. (b) The pressure profile.

Figure 5-4: The pressure distribution and profile in the ram extruder for the modified Herschel-
Bulkley model.

Parameter study for Model 1

In order to study the extrusion process in Model 1 of die, the modified Herschel-

Bulkley equations in the dimensionless form were used where a parameter, the so-

called Bingham number was introduced. As in the case of lid-driven cavity flow

problem, the auxiliary sweep was used to study velocity and pressure profiles for

various Bingham numbers. The graphs in Fig. 5-5 show the velocity distribution

in the extrusion die for the small and high values of Bingham number. The velocity

fields do not differ significantly for various Bingham numbers. However, by inspecting

1D plots in Fig. 5-6 one can see more accurate the small changes of velocity when

the Bingham number varies. The velocity in the main barrel declines strongly from

the middle of die up to the wall. In general, the velocity profile in a wide and

narrow parts of the die are similar to those from the previous study. Fig. 5-6(b)

shows the usual velocity profile in the narrow tube where the velocity of the fluid
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(a) The velocity field in the barrel for the
Bingham number 10.

(b) The velocity field in the barrel for the
Bingham number 1000.

(c) The velocity field in the narrow die for the
Bingham number 10.

(d) The velocity field in the narrow die for the
Bingham number 10

Figure 5-5: The velocity distributions in the extrusion die for the modified Herschel-Bulkley model
and various values of Bingham number.

attains its maximum value in the middle and slowly decreases to zero due to the

no-slip boundary condition. There is a small difference in the velocity in the central

region of die for various Bingham numbers. All graphs show only minor changes of

velocity when the Bingham number varies, i.e. changing the Bingham number does

not have much influence on velocity distribution of alumina paste in the extrusion

die. The pressure distribution for the modified Herschel-Bulkley model in the case of

small and high value Bingham numbers is presented in Fig. 5-7. The color of contour

lines defines the pressure of fluid in the extrusion die. There is a small difference

between pressure distributions. However, 1D plots in Fig. 5-8 show the pressure more

precisely for various Bingham numbers. Fig. 5-8 shows the pressure distribution along
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(a) The velocity profile in the barrel. (b) The velocity profile in the narrow die.

Figure 5-6: The velocity profiles for various values of Bingham number.

(a) The pressure field for the Bingham number
10.

(b) The pressure field for the Bingham number
1000.

Figure 5-7: The pressure distributions for various values of Bingham number.

the symmetry line of the extrusion die. The pressure increases from the bottom up

in the tube with a small die radius. The pressure remains constant in the main

barrel. The pressure grows linearly in the narrow tube. Unlike the velocity profiles,

there is a significant difference in the pressure when the Bingham number varies. As

the Bingham number becomes larger, the pressure becomes higher. In other words,

the Bingham number has significant effect on pressure of the ceramic paste in the

extrusion die.
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Figure 5-8: The pressure profiles for various Bingham numbers.

Newtonian and non-Newtonian fluid in extrusion die

The flow behaviour for the Newtonian and non-Newtonian fluids will be compared for

the die Model 1. The comparison between these two viscous models will be provided.

The non-Newtonian model is based on modified Herschel-Bulkley equations. The

graphs in Fig. 5-9 show the velocity distributions of non-Newtonian and Newtonian

fluids in the ram extruder die. The velocity attains its maximum in the middle of the

tube and slows down close to the corner part of the barrel. There is no significant

difference between plots of these two models which is also confirmed by velocity

profiles presented in Fig. 5-11 . The pressure distribution in the extrusion die for the

non-Newtonian and Newtonian fluids are shown in Fig. 5-10. Fig. 5-10(a) illustrates

the maximum pressure that is attained at the corner between wide and narrow tube

and slowly decreases down to the outlet of the die. The normal atmosphere pressure

of 1 atm is set at the outlet. The graph in Fig. 5-10(b) shows the pressure distribution

in the ram extruder for the Newtonian fluid. The green color of the surface in the

main barrel indicates that the pressure does not exceed 1.7 atm and decreases down

to the outlet, i.e. the pressure is gradually decreasing up to 1 atm. Comparing

with the Newtonian fluid, we observe that the pressure of the ceramic paste in the

extrusion die is significantly higher. The velocity profiles in the extrusion die for the

Newtonian and non-Newtonian fluids are presented in Fig. 5-11. The velocity profiles

are similar to those presented in the parameter study for various Bingham numbers.
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(a) The velocity field in the barrel for the non-
Newtonian fluid.

