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Abstract

In this paper, generalised weighted L”-Hardy, L?”-Caffarelli-Kohn—Nirenberg, and
LP-Rellich inequalities with boundary terms are obtained on stratified Lie groups.
As consequences, most of the Hardy type inequalities and Heisenberg—Pauli—Weyl
type uncertainty principles on stratified groups are recovered. Moreover, a weighted
L?-Rellich type inequality with the boundary term is obtained.
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1 Introduction

Let G be astratified Lie group (or ahomogeneous Carnot group), with dilation structure
8, and Jacobian generators X1, ..., Xy, so that N is the dimension of the first stratum
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of G. We refer to [10], or to the recent books [4] or [9] for extensive discussions of
stratified Lie groups and their properties. Let QO be the homogeneous dimension of G.
The sub-Laplacian on G is given by

N
L= X{. (1.1)
k=1

It was shown by Folland [10] that the sub-Laplacian has a unique fundamental solution
g,

Le =26,

where § denotes the Dirac distribution with singularity at the neutral element 0 of G.
The fundamental solution &(x, y) = &(y~'x) is homogeneous of degree —Q + 2 and
can be written in the form

e(x,y) =[d(y~'n)1* 2, (1.2)

for some homogeneous d which is called the £-gauge. Thus, the £-gauge is a sym-
metric homogeneous (quasi-) norm on the stratified group G = (R”, o, §,), that is,

e d(x) > Oif and only if x # O,
e d(6)(x)) =Ad(x) forall A > Oand x € G,
e dix ") =d(x) forall x € G.

We also recall that the standard Lebesque measure dx on R” is the Haar measure for
G (see, e.g. [9, Proposition 1.6.6]). The left invariant vector field X ; has an explicit
form and satisfies the divergence theorem, see e.g. [9] for the derivation of the exact
formula: more precisely, we can write

(l) (l 1)
= 5 (,), (1.3)
k 1=2 m=1

withx = (', x@, ..., x®), where r is the step of G and x) = (x(l) xl(\l,[)) are

the variables in the [ ’h stratum, see also [9, Section 3.1.5] for a general presentation.
The horizontal gradient is given by
=(X1,..., Xn),
and the horizontal divergence is defined by
divgv := Vg - v.
The horizontal p-sub-Laplacian is defined by

Lyf =divg(VafIP Ve f), 1<p <o, (1.4)
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and we will write
x| = 12 + ...+ x;%

for the Euclidean norm on R".

Throughout this paper 2 C G will be an admissible domain, that is, an open set
Q C G is called an admissible domain if it is bounded and if its boundary 92 is
piecewise smooth and simple i.e., it has no self-intersections. The condition for the
boundary to be simple amounts to 92 being orientable.

We now recall the divergence formula in the form of [19, Proposition 3.1]. Let
fieCY(Q)NCE), k=1,...,N.Thenforeachk = 1,..., N, we have

/Q Xefedz= [ felXe. dz). (15)

082

Consequently, we also have

N N
X frdz = Xk, dz). 1.6
ka:Zl Sid: /mkglfk( e dz) (16)

Using the divergence formula analogues of Green’s formulae were obtained in [19]
for general Carnot groups and in [20] for more abstract settings (without the group
structure), for another formulation see also [11].

The analogue of Green’s first formula for the sub-Laplacian was given in [19] in
the following form: if v € C'(2) N C(Q) and u € C*(R) N C'(Q), then

f (Voyu + vLu) dz =/ v(Vu, dz), 1.7)
Q Q2
where
N
Vu =3 (Xeu)Xr,
k=1
and

/ZvXkuXk,dz) /vﬁu,dz).
d Q2

221

Rewriting (1.7) we have

/ ((Vu)v+u£v / u Vv dz),
Q a0

/ ((Vv)u —|—v£u / v Vu dz).
Q Q
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22 M. Ruzhansky et al.

By using (Vu)v = (Vo)u and subtracting one identity for the other we get Green’s
second formula for the sub-Laplacian:

/ (ulv —vLu)dz = / Vv, dz) — v(Vu, dz)). (1.8)
Q aQ

It is important to note that the above Green’s formulae also hold for the funda-
mental solution of the sub-Laplacian as in the case of the fundamental solution of the
(Euclidean) Laplacian since both have the same behaviour near the singularity z = 0
(see [1, Proposition 4.3]).

