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Chapter 1

Introduction

“I like talking to a brick wall - it’s the only
thing in the world that never contradicts
me! ”

Oscar Wilde

The brick wall model was introduced [1] as an elementary exercise by ’t Hooft
to arrive at the entropy [2] of a black hole from an underlying statistical mechanical
perspective. The model offers a way to think about the random black body Hawking
radiation [3] of particles leading to information loss at the horizon of a black hole.
The quantum field at the horizon must be complicated by gravitational interactions,
and so, as a first step, it proves instructive to consider a simple cut-off (a brick wall).
The field is then zero inside the brick wall (brick thickness b) as well as inside the
black hole including the horizon:

φ(r) = 0 if r ≤ rs + b. (1.1)

where b is the small distance very near the horizon (UV cut-off) and rs = 2GM/c2 is
the Schwarzschild radius. See Figure 1.1 for a picture of a spherical brick wall in the
form of a hot pizza oven.

FIGURE 1.1: A spherical brick wall.

1.0.1 Mirrors and bricks

One way to look at this situation is to consider the brick wall as a moving mirror
to an observer who is freely falling into the black hole. The moving mirror model
is well-known to have the very nice advantage of mathematical simplicity. This is
both in general, and in the context of the recent one-to-one correspondence with a
black hole [4–7], which found that, for the specific example of trajectory motion, the
particle production is exactly the same as in the black hole collapse case in (1+1)-
dimensions.
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It is good to emphasize that, of course, a moving mirror is unlikely to fully re-
solve the statistical origin of the entropy of black hole or the related and famous
information paradox of an astrophysical black hole (e.g., a rotating Kerr black hole
with temperature 2πT = g− k [8], not to mention an extremal black hole [9]), but
understanding the subtleties of quantum field theory in a moving mirror model is a
promising first baby step toward the more complicated physics of black holes and
their related information mysteries.

To further drive home this point, there are interesting subtleties that are over-
looked in a moving mirror model, notably, any calculation of entanglement entropy,
for instance, necessitates regularizing ultraviolet divergences (the kind that do not
affect the spin-statistics connection [10]). One notices that imposing a cutoff is some-
times a tricky procedure, since modes, that have sufficiently high energy at some
point in the spacetime, can be red-shifted at some other point due to spacetime cur-
vature.

An asymptotically inertial mirror [11, 12], which is a particular moving mirror
that has a one-to-one correspondence to the exactly solvable black hole case [4], may
correspond to the original brick wall case. See, for instance, potential candidates
like the first known asymptotically inertial solution found by Walker-Davies [13], the
asymptotically static case in Good-Anderson-Evans [14] and a drifting case in Good-
Ong [15–17]. There are other recent mirror extensions [18–22], including interesting
uniformly accelerated trajectories which may be explored in (3+1)-dimensions [23,
24]. One particular trajectory stands out as well [25], which has finite particle emis-
sion, long periods of thermal radiation, no information loss and a solvable spectrum.

Another somewhat surprising issue, that is currently being studied, is the differ-
ence in fall-off of the particle creation in time, that is known to be much slower than
what would be expected [26]. This is in addition to the non-trivial curvature outside
the black hole that the accelerated boundary model does not describe [27].

Recent studies have analyzed the Schwarzschild [4], Schwarzschild with Planck
length [28], Reissner-Nordström (RN) [29], extreme RN [30] and Kerr [31] cases
through a transformation of the (3+1)-dimensional metric to a (1+1)-dimensional
accelerated boundary trajectory in flat spacetime. This moving mirror model ap-
proach has also been surprisingly used in a cosmological context with respect to the
cosmological horizon of de Sitter/anti-de Sitter space [32], where an exact eternal-
for-all-times thermal Planck distribution was derived explicitly via Bogoliubov co-
efficients. In addition, in terms of entanglement harvesting, one study has explored
differences between horizonless mirrors and mirrors with strict horizons [33].

Regardless of these interesting directions, the basic object of both models is the
quantum field, φ, which can be the massless scalar of the Klein-Gordon equation (for
a nonlinear investigation of the KG equation in the more general context of quantum
field theory under external conditions, see [34, 35]), �φ = 0, and whose value is zero
when evaluated at the position of the moving mirror, z(t), i.e. φ|z = 0. This will be
treated in explicit details in the next sections, but, for this thesis, we make it clear,
the mirror or brick wall will be completely stationary, sitting right outside the event
horizon. It will act as a cut-off only, and its own particle and energy production will
not be calculated.

1.0.2 Works on the wall

Chronologically, there have been many published works on the brick wall model
since 1985. A few of those works stand out and we highlight them here, so that the
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reader can get a sense of directions that are of interest to the community.

In 1990, Mann et al. [36] investigated brick walls in different dimensions. Look-
ing at N dimensions, they found for any N > 3 that the cutoff occurs as a con-
sequence of the causal structure of spacetime, independently of the strength of the
source (mass, charge), in agreement with the four-dimensional case. They separately
discuss the special case N = 2, showing why in this case the cutoff depends on the
strength of the source, demonstrating the special nature of the N = 2 case.

In 1995, Demers-Lafrance-Myers [37] found that, in the Pauli-Villars regulated
theory, the ’t Hooft’s brick wall can be removed by introducing five regulator fields.
With ’t Hooft’s model and Pauli-Villars regulation, they found that the statistical-
mechanical entropy, arising from the minimally coupled quantum scalar field in a
general nonextreme static black hole, has a first part that matches the usual Bekenstein-
Hawking entropy after renormalization of the gravitational constant.

In 1998, Mukohyama and Israel [38] have shown that the brick wall model, hav-
ing seemingly doubtful properties, is actually self-consistent. More exactly, thermal
excitations near the wall are problematic, but they can be counteracted by correctly
defining the ground state, which is the Boulware state due to the absence of horizons
above the wall. Specifically, negative energy of the state neutralizes positive energy
of the excitations.

In 2000, Winstanley [39] investigated the entropy of a quantum scalar field out-
side the event horizon of a black hole via the brick wall method. However, in this
case, the background of the field was a spherically symmetric black hole geometry in
anti-de Sitter space. In this space, there was no need to introduce an infrared cut-off.
In addition, all ultraviolet divergences can be included in a renormalization of the
coupling constants in the one-loop effective gravitational Lagrangian, which gives a
finite entropy.

In 2000, Liu [40] proposed a thin layer near the horizon, which appears to avoid
some drawbacks in the original method. Using two parameters, to describe the film,
Liu focused on streamlining the little mass approximation, and then neglected loga-
rithmic terms by means of the thin film. Moreover, he deals with the contribution of
the vacuum surrounding a black hole by use of the thin film.