(b) The velocity field in the barrel for the New-
tonian fluid.

(c) The velocity field in the narrow die for the
non-Newtonian fluid.

(d) The velocity field in the narrow die for the
Newtonian fluid.

Figure 5-9: The velocity distributions in extrusion die for the non-Newtonian and Newtonian fluids.

Here, we compare the Newtonian (blue line) and non-Newtonian (green line) fluid

flows. The maximum velocity for the Herschel-Bulkley model is lower than that one

for the Newtonian model. However, the velocity for both cases are close and end up

with zero at the boundary. The same observation can be done for the velocity in the

narrow die. The maximum velocity for the Newtonian fluid is bigger than that one for

the Herschel-Bulkley model. The profiles of parabolic shape are pretty close to each

other such that the velocity in both cases slowly approaches zero at the die wall. We

can conclude that the velocity distribution for Newtonian and non-Newtonian fluid

flows do not differ significantly.
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(a) The pressure field for the non-Newtonian
fluid.

(b) The pressure field for the Newtonian fluid.

Figure 5-10: The pressure distributions in the ram extruder for the non-Newtonian and Newtonian
fluids.

(a) The velocity profile in the barrel. (b) The velocity profile in the narrow die.

Figure 5-11: The velocity profiles in the ram extruder for the non-Newtonian and Newtonian fluids.

5.1.2 Die Model 2

Now, we want to study the extrusion process for the ram extruder of slightly different

form. The die has a skewed corner so that there is a transition part where the fluid can

flow down to the thin tube more smoothly, see Fig. 5-12(a). In the axis symmetrical

case the extrusion die consists of the barrel with the wide radius of 10 mm and height

of 11 mm. There is a thin tube with radius of 1 mm and length of 9.5 mm. The right

corner has been skewed in order to get smooth transition between the barrel side and

the narrow die. The triangular mesh with fine cells, see Fig. 5-12(b), was applied in

the following simulations.
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(a) The geometry of the extrusion die. (b) The mesh for the extrusion die.

Figure 5-12: The geometry for the second model of extrusion die (axis symmetry) and its mesh.

Herschel-Bulkley model in extrusion die

The simulations for the ceramic paste extrusion process were performed using the

CFD module of the COMSOL Multyphysics. The regularized Herschel-Bulkley model

with the same parameters for the alumina paste as for the Die Model 1 was applied.

All input parameters and boundary conditions are the same as in Die Model 1, i.e.

this is an incompressible, steady-state, laminar flow with no-slip at the wall and

the normal atmosphere pressure at the outlet. The velocity fields for the modified

Herschel-Bulkley model are presented in Fig. 5-13. Fig. 5-13(a) shows the velocity

of the fluid in the main barrel. The fluid with high velocity flows down to the thin

tube, the velocity decreases close to the boundary side. In contrast with Die Model 1

the zero velocity region is much smaller at the corner. This means that less amount

of paste significantly slows down at the corner. The paste flows more smoothly due

to the skewed corner. Fig. 5-13(b) shows the velocity field in the narrow die. The

velocity of the fluid is higher in the center of tube and decreases at the die walls.

Fig. 5-13(c) is a 3D plot of the velocity distribution in the narrow die using the

axis symmetry of the extruder. The velocity profiles of the ceramic paste in the

extrusion die are presented in Fig. 5-14. The first graph in Fig. 5-14 describes the

velocity profile through the center of the wide barrel in the horizontal direction. The

maximum velocity of the fluid is attained in the middle of the die and it is about

0.014 m/s. Then, the velocity slowly decreases up to the boundary. Unlike the Die
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(a) The velocity field in the barrel. (b) The velocity field in the narrow tube.