Weighted Hardy and Rellich inequalities in different related contexts have been
recently considered in [15] and [13]. For the general importance of such inequalities
we can refer to [2]. Some boundary terms have appeared in [24]. For these inequalities
in the setting of general homogeneous groups we refer to [22].

The main aim of this paper is to give the generalised weighted L”-Hardy and
LP-Rellich type inequalities on stratified groups. In Sect. 2, we present a weighted
LP-Caffarelli-Kohn—Nirenberg type inequality with boundary term on stratified group
G, which implies, in particular, the weighted L?”-Hardy type inequality. As conse-
quences of those inequalities, we recover most of the known Hardy type inequalities
and Heisenberg—Pauli—Weyl type uncertainty principles on stratified group G (see [21]
for discussions in this direction). In Sect. 3, a weighted L?”-Rellich type inequality
is investigated. Moreover, a weighted L2-Rellich type inequality with the boundary
term is obtained together with its consequences.

Usually, unless we state explicitly otherwise, the functions u entering all the inequal-
ities are complex-valued.

2 Weighted LP-Hardy type inequalities with boundary terms and their
consequences

In this section we derive several versions of the L? weighted Hardy inequalities.

2.1 Weighted LP-Cafferelli-Kohn-Nirenberg type inequalities with boundary terms

We first present the following weighted L”-Cafferelli-Kohn—Nirenberg type inequal-
ities with boundary terms on the stratified Lie group G and then discuss their
consequences. The proof of Theorem 2.1 is analogous to the proof of Davies and
Hinz [8], but is now carried out in the case of the stratified Lie group G. The boundary
terms also give new addition to the Euclidean results in [8]. The classical Caffarelli—
Kohn-Nirenberg inequalities in the Euclidean setting were obtained in [6].

Let G be a stratified group with N being the dimension of the first stratum, and
let V be a real-valued function in L 11 e (§2) with partial derivatives of order up to 2 in
L}UC(Q), and such that LV is of one sign. Then we have:

Theorem 2.1 Let Q be an admissible domain in the stratified group G, and let V be a
real-valued function such that LV < 0 holds a.e. in Q. Then for any complex-valued

@ Springer



Weighted LP-Hardy and LP-Rellich inequalities with... 23

ueCXQNCYRQ), and all 1 < p < oo, we have the inequality

p—1

1
vaw

p VeV
< p || Veul
LP(S) cv|'7

”|£V|%u

—f [u|?(VV, dx).
0

2.1

LP(Q)
LP(S)

Note that if u vanishes on the boundary €2, then (2.1) extends the Davies and Hinz
result [8] to the weighted L?-Hardy type inequality on stratified groups:

VeV
— 1 |Veul

LV r

A

1
ity

< , l<p<oo. 2.2)
LP(Q)

LP($2)

Proof of Theorem 2.1 Let v, = (jul> + €2)> — . Then v? € C2(2) N C'(Q) and
using Green'’s first formula (1.7) and the fact that LV < 0 we get

/ ILVIvPdx = —/ LVuvPdx
Q Q
=/(%V)u5dx—/ vP(VV, dx)
Q Flo)
:/ V([;,V~Vq;vepdx—/ vP(VV, dx)
Q Q2

sf |VGV||vGuf|dx—f vP(VV, dx)
Q 0

VgV p=1 S
:p/ ('L,,'l) 1cv)'7 Uf_IIVGUeIdX—/ vl (VV.dx),
Q |,CV|7 02

where (%u)v = Vgu - Vgv. We have

Vove = (luf> + €)™ |ul Ve ul,
since 0 < ve < |u|. Thus,

vl IVgvel < [ul” ™! [ Vgull.