In 2004, Jing [41] found that the brick wall model is quite robust even for differ-
ent coordinates. The entropies for the quantum scalar field are computed for spe-
cific coordinates different than the usual Schwarzschild. This seems at odds with
the original work of ’t Hooft because general covariance (physics being the same
under change of coordinates), is usually violated with a cut-off on integration since
the integration is done in a particular coordinate system and therefore the cut-off
is considered coordinate-dependent. Moreover, the particular coordinate systems,
Painlevé and Lemaître coordinates, don’t have coordinate singularities at the event
horizon, which would seemingly affect the final results for the entropies. These
issues are worked around by utilizing a special scheme called Pauli-Villars regular-
ization.

In 2007, Sarkar, Shankaranarayanan and Sriramkumar [42] illustrated that the
usual considered zeroth-order term in the WKB approximation leads to corrections
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for the Bekenstein-Hawking entropy, provided that the metric functions are expanded
beyond the linear order near the horizon. They also showed that all the higher-order
terms in the WKB approximation have the same form as the zeroth-order term, and
found that higher-order WKB terms actually contribute more to the entropy than the
lower order terms.

In 2012, Kim and Kulkarni [43] extended and treated the brick wall entropy to
higher order via the WKB approximation and generalized it for arbitrary spins. This
is with respect to the program of investigation into different types of fields other
than the usual scalar ones.

In 2019, Arzano et al. [44] considered the brick wall model of the Schwarzschild
geometry in Eddington-Finkelstein coordinates by replacing the by-hand brick wall
with an inherent quantum ergosphere ’wall’. The authors are keen on the basic ideas
surrounding the notion that backreaction of Hawking radiation can excite the quasi-
normal modes of the black hole, effectively creating a “wall” of oscillations in the ge-
ometry close to the horizon [45]. This is one of pictures of the Bekenstein-Hawking
entropy emerging from an interplay between the degrees of freedom of the geome-
try and those of the field. To realize this idea, they incorporate a small luminosity
which creates a “quantum ergosphere” region between the apparent horizon and
the event horizon, which effectively acts as a brick wall providing a finite horizon
contribution to the entropy.
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Chapter 2

Quantum: Field Equation

”May I create plain fields by collecting
clouds and bedeck them with arching
rainbows.”

Suman Pokhrel

2.0.1 Synopsis

The field will be described by the general covariant wave equation,

1√−g
∂

∂xµ

(√
−g gµν ∂

∂xν

)
φ = 0. (2.1)

That is, the field can be expressed in an arbitrary coordinate system and curved
spacetime geometry of our choices. Moreover, it is completely free (no potential),
massless (zero mass), and scalar (spin-0 or spinless).

2.0.2 Origin of the field equation

It ultimately comes from the action, which defines our theory, governing the scalar
field in a curved spacetime, namely,

S =
∫

d4xL, (2.2)

where our Lagrangian density (Lagrangian can be without
√−g) is chosen as, using

(−,+,+,+) signature metric convention,

L = −1
2
√
−g
(

gµν∂µφ ∂νφ +
m2c2

h̄2 φ2
)

. (2.3)

Notice the h̄ and c which ostensibly signal that we are working in a quantum rela-
tivistic regime. Our action then reads:

S = −1
2

∫
d4x
√
−g
(

gµν∂µφ ∂νφ +
m2c2

h̄2 φ2
)

. (2.4)

The equation of motion is found by extremizing the action, which gives the simple
Lagrangian equation of motion:

∂µ

(
δL

δ(∂µφ)

)
=

δL
δφ

. (2.5)
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The derivative in parenthesis is taken carefully like so:

δL
δ(∂µφ)

=
δ

δ(∂µφ)

(
−1

2
√
−g
(

gµν∂µφ ∂νφ +
m2c2

h̄2 φ2
))

=
δ

δ(∂µφ)

(
−1

2
√
−g
(

gρσ∂ρφ ∂σφ
))

.
(2.6)

Since index derivatives work like so:

δ(δiφ)

δ(δjφ)
≡ δi

j,

we get, after a product rule,

δL
δ(∂µφ)

= −1
2
√
−g gρσ

(
δ

ρ
µ(∂σφ) + (∂ρφ)δσ

µ

)
= −1

2
√
−g
(

gµσ ∂σφ + gρµ ∂ρφ
)

= −1
2
√
−g (gµν ∂νφ + gνµ ∂νφ) ,

(2.7)

where we have substituted dummy indices. As the metric is symmetric, gµν = gνµ,

δL
δ(∂µφ)

= −
√
−g gµν ∂νφ. (2.8)

Then, the left-hand side of Eq. (2.5) is

∂µ

(
δL

δ(∂µφ)

)
=

∂

∂xµ

(
−
√
−g gµν ∂

∂xν

)
φ. (2.9)

Now, we deal with the right-hand side of Eq. (2.5):

δL
δφ

=
δ

δφ

(
−1

2
√
−g
(

gµν∂µφ ∂νφ +
m2c2

h̄2 φ2
))

=
δ

δφ

(
−1

2
√
−g
(

m2c2

h̄2 φ2
))

= −
√
−g

m2c2

h̄2 φ.

(2.10)

So, Eq. (2.5) becomes (cancelling out negative signs on both sides),

∂

∂xµ

(√
−g gµν ∂

∂xν

)
φ =

√
−g

m2c2

h̄2 φ. (2.11)

Moving
√−g to the left,

1√−g
∂

∂xµ

(√
−g gµν ∂

∂xν

)
φ =

m2c2

h̄2 φ. (2.12)

and, defining the left-hand side with the operator DµDµ,

DµDµφ =
m2c2

h̄2 φ. (2.13)
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In this work, for simplicity, we treat the massless field and take m = 0, so we will
have

1√−g
∂

∂xµ

(√
−g gµν ∂

∂xν

)
φ = 0, (2.14)

which is exactly Eq. (2.1). This is the curved spacetime version of the flat spacetime
equation of motion, the usual KG equation:

∂µ∂µφ = 0 (2.15)

or
ηµν∂µ∂νφ = ∂2

t φ− ~∇2φ = 0. (2.16)

In general relativity, the inclusion of the effects of gravity is done by replacing partial
with covariant derivatives, so that the result is the Klein–Gordon equation in curved
spacetime:

ηµν∂µ∂ν → gµν∇µ∇ν = DµDµ. (2.17)

Notice that d4x
√−g is the invariant spacetime volume interval, i.e. it remains the

same under coordinate transformations.

2.0.3 Appearance of Planck constant

Even though h̄ disappears in the wave equation by the use of a massless field, it will
reappear in the brick wall itself. The brick wall thickness of ’t Hooft is arguably a
quantum object:

b =
h̄

720πcM
=

GkB

c4
TH

90
=

kBTH

360Fm
=

h̄G
360πc3rs

=
`2

P
360πrs

. (2.18)

Notice the first equality has no dependence on the gravitational constant G. Here
the temperature of the black hole is Hawking’s temperature, TH = h̄c3/8πGMkB.
We have gone ahead and introduced the radius of the black hole, rs = 2GM/c2, and
the squared Planck length, `2

P = h̄G/c3, for convenience.
A fun way to think about h̄ is to push it into Hawking’s temperature, keeping

its introduction limited to TH. This is done by the use of the maximum force [8] of
general relativity which has been introduced as a curiosity, Fm = c4/(4G). One can
think of the thermal work divided by the maximum force, up to some constant, 360,
as the distance the force acts. This distance is the brick thickness.