(c) 3D plot of the velocity field.

Figure 5-13: The velocity field in the ram extruder for the modified Herschel-Bulkley model.

Model 1, the fluid velocity in this form of die gradually declines to zero. The plot of

velocity profile in the narrow die is similar to the graph of Die Model 1. The velocity

profile has a parabolic shape with maximum value 0.65 m/s attained in the middle

of the narrow tube. The pressure in the extrusion die is illustrated in Fig. 5-15. The

color of the surface in Fig. 5-15(a) indicates that the pressure is constant and of high

value in the wide part of the die. Then, it decreases towards the outlet where the

pressure is set to 1 atm. The pressure profile presented in Fig. 5-15(b) is determined

along the symmetry line. It shows that the pressure slowly increases in the thin tube

from the outlet to the barrel side. The pressure curve goes up with a small rounding.

Concluding, the pressure in Die Model 2 changes more smoothly than in Die Model

1 due to the skewed corner.
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(a) The velocity profile in the barrel. (b) The velocity profile in the narrow tube.

Figure 5-14: The velocity profiles in the ram extruder for the modified Herschel-Bulkley model.

(a) The pressure field. (b) The pressure profile.

Figure 5-15: The pressure distribution and profile in the ram extruder for the modified Herschel-
Bulkley model.

Parameter study of modified Herschel-Bulkley model in extrusion die Model 2

In this part, the velocity and pressure distributions for the regularized Herschel-

Bulkley model will be studied for various values of the Bingham number. Fig. 5-16

shows the velocity distribution of the fluid in the extrusion Die Model 2. The velocity

profiles in the barrel part are shown for low and high Bingham numbers. One can

observe only a minor change of the fluid velocity when the Bingham number varies.

However, 2D plots do not precisely show the differences.
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(a) The velocity field in the barrel for the
Bingham number 1.

(b) The velocity field in the barrel for the
Bingham number 1000.

(c) The velocity field in the narrow tube for
the Bingham number 1.

(d) The velocity field in the barrel for the
Bingham number 100.

Figure 5-16: The velocity distribution in the ram extruder for the modified Herschel-Bulkley model
and various values of Bingham number.

(a) The pressure field for the Bingham number
1.

(b) The pressure field for the Bingham number
1000.

Figure 5-18: The pressure distribution in the extrusion die for the modified Herschel-Bulkley model
and various values of Bingham number.

60



(a) The velocity profiles in the barrel. (b) The velocity profiles in the narrow tube.

Figure 5-17: The velocity profiles in the ram extruder for the modified Herschel-Bulkley model and
various values of Bingham number.

The graphs in Fig. 5-17 show the velocity profiles in the extrusion Die Model

2 for the modified Herschel-Bulkley model and various values of Bingham number,

𝐵𝑛 = 0.5, 1, 10, 50, 100, 400, 1000, 2000.

Figure 5-19: The pressure profiles for the modified Herschel-Bulkley model and various values of
Bingham number.

The velocity profiles are of the same shape as in the previous model. There

is only a small difference in the maximum of velocity for each case. The profiles

almost coincide with each other. Clearly, changing the Bingham number in viscosity

of the fluid does not have a significant effect on the velocity profile. The pressure

distributions in the extrusion die are presented in Fig. 5-18 for low and high Bingham

numbers. There is a slight difference between the graphs for the pressure. In Fig. 5-19
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the pressure profiles in the extrusion die Model 2 are presented for various Bingham

numbers. In general, the pressure curves are of the same shape as the pressure

profiles in the previous model. We observe that as the Bingham number increases the

pressure magnitude grows. Concluding, we state that the pressure in the extrusion

die is directly proportional to the Bingham number.

(a) The velocity field in the barrel for the non-
Newtonian fluid.

(b) The velocity field in the barrel for the New-
tonian fluid.

(c) The velocity field in the narrow tube for
the non-Newtonian fluid.

(d) The velocity field in the narrow tube for
the Newtonian fluid.

Figure 5-20: The velocity distributions in the ram extruder for the non-Newtonian and Newtonian
fluids.