On the other hand, let u(x) = R(x) +il(x), where R(x) and /(x) denote the real and
imaginary parts of u. We can restrict to the set where u # 0. Then we have

1
(VGIMI)(x)=m(R(x)VGR(x)+I(x)VGI(X)) if u#0. (2.3)
Since s
|]—|<RVGR+IVG1> < |VoR> + Vg%, (2.4)
u
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24 M. Ruzhansky et al.

we get that |Vg|u|| < |Vgu| a.e. in Q. Therefore,

VeV 1 -
f ILV|vPdx < p/ 'Lphv@m) V)T )P dx —/ v?(VV, dx)
Q Q |EV|T IR

1 p—1

eviinivou ) ox) ([ evarar)
< —————|Vgul|” | d LV ||lu|Pd
_p(/g(|w|(,,_l)| cul? Jax )" ( [ 12Vl

—/ vP(VV, dx),
1Y

where we have used Holder’s inequality in the last line. Thus, when € — 0, we obtain
2.1). O

2.2 Consequences of theorem 2.1

As consequences of Theorem 2.1, we can derive the horizontal L?-Caffarelli-Kohn—
Nirenberg type inequality with the boundary term on the stratified group G which
also gives another proof of L”-Hardy type inequality, and also yet another proof of
the Badiale-Tarantello conjecture [3] (for another proof see e.g. [18] and references
therein).

2.2.1 Horizontal LP-Caffarelli-Kohn-Nirenberg inequalities with the boundary term

Corollary 2.2 Let Q2 be an admissible domain in a stratified group G with N > 3
being dimension of the first stratum, and let o, B € R. Then for all u € C*(Q\{x’ =
0) NCH(Q\{x' = 0}), and any 1 < p < 00, we have

-1
IN —y| u g Vgu u P
— 7 = e 5
P RN PRI R P Y TP P
1 ~
[ @R ) @5)
2

for2 <y < Nwithy =a + B+ 1, and where | - | is the Euclidean norm on RN . In
particular, if u vanishes on the boundary 92, we have

p—1

u Vgu u

x/|%

IN — vyl
p

P
' (2.6)

B
Lr(Q) || |x/| 7T

nk o
X171l Lo ()

LP(RQ)
Proof of Corollary 2.2 To obtain (2.5) from (2.1) , we take V = |x’|>~7. Then
IVeVIi=12—yIIXI"7,  ILVI=1Q =N =X,
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and observe that LV = (2 — y)(N — y)|x’|77 < 0. To use (2.1) we calculate

lievira]”  =ie-pnw -y ,,
ruy = -y -y 7 s
L@ 17 oy
VG V| v _ 12—yl [VGul
71 YGU - = y=pr ’
[LV] P @ |(Q=v)IN—=p) 7 X7 lre
—1
1ol P T
[icvive) |, =1e=-nwv =17 | =] .
(€2) |x/| 7 L@
Thus, (2.1) implies
p r—1
IN—yl| u Veu u 1 ~ 5
p < |l—= - —— | uP(VIX'P, dx).
p 117 |l Le () X'l 7 N pp X7 Dl Lo 9%
Nl 4 B _v
If we denote o = > and 5T = 5o We get (2.5). O

2.2.2 Badiale-Tarantello conjecture

Theorem 2.1 also gives a new proof of the generalised Badiale-Tarantello conjecture
[3] (see, also [18]) on the optimal constant in Hardy inequalities in R" with weights
taken with respect to a subspace.

Proposition 2.3 Ler x = (x’,x") e RN x R*™ N 1 < N <n 2 <y < N and
a, B € R. Then for any u € CP(R"\{x" = 0}) and all 1 < p < oo, we have

14 p—1

[N —y|
P

Vu

x|

u u

. 2.7

B
Lr ) | |x/| P T

7 <
X172 | p @&y

L]J(Rll)
where y = o+ B + 1 and |x'| is the Euclidean norm RN . If y # N then the constant
@ is sharp.

The proof of Proposition 2.3 is similar to Corollary 2.2, so we sketch it only very
briefly.