2.0.4 Discrete solutions as quantum input

To count the number of field-wave solutions of frequency below ω, giving us the
total number of microscopic states, N(ω), one sums over quantum numbers m and
l. Summing over the magnetic number m yields 2l + 1:

N(ω) = ∑
l,m

nr(ω, l, m) = ∑
l
(2l + 1)nr(ω, l). (2.19)

This quantum sum is a little less quantum by assuming a near continuous distribu-
tion of states via semi-classical quantization, where the sum becomes an integral:

N(ω) =
∫

l
dl (2l + 1)

∫
r

dr
kr(ω, l)

π
. (2.20)
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Here we can see that a solution exists for discrete values of the wave number kr:

kr(ω, l) = πnr(ω, l). (2.21)

It is this quantity that we count, not degrees of freedom or Planck areas on the sur-
face of the black hole.

2.0.5 Recap

We introduced the central object of the model, the quantum field. The equation of
motion is in the form of a wave equation in an arbitrary curved spacetime back-
ground expressed via any use of coordinates. The type of field was chosen to be as
simple as possible by ignoring spin, mass and interactions (except curved spacetime
interactions!).

The quantum nature of the field is not particularly manifest because there is no
h̄ associated with the dynamics, but we are assured that the model will be quantum
because h̄ shows up in Hawking’s temperature, which will be a key assumption for
the system.

Moreover, we find that ultimately we are counting the number of state solutions
of the field outside the brick wall. Using the semi-classical quantization approach,
the quantum nature of the solution is further blurred by integrating rather than sum-
ming over the quantum numbers.
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Chapter 3

Gravity: Black Hole Background

“The ships hung in the air the way that
bricks don’t.”

Douglas Adams

3.0.1 Synopsis

The metric is taken as Schwarzschild background geometry,

ds2 = − f c2dt2 + f−1dr2 + r2dΩ2, (3.1)

where f ≡ 1− rs
r and rs = 2GM/c2 is the Schwarzschild radius. In an especially

explicit form, the line element of the Schwarzschild geometry is

ds2 = −
(

1− 2GM
c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (3.2)

where {t, r, θ, φ} are called Schwarzschild coordinates and the respective metric gµν

is called the Schwarzschild metric.
As it can be seen, the metric components do not depend on time, i.e. on the t

coordinate. The metric has spherical symmetry, which is seen by the last term that is
the spherical line element,

dΩ2 ≡ dθ2 + sin2 θdφ2. (3.3)

The Schwarzschild solution is the unique vacuum solution to Einstein’s field equa-
tions for a static, spherically symmetric spacetime. This is the most simple yet non-
trivial background we might choose, as any other choice (like charged black holes or
spinning black holes) would prove to unnecessarily complicate what is meant to be
an elementary model and, ultimately, an approximate framework. See Figure 3.1 for
a picture of the predicted appearance of a non-rotating black hole.

3.0.2 Explicit components

The explicit metric components needed for the quantum field equation, Eq. (2.1),

DµDµ =
1√−g

∂

∂xµ

(√
−ggµν ∂

∂xν

)
, (3.4)
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FIGURE 3.1: A non-rotating Schwarzschild black hole with a nice
looking ring of ionised matter [46]. The aesthetic asymmetry is due
to the Doppler effect resulting from a large orbital speed of the ring.

are as follows. First, we have the metric in matrix form:

gµν =


− f c2 0 0 0

0 f−1 0 0
0 0 r2 0
0 0 0 r2 sin2(θ)

 , (3.5)

and its inverse:

gµν =


− f−1c−2 0 0 0

0 f 0 0
0 0 1

r2 0

0 0 0 csc2(θ)
r2

 . (3.6)

The Jacobian is √
−g = cr2 sin θ (3.7)

and the pieces of the symmetric interval are

gtt = − 1
f c2 , (3.8)

grr = f , (3.9)

gθθ =
1
r2 , (3.10)

gφφ =
1

r2 sin2 θ
, (3.11)

where all other components are zero.



Chapter 3. Gravity: Black Hole Background 11

3.0.3 The field equation in the background

We can now write out the field equation operator in its full explicit glory:

DµDµ =
1√−g

∂

∂xt

(√
−ggtt ∂

∂xt

)
(3.12)

+
1√−g

∂

∂xr

(√
−ggrr ∂

∂xr

)
+

1√−g
∂

∂xθ

(√
−ggθθ ∂

∂xθ

)
+

1√−g
∂

∂xφ

(√
−ggφφ ∂

∂xφ

)
,

where the zero off-diagonal terms leave us with just four main pieces. We write this
more simply as, of course:

DµDµ =
1√−g

∂

∂t

(√
−ggtt ∂

∂t

)
(3.13)

+
1√−g

∂

∂r

(√
−ggrr ∂

∂r

)
+

1√−g
∂

∂θ

(√
−ggθθ ∂

∂θ

)
+

1√−g
∂

∂φ

(√
−ggφφ ∂

∂φ

)
.

Further explicit substitution gives:

DµDµ =
1

cr2 sin θ

∂

∂t

(
cr2 sin θ

−1
f c2

∂

∂t

)
(3.14)

+
1

cr2 sin θ

∂

∂r

(
cr2 sin θ f

∂

∂r

)
+

1
cr2 sin θ

∂

∂θ

(
cr2 sin θ

1
r2

∂

∂θ

)
+

1
cr2 sin θ

∂

∂φ

(
cr2 sin θ

1
r2 sin2 θ

∂

∂φ

)
.

Simplification via canceling and utilizing partials gives:

DµDµ = − 1
f c2

∂

∂t

(
∂

∂t

)
(3.15)

+
1
r2

∂

∂r

(
r2 f

∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂

∂φ

(
∂

∂φ

)
.
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And last but not least, let’s clean up the partial styles for t and φ:

DµDµ = − 1
f c2

∂2

∂t2 +
1
r2

∂

∂r

(
r2 f

∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2 . (3.16)

We now have the explicit curved spacetime operator that will act on the quantum
field. We are in a good position to introduce statistical considerations next.

3.0.4 Recap

The curved spacetime of the Schwarzschild background, will be fixed. The quantum
field will live on this background and will not affect the geometry. This is what is
referred to as semi-classical gravity. That is, the curvature and geometry affects the
field, but the field does not affect the geometry. There is no backreaction of the field
back on the geometry.