Newtonian and non-Newtonian fluids in extrusion die

Now, we compare the velocity and pressure distributions for the Newtonian and non-

Newtonian fluids in Die Model 2.
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(a) The velocity profile in the barrel. (b) The velocity profile in the narrow tube.

Figure 5-21: The velocity profiles in the ram extruder for the non-Newtonian and Newtonian fluids.

The velocity distributions for the non-Newtonian and Newtonian fluids are pre-

sented in Fig. 5-20. At the first glance, the graphs are the same. The velocity for the

Newtonian fluid is greater in the narrow die than in the center of the die. This fact

can be confirmed by inspecting 1D plots for the velocity profiles in Fig. 5-21. The

(a) pressure of non-Newtonian fluid (b) pressure of Newtonian fluid

Figure 5-22: Pressure distribution of non-Newtonian and Newtonian fluid in extrusion die

velocity profiles for the Newtonian and non-Newtonian fluids show that the curve for

the Newtonian (blue line) and non-Newtonian (green line) fluids are extremely close

to each other.
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Figure 5-23: Pressure profile of Newtonian and non-Newtonian fluid in extrusion die

There is a minor difference in the maximum velocity. The curves for the modified

Herschel-Bulkley model decrease more gradually than those for the Newtonian fluids.

The same can be observed for the velocity profiles in the thin tube. The velocity

curve for the Newtonian fluid has greater maximum than the velocity for the non-

Newtonian fluid. The lines overlap each other in the decreasing direction, see Fig. 5-

21. In Fig. 5-22 the pressure distributions for the non-Newtonian and Newtonian

fluids are presented. There is a significant difference between the pressure profiles for

the two fluid models. While the non-Newtonian fluid moves with maximum pressure

17 atm in the wide part of the die, the pressure of Newtonian fluid does not exceed

15 atm and slowly decreases in the die with smaller diameter. In other words, the

pressure of Newtonian fluids in the extrusion die with skewed corner is much lower in

the barrel side. Fig. 5-23 shows that the pressure magnitude for the non-Newtonian

fluid (green line) is much greater than the pressure magnitude for the Newtonian

model (blue line). The difference between two models is almost 10 atm. The pressure

for the Newtonian fluid is linearly increasing up to 1.7 atm and stays at that level in

the wide barrel. We notice that there is a significant difference between pressures in

two types of fluids in the extrusion Die Model 2.

Computed viscosity

Ceramic pastes are fluid-particle suspensions whose flow behaviour depends on the

viscosity function of the fluid, the solid-liquid ratio, the size of the particle and the
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particle shape.

Figure 5-24: The computed viscosity of alumina paste for the modified Herschel-Bulkley model.

The recent studies show that at the high shear stress the shear stress function is

basically determined by the shear rate function of the suspending fluid which means

that the flow behaviour of the suspension is determined by the hydrodynamic forces

within the particles. The modeling and qualitative analysis of ceramic paste extru-

sion are highly important in order to design and optimize the extrusion process for

producing the high-value extrudates of required strength, form and morphology [45].

The computed viscosity of alumina paste is presented in Fig. 5-24. The graph was

plotted in the transition region from the wide to the narrow channel. The curve of

the shear rate starts from its maximum value 130 1/s and smoothly decreases till its

minimum value.

5.1.3 Die Model 3

We will improve our simulation results by changing the geometry of the die. Using

the form of Die Model 2 we will build a new die geometry with rounded corners such

that the viscous fluid will flow more smoothly into the narrow tube, see Fig. 5-25.
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Figure 5-25: The Geometry of the extrusion Die Model 3.

The size of the extrusion die in Die Model 3 is similar to Die Model 2. The

extrusion die is axis symmetric and consists of the barrel with wide radius 10 mm

and height 11 mm. The thin tube has radius 1 mm and length 9.5 mm. The right

corner was skewed in order to achieve the more smooth transition between the barrel

side and narrow tube. The corners of this transition part were rounded such that the

non-Newtonian fluid will flow more smoothly.

