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Abstract
In this paper, generalised weighted L p-Hardy, L p-Caffarelli–Kohn–Nirenberg, and
L p-Rellich inequalities with boundary terms are obtained on stratified Lie groups.
As consequences, most of the Hardy type inequalities and Heisenberg–Pauli–Weyl
type uncertainty principles on stratified groups are recovered. Moreover, a weighted
L2-Rellich type inequality with the boundary term is obtained.
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1 Introduction

LetGbe a stratifiedLie group (or a homogeneousCarnot group),with dilation structure
δλ and Jacobian generators X1, . . . , XN , so that N is the dimension of the first stratum
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of G. We refer to [10], or to the recent books [4] or [9] for extensive discussions of
stratified Lie groups and their properties. Let Q be the homogeneous dimension ofG.
The sub-Laplacian on G is given by

L =
N∑

k=1

X2
k . (1.1)

It was shown by Folland [10] that the sub-Laplacian has a unique fundamental solution
ε,

Lε = δ,

where δ denotes the Dirac distribution with singularity at the neutral element 0 of G.
The fundamental solution ε(x, y) = ε(y−1x) is homogeneous of degree −Q + 2 and
can be written in the form

ε(x, y) = [d(y−1x)]2−Q, (1.2)

for some homogeneous d which is called the L-gauge. Thus, the L-gauge is a sym-
metric homogeneous (quasi-) norm on the stratified group G = (Rn, ◦, δλ), that is,

• d(x) > 0 if and only if x �= 0,
• d(δλ(x)) = λd(x) for all λ > 0 and x ∈ G,
• d(x−1) = d(x) for all x ∈ G.

We also recall that the standard Lebesque measure dx on R
n is the Haar measure for

G (see, e.g. [9, Proposition 1.6.6]). The left invariant vector field X j has an explicit
form and satisfies the divergence theorem, see e.g. [9] for the derivation of the exact
formula: more precisely, we can write

Xk = ∂

∂x ′
k

+
r∑

l=2

Nl∑

m=1

a(l)
k,m(x ′, . . . , x (l−1))

∂

∂x (l)
m

, (1.3)

with x = (x ′, x (2), . . . , x (r)), where r is the step of G and x (l) = (x (l)
1 , . . . , x (l)

Nl
) are

the variables in the lth stratum, see also [9, Section 3.1.5] for a general presentation.
The horizontal gradient is given by

∇G := (X1, . . . , XN ),

and the horizontal divergence is defined by

divGv := ∇G · v.

The horizontal p-sub-Laplacian is defined by

Lp f := divG(|∇G f |p−2∇G f ), 1 < p < ∞, (1.4)
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Weighted Lp-Hardy and Lp-Rellich inequalities with… 21

and we will write

|x ′| =
√
x ′2
1 + . . . + x ′2

N

for the Euclidean norm on RN .

Throughout this paper � ⊂ G will be an admissible domain, that is, an open set
� ⊂ G is called an admissible domain if it is bounded and if its boundary ∂� is
piecewise smooth and simple i.e., it has no self-intersections. The condition for the
boundary to be simple amounts to ∂� being orientable.

We now recall the divergence formula in the form of [19, Proposition 3.1]. Let
fk ∈ C1(�)

⋂
C(�), k = 1, . . . , N . Then for each k = 1, . . . , N , we have

∫

�

Xk fkdz =
∫

∂�

fk〈Xk, dz〉. (1.5)

Consequently, we also have

∫

�

N∑

k=1

Xk fkdz =
∫

∂�

N∑

k=1

fk〈Xk, dz〉. (1.6)

Using the divergence formula analogues of Green’s formulae were obtained in [19]
for general Carnot groups and in [20] for more abstract settings (without the group
structure), for another formulation see also [11].

The analogue of Green’s first formula for the sub-Laplacian was given in [19] in
the following form: if v ∈ C1(�) ∩ C(�) and u ∈ C2(�) ∩ C1(�), then

∫

�

(
(∇̃v)u + vLu)

dz =
∫

∂�

v〈∇̃u, dz〉, (1.7)

where

∇̃u =
N∑

k=1

(Xku)Xk,

and ∫

∂�

N∑

k=1

〈vXkuXk, dz〉 =
∫

∂�

v〈∇̃u, dz〉.

Rewriting (1.7) we have

∫

�

(
(∇̃u)v + uLv

)
dz =

∫

∂�

u〈∇̃v, dz〉,
∫

�

(
(∇̃v)u + vLu)

dz =
∫

∂�

v〈∇̃u, dz〉.
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22 M. Ruzhansky et al.

By using (∇̃u)v = (∇̃v)u and subtracting one identity for the other we get Green’s
second formula for the sub-Laplacian:

∫

�

(uLv − vLu)dz =
∫

∂�

(u〈∇̃v, dz〉 − v〈∇̃u, dz〉). (1.8)

It is important to note that the above Green’s formulae also hold for the funda-
mental solution of the sub-Laplacian as in the case of the fundamental solution of the
(Euclidean) Laplacian since both have the same behaviour near the singularity z = 0
(see [1, Proposition 4.3]).