The Schwarzschild geometry is parametrized by a single scale, M, which charac-
terizes the entire black hole. The black hole has no charge and does not rotate. The
solution is a vacuum solution outside the radius, meaning that the metric gµν is a
solution to Einstien’s field equations, where Tµν = 0.
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Chapter 4

Statistical: Thermal Equilibrium

“As a young man I tried to read
thermodynamics, but I always came up
against entropy as a brick wall that
stopped my further progress.”

James Swinburne

4.0.1 Synopsis: Stefan-Boltzmann derivation in natural units

Using natural units in this subsection, one can see that for thermal equilibrium the
free energy of a black body, as known from the usual Stefan-Boltzman law, is

F = −N0
π4T4

15
, (4.1)

which results from the famous Bose–Einstein integral, often called the polyloga-
rithm, or just simply the Riemann zeta function, 4ζ(4) = π4/15. An easy derivative
gives the entropy, S = −∂T F,

S = N0
4
15

π4T3. (4.2)

A substitution of the Hawking temperature, T = (4πrs)−1, gives

S = N0
4
15

π4
(

1
4πrs

)3

= N0
π

15 · 16
1
r3

s
=

N0π

240r3
s

. (4.3)

The scaling for the particle count is found from the brick wall thickness, b = 1/(360πrs)
(which we will choose to make the answer work out right!) and the total solution
count:

N =
2r4

s ω3

3πb
= N0ω3, (4.4)

which will be found later. The count gives N0 = 240r5
s , which yields the area of a

hole with radius rs:
S = πr2

s . (4.5)

The answer is the area of a hole (a black circle, if you will, with radius rs).

4.0.2 From thermodynamics in natural units

The first law of thermodynamics in closed, reversible system with no change in vol-
ume is

dE = TdS. (4.6)
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In natural units, we can apply this to a black hole using Hawking temperature, T =
1/8πM to immediately obtain the entropy:

dM =
1

8πM
dS. (4.7)

We have set the energy of the spacetime as the mass of the black hole. Grouping
gives,

8πMdM = dS, (4.8)

integrating gives,
4πM2 = S, (4.9)

which is, using rs = 2M,
S = πr2

s . (4.10)

This derivation is deemed insufficient because we know thermodynamics is based
on statistical mechanics. What is it that we shall count?

4.0.3 Equipartition theorem and a black hole

One hint at what could be counted comes from the equal parts theorem. The non-
rotating, uncharged black hole obeys equipartition if the degrees of freedom are con-
sidered to be the number of Planck areas covering the surface area:

D =
A
`2

P
, (4.11)

where D is the degrees of freedom. The equipartition theorem says:

E =
D
2

kBT. (4.12)

One can see, in natural units, that

E =
A
2

T, (4.13)

and plugging in T = 1/8πM, and A = 4πr2
s = 16πM2, we get

E =
(16πM2)

2

(
1

8πM

)
= M. (4.14)

Since the total energy is the total mass, this result seems to suggest we count Planck
areas. However, the equal parts theorem is well-known for breaking down when
describing quantum systems, so we must be at least a little wary that this could be
one those nice coincidences where the answer is right but the approach is wrong.

In the brick wall model, we don’t exactly count degrees of freedom, per say, but
instead, field solutions right outside the horizon.

4.0.4 Partition function to free energy

We can start with the canonical ensemble which assigns a probability P to each dis-
tinct microstate q given by the following exponential

P = eβ(F−E). (4.15)
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Here E is the total energy of the system in the microstate and F is the constant free
energy that provides the normalization via the partion function Z = e−βF which
describes a system of fixed composition that is in thermal equilibrium with a heat
bath of a precise temperature, T.

We can start by looking at massless scalar particles with definite frequency ω. A
state with N such spinless particles has energy E = Nh̄ω. Summing over all N gives
us the partition function for scalars at fixed frequency:

Zω = 1 + e−βh̄ω + e−2βh̄ω + ... =
1

1− e−βh̄ω
. (4.16)

where we have used the sum of convergent geometric series,

∞

∑
k=0

rk =
1

1− r
, for |r| < 1. (4.17)

which is true because e−βh̄ω < 1 since the frequency and temperature are both real
and positive. We now need to sum over all possible frequencies. Independent par-
tition functions multiply, which means that any logs we apply will add. Our full
partition function is then:

Z =

(
1

1− e−βh̄ω1

)(
1

1− e−βh̄ω2

)
...
(

1
1− e−βh̄ωq

)
(4.18)

or
Z = ∏

q

1
1− e−βh̄ωq

. (4.19)

So therefore, using Z, we have the freedom to use log addition:

ln Z = ln ∏
q

1
1− e−βh̄ωq

= ∑
q

ln
(

1
1− e−βh̄ωq

)
. (4.20)

That is, written a little bit more explicitly,

ln Z = ln
[(

1
1− e−βh̄ω1

)(
1

1− e−βh̄ω2

)(
1

1− e−βh̄ω3

)
...
]

(4.21)

is then
ln Z = ∑

q

[
ln 1− ln(1− e−βh̄ωq)

]
. (4.22)

or, pulling out a negative in front,

ln Z = −∑
q

ln(1− e−βh̄ωq). (4.23)

This is effectively writing,
ln Z = ∑

q
ln Zωq . (4.24)

The particular problem we have now though is that we need to know how many
scalar states there are with some particular frequency ω. This is what is referred to
as the density of states: g(ω). That is, this g(ω)dω is the number of states available
to a single scalar particle with frequency between ω and ω + dω. We can convert the
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sum to an integral with the density of states, going directly from Zω:

ln Z =
∫ ∞

0
dωg(ω) ln Zω. (4.25)

Using ln Zω = − ln(1− e−βh̄ω), we have

ln Z = −
∫ ∞

0
dωg(ω) ln(1− e−βh̄ω). (4.26)

The free energy is defined in terms of the partition function, Z = e−βF, and is the
closest object related to it, so using

F = −kBT ln Z, (4.27)

we find that the free energy is

F = +kBT
∫ ∞

0
dωg(ω) ln(1− e−βh̄ω). (4.28)

This sum is replaced by a integration because the energy is effectively continuous,
where g(ω) = dN(ω)/dω is commonly known as the density of the states, and
N(ω) is the total number of microstates; i.e. what we want to count. Let’s express
this integral in terms of the microstates:

F = kBT
∫ +∞

0
dN(ω) ln(1− e−βh̄ω), (4.29)

Let’s move the β = 1/kBT to other side for an integration by parts, which gives:

βF = N(ω) ln(1− e−βh̄ω)
∣∣∣+∞

0
−
∫ +∞

0
dω

N(ω)(−e−βh̄ω)(−βh̄)
1− e−βh̄ω

. (4.30)

It is easy to see that the first term disappears because ln 1 = 0, and N(0) = 0. How-
ever, the second term remains and can be recognized as that of thermal equilibrium
where the particle spectrum is a Bose-Einstein distribution. The free energy as a
function of temperature is the sum of all energies dω in the available states,