Proof of Proposition 2.3 Letustake V = |x’|>~7. We observe that AV = (2—y)(N —
PIX7 < 0,aswellas [VV| = 2—y[|x " and |AV| = |2—y)(N—p)| x| 7.
Then (2.1) with

p
u

A
|x’| 7

’

LP(R")

1P
Hmku
LP (R

- |2 =y)(N = p)
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IVV| 2 —vy] Vu
——Vu = /= = ,
[AV] P e@eny  1Q=vIWN=p) 7 IIX? lprmgm

p—1
laviu” = 1e—pw -7
P u =12 =l 7 ;
Lr@e) X171l p gy
i _r-r B _ Y impli
and denoting o = 5 and T = implies (2.7). O

In particular, if we take 8 = (¢ + 1)(p — 1) and y = p(« + 1), then (2.7) implies

IN = p(a + D]
p

Vu

"]

u
|x/|oz+1

; (2.8)
LP (R

LP(RM)

where 1 < p < oo, forallu € C°(R"\{x" = 0}), @ € R, with sharp constant. When
a=0,1<p<Nand2 <N < n, the inequality (2.8) implies that

u

X’

< IVullLpgny (2.9)
LP(R") N — P

which given another proof of the Badiale-Tarantello conjecture from [3, Remark 2.3].
2.2.3 The local Hardy type inequality on G.

As another consequence of Theorem 2.1 we obtain the local Hardy type inequality
with the boundary term, with d being the £-gauge as in (1.2).

Corollary 2.4 Let Q C G with 0 ¢ 02 be an admissible domain in a stratified group
G o_fhomogeneous dimension Q > 3. Let0) > a > 2 — Q. Letu € CI(Q\{O}) N
C(Q\{0}). Then we have

+a—2 a=2 2 +a—2 2=p
MHd P Vediru| < a7 Ved| 7 Veul
LP () Lr(Q)
1 a2 2 ql=-p
——Hd » |V@,d|ﬂuH
p LP(Q)

x / d* NulP(Vd,dx).  (2.10)
a0
This extends the local Hardy type inequality that was obtained in [19] for p = 2:

Z2 e
—'Q+;‘ lHdeWde‘

S 4% 1vgul

L2(Q)
1 a2 1
Ao

LX)

x/ d* Mu2(Vd, dx).  (2.11)
02
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Proof of Corollary 2.4 First, we can multiply both sides of the inequality (2.1) by
I-p

H|£V|PuH , so that we have
LP(Q)

ity

IA

1
Jevin

VeV
H————ﬁﬂv ul
ILV] P

[ [ulP(VV,dx).
Q2

LP(Q) LP(Q)

LP(Q)
2.12)

Now, let us take V = d%. We have

o _a o at+Q-2
LdY =Vg(Vge?2) = Vg 3 QS 2-0 Vge

_a(a—i—Q 2) a4
T 2-07 °

Since ¢ is the fundamental solution of £, we have

a+0-2
e 270 Le.

2
IVGH

ale+ Q — 2) a4

Z—or |ng| =a(a + Q — 2)d*?|Vgd|*.

Ld* =
We can observe that £Ld* < 0, and also the identities

1
|£d°‘|5u‘

1 1
=a’|Q+a—2|r
e =710 |

2
pu‘

Lr(Q)
[Ved®|

p—1

|Lde| v

1 1
=ar|Q+a-2]
LP(Q)

IVeul

)

LP(S)

1-p a—=2+p 2—p
? 'd ? |Vgd| 7 |Vgul

1- 1-p

1
|£d“|5u‘

/ P (Vd® dx) = a?|Q +a —2| 7 Hd ’ |V@,d|ﬂu‘
Q2

LP(S) LP(S)

/ d* Nu|P(Vd, dx).
02

Using (2.12) we arrive at

<

—_ 2 a—2
[0 +a—2| Hd -
LP ()

ptra=2 2—p
d r |Vgd| v |Vgul

LrQ

1 =2 2
-2 Hd , |V¢;,d|ﬂu‘
p

/ d* Yu|P(Vd, dx),
LP(Q) Jyq

which implies (2.10). |
2.3 Uncertainty type principles

The inequality (2.12) implies the following Heisenberg-Pauli-Weyl type uncertainty
principle on stratified groups.
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Corollary 2.5 Let 2 C G be admissible domain in a stratified group G and let V €
C%() be real-valued. Then for any complex-valued function u € C*(£2) N C1(Q) we
have

VGV

licvis pli

o

1 ~
- “u”LP(Q) + — H|£V| ru / [ulP(VV,dx).
P aQ

J1evival
LP(Q)

LP(R)
(2.13)
In particular, if u vanishes on the boundary 02, then we have
_1 Ve V| 1
v f’u‘ EAACAAINT S > = |lull? (2.14)
H' ) e v IVgul o 1L -