Modified Herschel-Bulkley model

The extrusion process of ceramic paste is studied using the regularized version of

Herschel-Bulkley model in the dimensionless form. This model is analyzed by the

laminar flow module in COMSOL Multyphysics for incompressible, steady-state fluid

flow. The initial and boundary conditions are the same as in Die Model 1, 2. There

is no-slip at the die wall, the initial velocity is zero and the pressure is set to 1 atm

at the die outlet. The parameters for the Herschel-Bulkley viscosity are chosen from

Table 5.1.
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(a) The velocity field in the barrel. (b) The velocity profile in the narrow tube.

Figure 5-26: The velocity distribution in the barrel and the velocity profile in the narrow tube for
the modified Herschel-Bulkley model.

Fig. 5-27 presents the velocity field and profiles for the regularized Herschel-

Bulkley model in the new form of the extrusion die. In this case, we observe that

the viscous fluid flows with maximum velocity in whole domain. There are no zero

velocity regions where paste does not move. The fluid slows down close to the die

walls due the no-slip condition. Similarly, the velocity in the narrow die is pretty high

in the die center. The 3D plot in Fig. 5-27(c) shows the general view of the velocity

in the ram extruder.
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(a) The velocity field in the barrel. (b) The velocity field in the narrow tube.

(c) 3D plot of the velocity field in the narrow
tube.

Figure 5-27: The velocity distribution in the extrusion die for the modified Herschel-Bulkley model.

Finally, we present in Fig. 5-28 the velocity profiles for three die models studied

in this chapter. It is clear from the graph velocity profile of Model 1 is higher then

profile of Model 2. However velocity of the paste in extrusion die with rounded corners

is much greater, then other models. The pressure profiles of Model 1 and Model 2 are

linearly increasing till 20 atm and 17 atm respectively, as it was shown in previous

sections. Pressure profile of Model 3 is much greater then profiles of two other models.

In other words velocity and pressure profiles of extrusion die Model 3 are noticeably

higher then Model 1 and Model 2.
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Figure 5-28: The velocity and pressure profiles in three types of the extrusion die models for the
modified Herschel-Bulkley flow.

The die geometry and the form of the transition region has significant influence

on the shape of the velocity and pressure profiles of ceramic paste extrusion in 3D

printing.
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Chapter 6

Conclusions

In this work, the mathematical model for the extrusion of ceramic paste with ap-

plications for 3D printing was established and numerically solved using the Finite

Element software COMSOL. The mathematical model of the ram extrusion was de-

fined using the continuity and momentum equations which were then numerically

solved for the case of non-Newtonian fluids based on the modified Herschel-Bulkley

equations. The concept of non-Newtonian fluids was presented in Chapter 2 where

the special case of the Bingham model, i.e. modified Herschel-Bulkley model, was

discussed. The governing equations for the model were presented as generalized axis

symmetric, incompressible, laminar, steady-state Navier-Stokes equations. The finite

element software COMSOL Multiphysics has been used to simulate the flow velocity

and pressure distributions inside the extrusion die. The results of simulations were

illustrated using 1D, 2D and 3D plots. Particularly, it was demonstrated that due to

properties of the viscous fluid the velocity reaches its maximum value at the centre of

the extrusion die and decreases close to the die boundaries. The viscosity of alumina

paste was also approximated numerically and presented in the transition region. The

line graph which represents the shear rate of the ceramic paste shows the gradual

decline of the shear rate value in the extrusion die. Similarly, the results of the sim-

ulations show that the pressure of the fluid inside the extrusion die is constant and

of high magnitude in the barrel part and it slowly decreases as the fluid moves to

outlet in the narrow die. The die geometry has influence on the the shape of the
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pressure profiles. The skewed corner in the transition region can reduce the pressure

gradient. The obtained results can be useful to design and optimize the ceramic paste

extruders.

71



Bibliography

[1] Li, M., L. Tang, R.G. Landers, and M.C. Leu, Extrusion process modeling for
aqueous-based ceramic pastes-Part 1: Constitutive model. J. Manuf. Sci. Eng.,
135:051008, 1-7 (2013a)

[2] B. Golman, P. Skrzypacz, W. Julklang, Modeling and Numerical Study of Ceramic
Paste Extrusion. accepted for publication in Proceedings of APCChE 2019.