F(T) = −
∫ ∞

0
dω

h̄N(ω)

eh̄ω/kBT − 1
. (4.31)

By definition, a Planck distribution, even for scalar particles, has microstates which
scale as N(ω) ∼ ω3. This is also derived explicitly in the next section, but we can
go ahead and use this fact as a given in 3 + 1 dimensions for thermal equilibrium.
Writing the microstates as

N(ω) ≡ N0ω3, (4.32)

will allow us to go ahead and extend our thermal treatment as far as possible and
leave the numerical coefficients, N0, for later. The result is

F(T) = −
∫ ∞

0
dω

h̄N0ω3

eh̄ω/kT − 1
, (4.33)
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which is the well known Bose-Einstein integral,∫
dx

x3

ex − 1
=

π4

15
. (4.34)

So we have for the free energy:

F = −h̄N0
k4

BT4

h̄4

(
π4

15

)
= −N0

k4
B

h̄3
π4

15
T4. (4.35)

4.0.5 Free energy to entropy and use of Hawking temperature

The entropy can be found with a single derivative, S = −∂T F, which gives:

S = +N0
k4

B

h̄3
4π4

15
T3 (4.36)

Now we use the Hawking temperature for our black hole,

T =
h̄c3

8πGMkB
=

ch̄
4πkBrs

, (4.37)

and obtain the entropy,

S = kBπ
N0c3

240r3
s

, (4.38)

as a function of our unknown N0 quantity, which has important numerical and di-
mensional information, obtained by use of the brick wall thickness, b.

4.0.6 Numerical factor and scaling of the radius

We will see in the next section on Building the Brick Wall that using the brick wall
amounts to choosing

N0 =
240r5

s
h̄G

, (4.39)

so that our final entropy result will be:

S = kB
c3

h̄G
πr2

s =
kB

`2
P

A
4

. (4.40)

We remark here that from our equipartition result, where the degrees of freedom
were the number of Planck areas on the surface, D = A/`2

P, then the entropy is just
the degrees of freedom divided by four:

S
kB

=
D
4

. (4.41)

4.0.7 Recap

We start with the partition function and can extend the statistical mechanical treat-
ment all the way to a final expression for entropy, dependent on the N0 numerical
quantity (which is dependent on the size of the brick wall). It is clear that the statis-
tical framework of the canonical ensemble takes us quite far.
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Moreover, if we are willing to start from the F ∼ T4 scaling of the Stefan-Boltzmann
law, for the free energy, we can go straight to the entropy with a single derivative
and the use of Hawking’s temperature.

Along the way we encountered an unexpected agreement with the equipartition
theorem for the Schwarzschild black hole. Here the degrees of freedom are counted
by the number of Planck areas on the surface of the black hole.

We also derived the thermodynamics, (non-counting) result of the entropy as a
convenience, and reminder to the reader that macroscopically, the entropy result is
almost trivial to obtain from Hawking’s temperature alone (no brick walls).



19

Chapter 5

Building the Brick Wall

“Boundaries are just made of brick.”

Nikita Dudani

5.0.1 Spherical symmetry separability ansatz

A good assumption is spherical symmetry of the field, since the background is spher-
ically symmetric. In this case, the field takes the simplified and seperable form:

φ(r, θ, φ, t) = R(r)Ylm(θ, φ)e−iωt. (5.1)

This symmetry will take us quite far. Most notably, the angular dimensions are seen
to considerly simplify via harmonics. It is interesting how the effect of the angular
dimensions are felt into the radial solution with the appearance of an l(l + 1)/r2

term operator. A simplification could be done by looking at l = 0 case exclusively, a
regime called the ‘s-wave’ sector.

5.0.2 Operator

The field equation operator is therefore interesting only radially, and, substituting
the Jacobian and all terms of the metric explicitly, we get Eq. (3.16):

DµDµ = − 1
f c2

∂2

∂t2 +
1
r2

∂

∂r

(
r2 f

∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2 . (5.2)

The two time derivatives bring down a frequency ω from the wave ansatz, while the
two angular pieces is well-known from Laplace’s spherical harmonics and separa-
bility, i.e. r2∇2Ylm = −l(l + 1)Ylm, where l = 0, 1, 2... and m = −l,−l + 1...,+l. The
operator on the massless scalar field in the Schwarzschild geometry becomes, after
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splitting the operator into space and time pieces,

0 = (D2
t + D2

x)R(r)Y(θ, φ)e−iωt, (5.3)
(5.4)

0 = R(r)Y(θ, φ)D2
t e−iωt + e−iωtD2

x [R(r)Y(θ, φ)] , (5.5)
(5.6)

0 = R(r)Y(θ, φ)

(
−(−i)(−i)

ω2

c2 f

)
e−iωt + e−iωtD2

x [R(r)Y(θ, φ)] , (5.7)

(5.8)

0 = +R(r)Y(θ, φ)
ω2

c2 f
+ D2

x [R(r)Y(θ, φ)] , (5.9)

(5.10)

0 = R(r)Y(θ, φ)
ω2

c2 f
+ Y(θ, φ)D2

xR(r) + R(r)D2
xY(θ, φ), (5.11)

(5.12)

0 = R(r)Y(θ, φ)
ω2

c2 f
+ Y(θ, φ)D2

xR(r) + R(r)
(
− l(l + 1)

r2 Y(θ, φ)

)
, (5.13)

(5.14)

0 = R(r)
ω2

c2 f
+ D2

xR(r)− R(r)
l(l + 1)

r2 , (5.15)

So that one has, putting the zero on the right,

ω2

c2 f
R(r) +

1
r2

∂

∂r

(
r2 f

∂

∂r
R(r)

)
− l(l + 1)

r2 R(r) = 0, (5.16)

So only the radial part is interesting, when using separability. Recall that f ≡
1 − rs/r is dimensionless. The equation can be written more suitably putting the
remaining operator pieces on the right-hand side,(

ω2

c2 f
− l(l + 1)

r2

)
R(r) = − 1

r2
∂

∂r

(
r2 f

∂

∂r
R(r)

)
. (5.17)

5.0.3 WKB

Furthermore, we express the radial part by phase, R(r) = eiS(r), and obtain the radial
wave number, kr, by acting the field operator on S(r).(

ω2

c2 f
− l(l + 1)

r2

)
eiS(r) = − 1

r2
∂

∂r

(
r2 f

∂

∂r
eiS(r)

)
. (5.18)

After one, then two derivatives on the right-hand side,

− 1
r2

∂

∂r

(
r2 f

∂

∂r
eiS(r)

)
= − 1

r2
∂

∂r

(
r2 f iS′(r)eiS(r)

)
, (5.19)

= − 1
r2

[
r2 f iS′(r)iS′(r)eiS(r) + ieiS(r) ∂

∂r
(
r2 f S′(r)