LP(Q)

Proof of Corollary 2.5 By using the extended Holder inequality and (2.12) we have

_1 VgV
H|£V| Pu‘LPQ eVl ', \Veul
@ |£V| P LP(Q)
1 _1 1
- evrul et
p LP(RQ) LP(R)
1 1 I-p ~
+ = |ievitra] fievival f ulP TV, dx),
p LP(Q) LP() Jaq
1 _1 1 1=r ~
> , —i——HIL’V| PuH H|£V|Pu‘ / P (VV, dx).
L2(Q) p LP(Q) LP(Q) JyQ
o+ Jivira] L fieviva] [ e @van
- —lu — P u Pu u ,dx),
p M@ Lr(@) L@ Jyo
proving (2.13). O

By setting V = [x/|% in the inequality (2.14), we recover the Heisenberg—Pauli—
Weyl type uncertainty principle on stratified groups as in [17] and [20]:

</Q |x’|2—“|u|"dx> (/Q |x’|“+f’—2|v@u|"dx) z(N+“_ ) (/ |u|”dx> .

In the abelian case G = (R", +), taking N = n > 3, forae = Oand p = 2
this implies the classical Heisenberg—Pauli-Weyl uncertainty principle for all u €
Co” (R™\{0}):

2 2
(/ |x|2|u(x)|2dx> (/ |Vu(x)|2dx> > (";2> (f |u(x)|2dx> )
Rn R}l R}l
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By setting V = d“ in the inequality (2.14), we obtain another uncertainty type

principle:
|Lt | r o+p—2 2—p P
de d |VGd| |V(GM| dx

(53 (e

taking p = 2 and o = O this yields

(f amtar) (fstar) = (452) ([rar)

3 Weighted LP-Rellich type inequalities

In this section we establish weighted Rellich inequalities with boundary terms. We
consider first the L? and then the L? cases. The analogous L>-Rellich inequality on
R" was proved by Schmincke [23] (and generalised by Bennett [5]).

Theorem 3.1 Let 2 be an admissible domain in a stratified group G with N > 2
being the dimension of the first stratum. If a real-valued function V € C*() satisfies
LV (x) < 0forall x € Q, then for every € > 0 we have

W4
ILV|2

2
Lu
L2(Q)

> 2¢ Hv%w@,m

o Fel=o ”lLV|2u

LX)

—e/ (u|>(VV,dx) — V(V]u|?, dx)), (3.1)
o

for all complex-valued functions u € C*(2) N C(Q). In particular, if u vanishes on
the boundary 92, we have

4
1LV

1
> ¢ H V2
L2(Q)

o 10 vaw‘

2@

Proof of Theorem 3.1 Using Green’s second identity (1.8) and that LV (x) < 0 in €2,
we obtain

/ |LV ||u)?dx
Q

—f V/.Z|u|2dx—/ (u>(VV,dx) — V(V]u|?, dx))
Q Q2

- 2/ % <Re(ﬁ£u) + |VGM|2) dx
Q

(u|*(VV,dx) — V(VIul*, dx)).
Q2
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30 M. Ruzhansky et al.

Using the Cauchy—Schwartz inequality we get

1 1
2 45 2\ 2,.\°
|£V||u| dx <2 —— | Lu|“dx €| |LV]||u|dx
o ILV] Q

- 2/ V|Vgu|?dx —f (u>(VV,dx) — V(V]ul|?, dx))

<_ e |L’u|2dx+6/ |LV||u|*dx
Q |LV]

—2/ V|V@,u|2dx—/ (u>(VV,dx) — V(V]u|?, dx)),
Q Q2

yielding (3.1). O

Corollary3.2 Let G be a stratified group with N being the dimension of the first
stratum. If « > =2 and N > o + 4 then for all u € C§°(G\{x" = 0}) we have

2 2N —a —4)? :
/ CuP o N+’ (N —a 4>/ e 6o
G G\{x'=

\r=0) X1 16 op X/t

Proof of Corollary 3.2 Let us take V (x) = |x’|~®*? in Theorem 3.1, which can be
applied since x” = 0 is not in the support of u. Then we have