Weighted Hardy and Rellich inequalities in different related contexts have been
recently considered in [15] and [13]. For the general importance of such inequalities
we can refer to [2]. Some boundary terms have appeared in [24]. For these inequalities
in the setting of general homogeneous groups we refer to [22].

The main aim of this paper is to give the generalised weighted L p-Hardy and
L p-Rellich type inequalities on stratified groups. In Sect. 2, we present a weighted
L p-Caffarelli–Kohn–Nirenberg type inequalitywith boundary term on stratified group
G, which implies, in particular, the weighted L p-Hardy type inequality. As conse-
quences of those inequalities, we recover most of the known Hardy type inequalities
andHeisenberg–Pauli–Weyl type uncertainty principles on stratified groupG (see [21]
for discussions in this direction). In Sect. 3, a weighted L p-Rellich type inequality
is investigated. Moreover, a weighted L2-Rellich type inequality with the boundary
term is obtained together with its consequences.

Usually, unlesswe state explicitly otherwise, the functionsu entering all the inequal-
ities are complex-valued.

2 Weighted Lp-Hardy type inequalities with boundary terms and their
consequences

In this section we derive several versions of the L p weighted Hardy inequalities.

2.1 Weighted Lp-Cafferelli-Kohn-Nirenberg type inequalities with boundary terms

We first present the following weighted L p-Cafferelli–Kohn–Nirenberg type inequal-
ities with boundary terms on the stratified Lie group G and then discuss their
consequences. The proof of Theorem 2.1 is analogous to the proof of Davies and
Hinz [8], but is now carried out in the case of the stratified Lie groupG. The boundary
terms also give new addition to the Euclidean results in [8]. The classical Caffarelli–
Kohn–Nirenberg inequalities in the Euclidean setting were obtained in [6].

Let G be a stratified group with N being the dimension of the first stratum, and
let V be a real-valued function in L1

loc(�) with partial derivatives of order up to 2 in
L1
loc(�), and such that LV is of one sign. Then we have:

Theorem 2.1 Let � be an admissible domain in the stratified groupG, and let V be a
real-valued function such that LV < 0 holds a.e. in �. Then for any complex-valued
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Weighted Lp-Hardy and Lp-Rellich inequalities with… 23

u ∈ C2(�) ∩ C1(�), and all 1 < p < ∞, we have the inequality

∥∥∥|LV | 1p u
∥∥∥
p

L p(�)
≤ p

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
p−1

L p(�)
−

∫

∂�

|u|p〈∇̃V , dx〉.
(2.1)

Note that if u vanishes on the boundary ∂�, then (2.1) extends the Davies and Hinz
result [8] to the weighted L p-Hardy type inequality on stratified groups:

∥∥∥|LV | 1p u
∥∥∥
L p(�)

≤ p

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

, 1 < p < ∞. (2.2)

Proof of Theorem 2.1 Let υε := (|u|2 + ε2)
1
2 − ε. Then υ

p
ε ∈ C2(�) ∩ C1(�) and

using Green’s first formula (1.7) and the fact that LV < 0 we get

∫

�

|LV |υ p
ε dx = −

∫

�

LVυ p
ε dx

=
∫

�

(∇̃V )υ p
ε dx −

∫

∂�

υ p
ε 〈∇̃V , dx〉

=
∫

�

∇GV · ∇Gυ p
ε dx −

∫

∂�

υ p
ε 〈∇̃V , dx〉

≤
∫

�

|∇GV ||∇Gυ p
ε |dx −

∫

∂�

υ p
ε 〈∇̃V , dx〉

= p
∫

�

(
|∇GV |

|LV | p−1
p

)
|LV | p−1

p υ p−1
ε |∇Gυε |dx −

∫

∂�

υ p
ε 〈∇̃V , dx〉,

where (∇̃u)v = ∇Gu · ∇Gv. We have

∇Gυε = (|u|2 + ε2)−
1
2 |u|∇G|u|,

since 0 ≤ υε ≤ |u|. Thus,

υ p−1
ε |∇Gυε | ≤ |u|p−1|∇G|u||.