[3] Majić Renjo, Marijana, et al. Rheological properties of aqueous alumina suspen-
sions, Materialwissenschaft und Werkstofftechnik 43.11 (2012): 979-983.

[4] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He,
3D printing of ceramics: A review. J. Eur. Ceram. Soc., 39, 661-687 (2019)

[5] L.D. Landau and E.M. Lifshitz, Fluid mechanics, 1959

[6] A. Björn, P. Segura de La Monja, A. Karlsson, J. Ejlertsson, and Bo H. Svensson,
Rheological Characterization, 2012

[7] I. Seyssiecq, J.H. Ferasse, and N. Roche, State-of-the-art: rheological character-
ization of waste water treatment sludge. Biochem Engin Jour, 2003, Vol.16, pp.
41-5.

[8] S.M. Chen, W.A. Bullogh and J. Hart. CFD study of the flow in a radial clutch
with a real electrorheological fluid. Proc. of 11th Conference on Electrorheological
Fluids and Magnetorheo-logical Suspensions, Journal of Physics: Conference Series
149 (2009)

[9] A. Hirn, Finite element approximation of singular power-law systems, Math.
Comp., 82 (2013),pp.1247-68.

[10] K. Sverdrup, N. Nikiforakis, A. Almgren, Highly parallelisable simulations of
time-dependent viscoplastic fluid flow with structured adaptive mesh refinement.
Physics of Fluids 30.9 (2018): 093102.

[11] J. Málek. Introduction to non-Newtonian fluid mechanics, October (2012)

[12] W. Ostwald, Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme.
I. Colloid Polym. Sci., 36:99–117, 1925.

72



[13] A. de Waele, Viscometry and plastometry. J. Oil Colour Chem. Assoc., 6:33–69,
1923.

[14] P. J. Carreau, Rheological equations from molecular network theories. J. Rheol.,
16(1):99–127, 1972.

[15] K. Yasuda, Investigation of the analogies between viscometric and linear vis-
coelastic properties of polystyrene fluids. PhD thesis, Massachusetts Institute of
Technology. Dept. of Chemical Engineering., 1979.

[16] M. M. Cross. Rheology of non-newtonian fluids: A new flow equation for pseu-
doplastic systems. J. Colloid Sci., 20(5):417–437, 1965.

[17] H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction
rates. J. Chem. Phys., 4(4):283–291, 1936.

[18] F. Ree, T. Ree, H. Eyring, Relaxation theory of transport problems in condensed
systems. Ind. Eng. Chem., 50(7):1036–1040, 1958.

[19] A. W. Sisko, The flow of lubricating greases. Ind. Eng. Chem., 50(12):1789–1792,
1958.

[20] W. Herschel, R. Bulkley, Measurement of consistency as applied to rubber benzene
solutions. Proc. Am. Soc. Testing Mater., 26, 621-629 (1926)

[21] R.R. Huilgol, Z. You, Application of the augmented Lagrangian method to steady
pipe flows of Bingham, Casson and Herschel–Bulkley fluids. J. Non-Newtonian
Fluid Mech. 128 (2005) 126–143.

[22] M. D. Normand, M. Peleg, Flow Curves of a Herschel-Bulkley Fluid
http://demonstrations.wolfram.com/FlowCurvesOfAHerschelBulkleyFluid/ Wol-
fram Demonstrations Project, March 7 2011

[23] S. Lovato, G. Vaz, S. Toxopeus, G. Keetels, Code Verification exercise for 2D
Poiseuille flow with non-Newtonian fluid. Conference: NuTTS 2018At: Cortona,
Italy, October (2018)

[24] E. Mitsoulis, J. Tsamopoulos, Numerical simulations of complex yield-stress fluid
flows. Rheologica Acta, December (2016)

[25] T.C. Papanastasiou, Flows of materials with yield. J. Rheol., 31, 385-401 (1987)

[26] N. Nirmalkar, R. Chhabra, R. Poole, Laminar forced convection heat
transfer from a heated square cylinder in Bingham plastic medium. In-
ternational Journal of Heat and Mass Transfer. 56. 625–639. (2013)
10.1016/j.ijheatmasstransfer.2012.08.049.