VeV =—(@+2)IX|7* %, LV=—@+2)(N—a—4)x/|"@,
Letusset Cy o := (¢ +2)(N — o — 4). Observing that
LV = —Cpyolx'|7@ <0,

for |x’| # 0, it follows from (3.1) that

Lu|? Veul?
/ | /' dx > 2CN,ae/ Veul* © +|2dx
G\lx'=0} X% G\lx'=0y |[*"|*

Jul?
|x/|a+4

+Cy e —6)
G\ {x'=0}

dx. (3.3)

To obtain (3.2), let us apply the L”-Hardy type inequality (2.2) by taking V(x) =
[x"1%F2 fora € (=2, N — 4), so that

/ Veul® (N—oe—4)2/ u?
G\w=0} X192~ 4 G\(w'=0) |X/[0FT4

and then choosing € = (N 4 «)/4(« + 2) for (3.3), which is the choice of € that gives
the maximum right-hand side. O
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We can now formulate the L?”-version of weighted L”-Rellich type inequalities.

Theorem 3.3 Let Q2 be an admissible domain in a stratified group G. If0 < V € C(RQ),
LV <0, and L(V?) < 0on Q for some o > 1, then for all u € CS°(S2) we have

2
< P

L@~ (p—1Do+1

1%

—Lu
P
ILV]

1
vaw‘

, 1<p<oo. 3.4
LP(Q)

in Lemma 3.4.

Theorem 3.3 will follow by Lemma 3.5, by putting C = W

Lemma 3.4 Ler Q an admissible domain in a stratified group G. If V. > 0, LV < (,
and there exists a constant C > 0 such that

P 1 p=2 2|?
cvawuH <p(p =1 |VPu7 |Voul? L l<p<oo, (3.5)
LP(Q) Lr ()
forallu € C3°(R2), then we have
1+0)|1evie Y . (3.6)
ruy < u , .
Lr() — p |£V|”—‘1

LP(Q)
forallu € CS°(). If p = 1 then the statement holds for C = 0.
Proof of Lemma 3.4 We can assume that i is real-valued by using the following identity
(see [7, p. 176]):
T -1 -7
VzeC:|z|P = </ |cosz9|pdﬁ) f |Re(z) cos ¥ + Im(z) sin |7 d 1,
—TT T

which can be proved by writing z = r(cos ¢ + i sin ¢) and simplifying.
Lete > 0 and set uc := (Ju|®> + €2)P/2 —€P. Then 0 < u, € Cg° and

/ |[LV|uedx = —/ (LV)uedx = —/ VLucdx,
Q Q Q

where

Lue = £ ((uP +e)F =€) = Ve - (Vo((u? + €)% —e))
= Ve (p(ul? + €))7 uVeu)
= p(p = D(ul? + ' T W2 Veul® + p(lu® + €37 [Voul®
+ p(ul? + )= ucLu.
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32 M. Ruzhansky et al.

Then
/Q LV |uedx = — /Q (p(p — 0t + e 4+ pa? + 62)”%2> V|Vou|*dx
- p/Q Vuu?® +62)#£udx.
Hence
/Q 1LV |ue + (p(p 2w+ + pa® + 62)%2> V|Veul2dx

2
< p/ Viulu? + €))7 |Luldx.
Q

Whene — 0, the integrand on the right is bounded by V (max |u|>+1)?~D/% max | Lu|
and itis integrable because u € C;°(£2), and so the integral tends to fQ ViulP~ Lu|dx
by the dominated convergence theorem. The integrand on the left is non-negative and
tends to |LV ||ul? + p(p — DV |u|P~2|Vgu|? pointwise, only for # # 0 when p < 2,
otherwise for any x. It then follows by Fatou’s lemma that

p p

p

1 1 n—2 2
[ievieu] )+ -1 vam’uv@uw

1 p-l 1
<p||\Vrlul 7 |Lul?