)]
,(5.20)

= f S′(r)2eiS(r) − i
eiS(r)

r2
∂

∂r
(
r2 f S′(r)

)
. (5.21)
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Canceling out the radial wave eiS(r), on both sides, we obtain:(
ω2

c2 f
− l(l + 1)

r2

)
= f S′(r)2 − i

1
r2

∂

∂r
(
r2 f S′(r)

)
, (5.22)

Before we neglect the imaginary piece, as is usual in the WKB approximation, let us
write it out more explicitly, using f = f (r),

−i
1
r2

∂

∂r
(
r2 f (r)S′(r)

)
= −i

[
S′′(r) f (r) + S′(r) f ′(r) +

2 f (r)S′(r)
r

]
, (5.23)

= −i
[

S′′(r) f (r) + S′(r)
(

f ′(r) +
2 f (r)

r

)]
. (5.24)

The full expression is,(
ω2

c2 f
− l(l + 1)

r2

)
1
f
= S′(r)2 − i

[
S′′(r) + S′(r)

(
f ′

f
+

2
r

)]
, (5.25)

Our approximation only holds if the imaginary piece is small compared to S′(r)2

term. Notice the curvature term, f ′/ f , proportional to S′(r) which grows very large
as r → rs where f → 0. The first approximation where the entire imaginary term
remains small (where our phase has absorbed factors of h̄ and S′(r)2 is leading order
[47]), gives

S′(r)2 =

(
ω2

c2 f
− l(l + 1)

r2

)
1
f

, (5.26)

or expressed as a result for kr in terms of the energy levels of the field, ω(l, m, n):

k2
r =

(
∂S(r)

∂r

)2

=

(
ω2

c2 f
− l(l + 1)

r2

)
1
f

. (5.27)

This will be our essential wave number, related to the state, n, by

n(r, ω, l, m)π = k(r, ω, l, m). (5.28)

We want to count all the states for all the relevant quantum numbers, and determine
the scaling of ω by integrating over r.

5.0.4 Counting states

This wave number can be used to count the number of wave solutions of frequency
below ω, giving us the total number of microscopic states, N(ω), which is easy to
sum over the magnetic number m; 2l + 1 for every l:

N(ω) = ∑
l,m

nr(ω, l, m) = ∑
l
(2l + 1)nr(ω, l). (5.29)

Assuming near continuous distribution of states via semi-classical quantization,

N(ω) =
∫

l
dl (2l + 1)

∫
r

dr
kr(ω, l)

π
. (5.30)
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This scheme counts the states, and now all we need to do is two integrals. Once
we have the bounds on the angular integral, we will find it to be large but straight-
forward; while the radial integral will require an approximation to give tractable
results.

5.0.5 Lower and upper limits of angular momentum integral

The angular momentum integral has a lower limit of zero by definition. The upper
limit is chosen so that k2

r is non-negative:

kr = ±

√(
ω2

c2 f
− l(l + 1)

r2

)
1
f
> 0. (5.31)

Here we choose the + sign so kr > 0 when the argument is also positive. Simply
setting to zero and solving for l gives,

lupper =
1
2

(
±

√
4r2ω2

c2 f
+ 1− 1

)
, (5.32)

where we will choose the + sign again in the quadratic formula in order to have the
upper limit be positive.

5.0.6 Angular momentum and radial integral combined

Thus we have, putting it all together, with the upper limit and the value of kr:

N(ω) =
∫

r
dr
∫ lupper

0
dl (2l + 1)

1
π

√(
ω2

c2 f
− l(l + 1)

r2

)
1
f

. (5.33)

Despite appearances, this integral, over l, is straightforward to compute.

5.0.7 Angular integration

The result of the angular integration is in brackets:

N(ω) =
∫

r
dr
[

2
3π

(ω

c

)3 r2

f 2

]
. (5.34)

The terms independent of r can be moved outside the integrad:

N(ω) =
2

3π

(ω

c

)3 ∫
r

dr
r2

f 2 . (5.35)

It is quite pleasing to see such a simple result emerge, but moreover, one sees the
curvature effect directly by the influence of f for the integration over r.

5.0.8 Laurent series

Since the infinite contribution happens near the horizon, a Laurent series around
r = rs gives the zeroth order terms,

r2

f 2 =
r4

s
(r− rs) 2 +

4r3
s

(r− rs)
+ 6r2

s +O (r− rs) . (5.36)
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We will only use the leading order term since most of the effect on the quantum field
happens near the event horizon:

r2

f 2 =
r4

s
(r− rs)2 . (5.37)

This approximation is a nice convenient way to getting a non-divergent result, as
integrating r2/ f 2 directly using our bounds, does not converge because of vacuum
terms. An indefinite integral is possible, and then subsequent series near r = rs, also
results in an equivalent approximation as Eq. (5.37).

5.0.9 Radial integration

Now we integrate the main contribution near the horizon,

N(ω) =
2

3π

(ω

c

)3 ∫ ∞

rs+b
dr

r4
s

(r− rs)2 = − 2
3π

(ω

c

)3 r4
s

(r− rs)

∣∣∣∣∞
rs+b

. (5.38)

The contribution at the upper infrared limit is zero:

N(ω) =
2

3π

(ω

c

)3
(

r4
s
b

)
. (5.39)

The modes at the upper limit do not contribute to the counting as the field at large
distances is undisturbed there by gravitation, i.e. we have ignored the vacuum con-
tributions (they never show up!) and used only the leading order term for r near
rs by the previous use of the Laurent series of the integrand near the horizon. This
avoids the need to even write down any vacuum contributions as they are zeroed
out by the Laurent series.

5.0.10 Utilizing the brick wall thickness

Using the brick wall thickness of ’t Hooft,

b =
`2

P
360πrs

, (5.40)

gives the number of modes,

N(ω) =
2

3π

(ω

c

)3
(

360πr5
s

`2
P

)
=

2
3π
· 360π

( rsω

c

)3
(

r2
s

`2
P

)
. (5.41)

In th expression on the right, we have arranged it so you can see it is a dimensionless
quantity, as it should be, because the number of mode solutions is just that, a number
with no units. Simply expressed:

N(ω) =
240ω3r5

s
h̄G

≡ N0ω3, (5.42)

where N0 ≡ 240r5
s /h̄G, a dimensionful object, used to sweep up all the scaling,

numerical factors, and units; leaving only the dependence on frequency visible in
N(ω).
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5.0.11 Entropy using mode count

One sees that from equilibrium considerations, already iterated in the statistical sec-
tion, that the entropy is,

S = kBc3 N0π

240r3
s

, (5.43)

So that, using N0 ≡ 240r5
s /h̄G and `2

P = h̄G/c3:

S =
kB

`2
P

πr2
s . (5.44)

We remark here that the area of a circle, πr2
s , or ‘hole’, fits the nomenclature of the

name black hole, quite well (a rarity sometimes in physics), especially since we are
learning more and more that information content and entropy as its measure, is
an increasingly more accurate and useful description of fundamental physical law.
Using the surface area of a sphere A = 4πr2, with the black hole radius as r = rs, we
obtain

S =
kB

`2
P

A
4

. (5.45)

As we see again, entropy is no longer an extensive object in our system. Extensive
means ‘proportional to the amount of quantity present’. That is, one would expect
S ∼ V, but instead we see S ∼ A! This result is shocking, to say the least; no matter
how many times we see it.
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Conclusion

“I found Rome a city of bricks and left it a
city of marble.”