[27] A. Syrakos, G. C. Georgiou, A. N. Alexandrou. Solution of the square lid-driven
cavity flow of a Bingham plastic using the finite volume method. Journal of Non-
Newtonian Fluid Mechanics 195 (2013): 19-31.

73



[28] H. Taibi, F. Messelmi. Effect of yield stress on the behavior of rigid zones during
the laminar flow of Herschel-Bulkley fluid. Alexandria Engineering Journal 57.2
(2018): 1109-1115.

[29] J. Ferziger, M. Peric. Computational Methods for Fluid Dynamics, Springer,
Berlin, 2nd edition, (1999)

[30] J. Málek, K. R. Rajagopal, M. Ruzicka. Existence and regularity of solutions and
the stability of the rest state for fluids with shear dependent viscosity. Mathematical
Models and Methods in Applied Sciences 5.06 (1995): 789-812.

[31] H. Eberlein and M. Ruzicka, Existence of Weak Solutions for Unsteady Motions
of Herschel–Bulkley Fluids., Journal of Mathematical Fluid Mechanics 2012.

[32] R. I. Tanner, J. F. Milthorpe (1983) Numerical simulation of the flow of fluids
with yield stress. Num Meth Lam Turb Flow (Eds Taylor C, Johnson JA, Smith
WR), Proc 3rd Int Conf, Seattle, Pineridge Press, Swansea, 680–690

[33] M. Li, L. Tang, F. Xue, R. Landers, Numerical Simulation of Ram Extrusion
Process for Ceramic Materials., Proceedings of Solid Freeform Symposium, Austin,
TX. Vol. 35. 2011

[34] G. Stokes, On the Effect of the Internal Friction of Fluids on the Motion of
Pendulums. Transactions of the Cambridge Philosophical Society. 9: 8–106. 1851

[35] A Salih, Conservation equations of fluid dynamics., Department of Aerospace
Engineering Indian Institute of Space Science and Technology, 2011

[36] K. Vajravelu, et al. Mathematical model for a Herschel-Bulkley fluid flow in an
elastic tube. Central European Journal of Physics 9.5 (2011): 1357.

[37] T. Roubicek, On non-Newtonian fluids with energy transfer. J. Math. Fluid
Mech., 11, 110-125 (2009)

[38] P. Thomas-Vielma, A. Cervera, B. Levenfeld, A. Varez, Production of alumina
parts by powder injection molding with a binder system based on high density
polyethylene. J. Eur. Ceram. Soc., 28, 763-771 (2008)

[39] C. Hirsch, Numerical Computation of Internal & External Flows: Fundamentals
of Numerical Discretization. John Wiley & Sons, Inc. USA, (1988)

[40] S. Acharya, Analysis and FEM Simulation of Flow of Fluids in Pipes: Fluid Flow
COMSOL Analysis. (2016).

[41] H. Nguyen, T. Hoang. Numerical Simulation of Laminar Flow Through a Pipe
using COMSOL Multiphysics. International Journal of Scienti ic & Engineering
Research 8.6 (2017): 2229-5518.

[42] E. Mitsoulis, Th. Zisis. Flow of Bingham plastics in a lid-driven square cavity.
Journal of non-newtonian fluid mechanics 101.1-3 (2001): 173-180.

74



[43] G. Duvaut, J. L. Lions. Inequalities in mechanics and physics, Berlin: Spring-
Verlag (1976).

[44] P. Holmlund, Computational Fluid Dynamic simulations of pulsatile flow in
stenotic vessel models. (2014).