LP(R)

LP(Q) LP ()

By using (3.5), followed by the Holder inequality, we obtain

1P 1opl il s
1+0) H|£V|puH1‘p(Q) <p H|£V|(p_l)Vp|u|pp |£V|_(/’_1)|£u|”

1ogp-l 1%
<plievira” | e
vy

LP () @

This implies (3.6). O
Lemma 3.5 Let Q be an admissible domain in a stratified group G. If0 <V € C(Q),

LV <0,and LV <0 on 2 for some o > 1, then we have

(0 — 1)/ LV ||u|Pdx < p2/ VulP72|Vgu)?dx < o0, 1< p < o0,
Q {xe,u(x)#0}

(3.7)
forallu € C°(Q).
Proof of Lemma 3.5 We shall use that

0> L(VO)=gVo2 ((a — VeV + VLV) , (3.8)

and hence
(c — D|VgV|]* < VILV].
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Now we use the inequality (2.2) for p = 2 to get

Ve V|2
1LV

< 4/ V|Vgul>dx =4/ V|Vgu|*dx,
Q {xeQu(x)£0,|Vgu|£0)
(3.9)

(o — 1)/ ILV||u)?dx < 4(c — 1)[ |Veu|*dx
Q Q

the last equality valid since [{x € Q;u(x) = 0,|Vgu| # 0} = 0. This proves
Lemma 3.5 for p = 2.

For p # 2, put ve = (u”> + €2)P/4 — ¢P/2 andlet e — 0. Since 0 < v, < |u|g,
the left-hand side of (3.9), with u replaced by v, tends to (o — 1) fQ |LV||u|Pdx by
the dominated convergence theorem. If # # 0, then

4 2
Vv 2V = gu(uz n 62)”Tvgu‘ V.
For ¢ — 0 we obtain 5
VoulPV = %|M|P*2|VGu|2V.
It follows as in the proof of Lemma 3.4, by using Fatou’s lemma, that the right-hand

side of (3.9) tends to

p2/ V[u|P~2|Veul*dx,
{xeQ;u(x)#0,|Veu|#0}

and this completes the proof. O

Corollary 3.6 Let G be a stratified group with N being the dimension of the first
stratum. Then for any 2 < a < N and all u € C(G\{x" = 0}) we have the
inequality

|ul? ) | Lul?
[G e S Cwpa [ e 4 (3.10)
where
p2
Cv,pa) = (3.11)

(N—a)((p—1DN+a—2p)

Proof of Corollary 3.6 Let us choose V = |x’|~~2) in Theorem 3.3, so that
LV = —(a —2)(N —a)|x'| 79,

and we note that when 2 < a < N, we have LV < 0 for |x’| # 0. Now it follows
from (3.4) that

e G

wl? / |Lul?

—NP(N — o)
(@ —DP(N —a) /mx/w ve
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By taking 0 = (N — 2)/(a — 2), we arrive at

/ Jul? pr f |Lul?
dx < X,
G |x'1* (N —a)? ((p— DN +a—2p)P Jg |x/|e=2P
which proves (3.10)—(3.11). m]

1
Corollary 3.7 Let G be a stratified Lie group and let d = €2-9, where ¢ is the funda-
mental solution of the sub-Laplacian L. Assume that Q > 3, @ < 2,and Q+a—4 > 0.
Then for all u € C§°(G\{0}) we have

(Q+a—4)2(Q—a)2/ o s 0 f d” )
d“"|Vgd dx < Lu|“dx. 3.13
T A |Ved|*|ul X—GWGdP' ul*dx.  (3.13)

The inequality (3.13) was obtained by Kombe [14], but now we get it as an imme-
diate consequence of Theorem 3.3.

Proof of Corollary 3.7 Let us choose V = d®~2 in Theorem 3.3. Then
LV = (@ —2)(0 + o — 4)d* 4 Vgd|*.

Note that for Q + o« —4 > Oand @ < 2, we have LV < Oforallx #0.If p =2
then from (3.4) it follows that

16 d“
—2)? —42/d°‘*4v di?|uldx < / Lu|*dx.
@=2%Q+a -4 | d*VodPluldy < s | o 1uldx

By taking 0 = (Q — 2o +2) /(o — 2) we get

_4 2 _ 2 d(x
Q@+a=-H(0 -9 /d“—4|de|2|u|2dx5/ |Cul2dx,
16 G G IVed|?

proving inequality (3.13). O

Remark 3.8 In the abelian case, when G = (R”, +) with d = |x| being the Euclidean
norm, and & = 0 in inequality (3.13), we recover the classical Rellich inequality [16].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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