Augustus

Generally, the quest for a statistical understanding of black hole entropy may
lead us to a more fundamental theory of gravity and quantum matter. While this
model is enlightening as an elementary exercise, it does have obvious limitations
as presented. In particular, the principle that physics is invariant under coordinate
transformations has been abandoned at the horizon due to the introduction of the
brick wall cut-off while using Schwarzschild coordinates. A model that keeps gen-
eral covariance is worth addressing. The upside is that this model has no loss of
information, and abides by the laws of quantum mechanics. That is, quantum co-
herence is maintained. ’t Hooft places a strong emphasis on the question of finding
a model that maintains quantum coherence and general covariance.

6.0.1 How much entropy does a black hole have anyways?

Since we are using SI units, we might as well actually plug in real-life values to get
a handle on how much entropy is contained in a run-of-the-mill black hole. Let’s
consider a black hole sun (M ∼ 1030 kg):

S ∼ 1054 J/K. (6.1)

This should be compared to the entropy of the sun:

S ∼ 1035 J/K. (6.2)

The black hole sun entropy is larger by 19 orders of magnitude! Consider one bit of
information is S = kB ln 2 and one nat of information is S/ ln 2 = kB ∼ 10−23 J/K,
while the information content of the universe is SU = 1081 J/K. The biggest black
hole, M87, with a billion solar masses has S ∼ 1073 J/K.

6.0.2 Why so much entropy?

The reason black holes have so much entropy effectively comes down to the fact that
the scaling is

SBH ∼ M2, (6.3)

while a thermal ball of radiation scales as

SR ∼ M3/2. (6.4)
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This is because for the ball of thermal radiation which could be the source of forma-
tion, the Stefann-Boltzmann law gives volume times fourth power of temperature,

M ∼ T4R3, (6.5)

We then know that R ∼ M, is the size of the ball to form a black hole, so that

M ∼ T4M3 → M−2 ∼ T4, (6.6)

or just, rearranging for temperature,

T ∼ M−1/2, (6.7)

so when one takes the derivative of the Stefan-Boltzmann law, one sees entropy
scaling as

S ∼ T3R3, (6.8)

which gives, plugging in Eq. (6.7), and R ∼ M gives

S ∼ M3/2, (6.9)

which is Eq. (6.4), the entropy of a thermal ball of radiation.

6.0.3 How thick is the brick?

It was originally argued that the brick wall thickness is invariant with respect to the
size of the black hole, despite the suggestive form:

b =
`2

P
360πrs

, (6.10)

showing inverse proportional scaling to the radius of the black hole. This was done
by finding the proper length of the brick wall, using

Lproper =
∫ √

gµνdxµdxν. (6.11)

This is written, defining Lproper ≡ bP as

bP =
∫ rs+b

rs

√
grrdr2 =

∫ rs+b

rs

dr
√

grr, (6.12)

where we use the Schwarzschild metric in spherical Schwarzschild coordinates, so
that grr = f−1, where we write,

bP =
∫ rs+b

rs

dr
f 1/2 , (6.13)

with f = 1− rs/r, so that

bP =
∫ rs+b

rs

dr
(1− rs

r )
1/2 . (6.14)
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This is not as harmless of an integral as it may seem, since the answer is,

bP(rs) =

√
1

(360πrs)2 +
1

360π
+

rs

2
ln

(
1 +

√
360πr2

s + 1 + 1
180πr2

s

)
, (6.15)

which is clearly dependent on the size of the black hole! A series expansion for a
large black hole, around rs = ∞, gives:

bP =
1√
90π

+
1

6480
√

10π3/2r2
s
+O(r−4

s ). (6.16)

At this point, we see one can just as easily make a series expansion in the small brick
limit, relative to the radius of the black hole (bricks are usually smaller than black
holes anyways), b� rs, on the evaluated integral in terms of b, and we obtain,

bP = 2
√

brs = 2
√

2bM =
1√
90π

. (6.17)

Notice the typo in the original manuscript where the square root sign does not ex-
tend as far as it should, but the final answer is correct regardless. So indeed, the brick
wall thickness is independent of the size of the black hole, when viewed after calcu-
lating the proper thickness (and utilizing the appropriate regime where rs � `P).

6.0.4 What could be smaller than the Planck length?

A natural question arises though about whether this number has any significance,
i.e., why is it smaller than the Planck length?

bP =
1√
90π

= 0.059`P. (6.18)

One may view such a cut-off as a signal of a serious liability on the brick wall model.
It suggests that there is limited utility for the model. One should not look too deeply
at the brick wall as much more than a useful but ultimately elementary exercise in
establishing the basics of a statistical foundation for understanding the entropy of
black holes.

6.0.5 Where is the mass of the black hole located?

Interestingly, with the free energy, F, we can also compute quite easily, the total
energy:

U =
∂

∂β
(βF) = F + TS. (6.19)

Using our free energy value, with N0 = 240r5
s , and Hawking temperature T =

1/(4πrs),

F = −N0
π4

15
T4 = − rs

16
, (6.20)

we find from U = F + TS,

U =
−rs

16
+

1
4πrs

(πr2
s ) =

3
16

rs =
3
8

M. (6.21)
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This should raise an eyebrow, since it is a sizable fraction of the total mass, M, of the
spacetime! This result is suggesting, technically, that 3/8 = 37.5% of the mass of the
black hole is outside the black hole radius, in the form of thermal radiated energy.
Immediately, one is suspect that this outside energy should significantly affect the
curvature of the assumed geometry, i.e. backreaction.