[45] W. GleiBle, L. Graczyk, H. Buggisch, Rheological Investigation of Suspensions
and ceramic pastes Characterization of Extrusion Properties, KONA Powder and
Particle Journal 1993

[46] Li, M., L. Tang, R.G. Landers, and M.C. Leu, Extrusion process modeling for
aqueous-based ceramic pastes-Part 2: Experimental verification. J. Manuf. Sci.
Eng., 135:051009, 1-7 (2013b)

[47] COMSOL Multiphysics R○ v. 5.4. www.comsol.com, COMSOL AB, Stockholm,
Sweden (2018)

[48] K. J. Hammad, G. Vradis, M. V. Otugen, M. V. Otugen, Laminar Flow of a
Herschel-Bulkley Fluid Over an Axisymmetric Sudden Expansion, September 2001

[49] M. Vaezi, G. Zhong, H. Kalami, S.Yang, Extrusion- based 3D printing technolo-
gies for 3D scaffold engineering. pp. 235-254, In Functional 3D Tissue Engineering
Scaffolds. Woodhead Publ., (2018)

[50] E. Mitsoulis, S. S. AbdaliN, C. Markatos, N.C. Markatos, Flow Simulation of
Herschel-Bulkley Fluids Through Extrusion Dies. The Canadian Journal of Chem-
ical Engineering 71(1):147-160, February 1993.

[51] “ANSYS FLUENT 12.0 Documentation“, Ansys, Inc., Canonsburg, PA.

[52] dos Santos, D. Dall’Onder, et al. Numerical approximations for flow of viscoplas-
tic fluids in a lid-driven cavity. Journal of Non-Newtonian Fluid Mechanics 166.12-
13 (2011): 667-679.

[53] S. Durand, C. Dubois, P. Lafleur, V. Panchal, D. Park, P.Y. Paradis, D. Lepage,
Modeling of a Multilayered Propellant Extrusion in Concentric Cylinders. Proceed-
ings of the 2015 COMSOL Conference in Boston

[54] E. Solomon, Author V. Mathew, 3-D Comsol Analysis of Extruder Dies. Pro-
ceedings of the COMSOL Conference 2009 Milan

[55] Multiphysics, C. O. M. S. O. L. Chemical Engineering module Model Library.
COMSOL Multiphysics, Burlington, MA, USA (2007).

[56] S. Gürgen, W. Li, M.C. Kushan, The rheology of shear thickening fluids with
various ceramic particle additives. Mater. Des., 15 (2016), pp. 312-319

[57] P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method,
Volume 1, Advection-Diffusion and Isothermal Laminar Flow, Wiley, 2000

75



[58] P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite Element Method,
Volume 2, Isothermal Laminar Flow, Wiley, 2000

[59] V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations:
Theory and Algorithms SPRINGER SERIES IN COMPUTATIONAL MATHE-
MATICS, Springer Verlag, 1986

[60] M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows:
A Guide to Theory, Practice, and Algorithms, Computer Science and Scientific
Computing, Academic Press, 2012

76


	Introduction
	Herschel-Bulkley model
	Newtonian fluid
	Non-Newtonian fluid
	Pseudoplastic Fluids
	Viscoplastic fluids
	Dilatant fluids

	Bingham model
	Regularization of viscosity


	Navier-Stokes equations for 3D printing
	Navies-Stokes equations
	Navier-Stokes equations in Cartesian coordinates
	Navier-Stokes equations in cylindrical coordinates
	Nondimensionalization
	Navier-Stokes equation in axial symmetry
	Governing model equations for the ceramic paste extrusion

	Numerical methods
	Computational Fluid Dynamics
	Finite Element Method
	Variational formulation

	COMSOL - Multiphysics Software Package for Computational Fluid Dynamics
	Lid-driven cavity flow
	The Herschel-Bulkley model for the lid-driven cavity flow
	Newtonian and non-Newtonian fluids for lid-driven cavity flow model

	Non-Newtonian fluid flow in cylindrical pipe
	Pressure driven fluid flow in cylindrical pipe
	Newtonian and non-Newtonian fluid in pressure driven pipe flow


	Simulation results in COMSOL
	Simulation results for extrusion dies of various geometries
	Die Model 1
	Die Model 2
	Die Model 3


	Conclusions
	Bibliography