6.0.6 What about a massive scalar field?

Does a massive scalar change anything? We can see that it only serves to complicate
the model. The entire calculation proceeds the same way, with the only difference
occurring when the mass appears in the angular integration and upper limit. The
integral:

N(ω) =
∫

r
dr
∫ lupper

0
dl (2l + 1)

1
π

√(
ω2

c2 f
− l(l + 1)

r2 −m2

)
1
f

, (6.22)

now includes a small particle mass m as well as in the upper limit, lupper,

lupper =
1
2

(
−1±

√
4r2ω2

c2 f
− 4m2r2 + 1

)
, (6.23)

The scary looking integral is easy to do, and gives

N(ω) =
2

3π

∫
r

dr
r2

f 2

(
w2 − f m2)3/2

. (6.24)

While this looks quite different with respect to the radial integration, the Laurent
series will in fact negate the particle mass. The leading order term near the horizon
is still mass-free:

r2

f 2

(
w2 − f m2)3/2

=
ω3r4

s
(r− rs) 2 . (6.25)

This gives the usual particle count as before:

N(ω) = − 2
3π

ω3 r4
s

(r− rs)

∣∣∣∣∞
rs+b

=
2

3π
ω3
(

r4
s
b

)
. (6.26)

This also clear from the fact that near the horizon, f ∼ 0, so in a sense, its the curva-
ture f that negates the mass term in the integrand, Eq. (6.24), if all we care about is a
halo of hot particles (massless scalars!) close to the black hole .

6.0.7 What about a charged black hole?

What if we change metrics and add charge to the mix?

fq = 1− rs

r
+

r2
q

r2 . (6.27)

This means that the horizon is now different than r = rs. The outer horizon, we will
subscript with rp for positive sign for the square root, is at

rp =
1
2
(rs +

√
r2

s − 4r2
q). (6.28)
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We can do a series approximation of the radial integrand,

r2

f 2
q
=

r6
p

(r− rp)2(2rp − rs)2 , (6.29)

where we have kept only the leading order term around the horizon r = rp and
expressed rq in terms of rp. Integrating this from the brick wall position outward
gives ∫ ∞

rp+bq

dr
r6

p

(r− rp)2(rs − 2rp)2 =
r6

p

bq
(
2rp − rs

)
2

. (6.30)

Since the rest of the calculation is the same, we can identify a new N0, from:

Nq(ω) ≡ N0ω3 =
2

3π
ω3

(
r6

p

bq
(
2rp − rs

)
2

)
. (6.31)

The entropy calculation is as before, where

S = N0
4π4

15
T3. (6.32)

But now we plug in the colder Hawking temperature of the charged black hole,

Tq =
1

4πrs
− rs

4π

(
1
rp
− 1

rs

)2

=
2rp − rs

4πr2
p

. (6.33)

This gives our Sq(N0),

Sq =
πN0

(
2rp − rs

) 3

240r6
p

, (6.34)

which we know must equal the known answer of S = πr2
p. Solving for N0 gives,

N0 =
240r8

p(
2rp − rs

)
3

. (6.35)

Plugging this into our N(ω) value, Eq. (6.31), and solving for bq gives:

bq =
2rp − rs

360πr2
p

. (6.36)

We can see that as rp → rs, then the usual non-rotating results are obtained. It is
easy to see that the new brick wall is still the usual ratio associated with the new
temperature, that is,

bq =
Tq

90
, (6.37)

which is as it was in the neutral charge case. This electric black hole works so well
because of spherical symmetry that is left uncorrupted by the addition of charge.

The proper length can be calculated in the same way as the uncharged case. Writ-
ing the integral as

bP =
∫ rp+b

rp

dr
f 1/2 =

∫ rp+b

rp

rdr√
(r− rp)(r + rp − rs)

. (6.38)
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This gives, remembering the conditions, 2rp > rs > rp > 0 and b > 0,

bP =
√

b(b + 2rp − rs) + rs sinh−1

(√
b

2rp − rs

)
. (6.39)

For small bricks, b� rp, to leading order,

bP =
2rp
√

b√
2rp − rs

. (6.40)

Plugging in our brick wall, we find

bP =
1√
90π

rp

rs
. (6.41)

A dimensionless quantity, that decreases as more charge is added.

6.0.8 What about a cosmological horizon?

What if we change the metric to one where every observer is surrounded by a cosmic
event horizon?

fdS = 1− r2

`2 . (6.42)

Here ` is the curvature radius. This is called de Sitter spacetime. The horizon is at
r = ±` where we will take the positive root. A series of r2/ f 2 near the horizon, `,
gives to leading order,

r2

f 2 =
`4

4(r− `)2 . (6.43)

Integrating from r = 0 to r = `− b, and keeping only the highest order term because
b � ` (bricks are much smaller than the universe), gives `4/(4b). The count is
therefore,

N(ω) ≡ N0ω3 =
2

3π

(
`4

4b

)
ω3. (6.44)

The entropy is therefore,

S = N0
4π4

15
T3 =

(
`4

6πb

)
4π4

15

(
1

2π`

)3

=
`

180b
, (6.45)

where we have plugged in the Hawking temperature of the de Sitter horizon, T =
1/(2π`). If the brick wall has thickness b = T/90, then b = 1/(180π`), and we see
that the entropy is

S = π`2, (6.46)

the surface area of the universe, divided by 4.

6.0.9 Brick wall in spherically symmetric spacetimes

It is seen that spherically symmetric spacetimes with black holes will have

b =
T
90

. (6.47)
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This is possible because the integrand term r2/ f 2 can be written to leading order via
series expansion as

r2

f 2 =
1

(r− R)2
R2

f ′(r)|2R
, (6.48)

where R is the location of the horizon where f (r) is zero. The derivative piece has
the curvature information in it and amounts to

g′tt(r)
∣∣
r=R = f ′(r)

∣∣
r=R = 4πT. (6.49)

The integral near the horizon of the r2/ f 2 term then is always, to leading order,∫
dr

r2

f 2 =
R2

(4πT)2

∫
R+b

dr
1

(r− R)2 =
R2

(4πT)2
1
b

. (6.50)

Combined with the angular integration constant 2/(3π), the Stefan-Boltzman factor
π4/15, the factor of 4 from the T4 free energy derivative gives the entropy,

S =
2

3π

(
R2

(4πT)2
1
b

)
π4

15
(4)T3 = πR2 T

90b
= πR2. (6.51)

It is easy to see that in last step, we choose to know from thermodynamics, we must
have S = πR2, so then our result gives, Eq. (6.47), b = T/90, where T is the Hawking
temperature of the horizon R.

6.0.10 List of add-ons and upgrades in construction from 1985

• We have used SI units.

• We have shown the model works fine for a massless field.

• We have used a Laurent series to avoid vacuum terms.

• We have revealed an exact dependence of brick wall thickness on the size of
the black hole.

• We have provided a dimensional argument for ω3 dependence from equilib-
rium assumption.

• We have used a shortcut via Stefan-Boltzmann T4 dependence.

• The maximum force association grouping the introduction of h̄ entirely into
Hawking’s temperature TH is illuminating.

• We have demonstrated that N0 is not explicitly relativistic (at least not osten-
sibly), as it contains only h̄ and G and the scale of the system, rs absorbs all
factors of c.

• We have simplified by not including species Z treatment, nor any λ contro-
versy.

• We have found that the WKB extra term may more strongly restrict the physi-
cal regime of applicability.

• We have included a brick wall outside a charged black hole and generally
spherically symmetric spacetimes, including a cosmological horizon of de Sit-
ter.
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