On the other hand, let u(x) = R(x)+ i I (x), where R(x) and I (x) denote the real and
imaginary parts of u. We can restrict to the set where u �= 0. Then we have

(∇G|u|)(x) = 1

|u| (R(x)∇GR(x) + I (x)∇G I (x)) if u �= 0. (2.3)

Since ∣∣∣∣
1

|u| (R∇GR + I∇G I )

∣∣∣∣
2

≤ |∇GR|2 + |∇G I |2, (2.4)
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24 M. Ruzhansky et al.

we get that |∇G|u|| ≤ |∇Gu| a.e. in �. Therefore,

∫

�

|LV |υ p
ε dx ≤ p

∫

�

(
|∇GV |

|LV | p−1
p

|∇Gu|
)

|LV | p−1
p |u|p−1dx −

∫

∂�

υ p
ε 〈∇̃V , dx〉

≤ p

(∫

�

( |∇GV |p
|LV |(p−1)

|∇Gu|p
)
dx

) 1
p
(∫

�

|LV ||u|pdx
) p−1

p

−
∫

∂�

υ p
ε 〈∇̃V , dx〉,

where we have used Hölder’s inequality in the last line. Thus, when ε → 0, we obtain
(2.1). ��

2.2 Consequences of theorem 2.1

As consequences of Theorem 2.1, we can derive the horizontal L p-Caffarelli–Kohn–
Nirenberg type inequality with the boundary term on the stratified group G which
also gives another proof of L p-Hardy type inequality, and also yet another proof of
the Badiale-Tarantello conjecture [3] (for another proof see e.g. [18] and references
therein).

2.2.1 Horizontal Lp-Caffarelli–Kohn–Nirenberg inequalities with the boundary term

Corollary 2.2 Let � be an admissible domain in a stratified group G with N ≥ 3
being dimension of the first stratum, and let α, β ∈ R. Then for all u ∈ C2(�\{x ′ =
0}) ∩ C1(�\{x ′ = 0}), and any 1 < p < ∞, we have

|N − γ |
p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(�)

≤
∥∥∥∥
∇Gu

|x ′|α
∥∥∥∥
L p(�)

∥∥∥∥∥
u

|x ′| β
p−1

∥∥∥∥∥

p−1

L p(�)

− 1

p

∫

∂�

|u|p〈∇̃|x ′|2−γ , dx〉, (2.5)

for 2 < γ < N with γ = α + β + 1, and where | · | is the Euclidean norm on RN . In
particular, if u vanishes on the boundary ∂�, we have

|N − γ |
p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(�)

≤
∥∥∥∥
∇Gu

|x ′|α
∥∥∥∥
L p(�)

∥∥∥∥∥
u

|x ′| β
p−1

∥∥∥∥∥

p−1

L p(�)

. (2.6)

Proof of Corollary 2.2 To obtain (2.5) from (2.1) , we take V = |x ′|2−γ . Then

|∇GV | = |2 − γ ||x ′|1−γ , |LV | = |(2 − γ )(N − γ )||x ′|−γ ,
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and observe that LV = (2 − γ )(N − γ )|x ′|−γ < 0. To use (2.1) we calculate

∥∥∥|LV | 1p u
∥∥∥
p

L p(�)
= |(2 − γ )(N − γ )|

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(�)

,

∥∥∥∥∥
|∇GV |

|LV | p−1
p

∇Gu

∥∥∥∥∥
L p(�)

= |2 − γ |
|(2 − γ )(N − γ )| p−1

p

∥∥∥∥∥
|∇Gu|
|x ′| γ−p

p

∥∥∥∥∥
L p(�)

,

∥∥∥|LV | 1p u
∥∥∥
p−1

L p(�)
= |(2 − γ )(N − γ )| p−1

p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p−1

L p(�)

.

Thus, (2.1) implies

|N − γ |
p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(�)

≤
∥∥∥∥∥

∇Gu

|x ′| γ−p
p

∥∥∥∥∥
L p(�)

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p−1

L p(�)

− 1

p

∫

∂�

|u|p〈∇̃|x ′|2−γ , dx〉.

If we denote α = γ−p
p and β

p−1 = γ
p , we get (2.5). ��

2.2.2 Badiale–Tarantello conjecture

Theorem 2.1 also gives a new proof of the generalised Badiale-Tarantello conjecture
[3] (see, also [18]) on the optimal constant in Hardy inequalities in R

n with weights
taken with respect to a subspace.

Proposition 2.3 Let x = (x ′, x ′′) ∈ R
N × R

n−N , 1 ≤ N ≤ n, 2 < γ < N and
α, β ∈ R. Then for any u ∈ C∞

0 (Rn\{x ′ = 0}) and all 1 < p < ∞, we have

|N − γ |
p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(Rn)

≤
∥∥∥∥

∇u

|x ′|α
∥∥∥∥
L p(Rn)

∥∥∥∥∥
u

|x ′| β
p−1

∥∥∥∥∥

p−1

L p(Rn)

, (2.7)

where γ = α + β + 1 and |x ′| is the Euclidean norm R
N . If γ �= N then the constant

|N−γ |
p is sharp.

The proof of Proposition 2.3 is similar to Corollary 2.2, so we sketch it only very
briefly.

Proof of Proposition 2.3 Let us take V = |x ′|2−γ . We observe that�V = (2−γ )(N−
γ )|x ′|−γ < 0, aswell as |∇V | = |2−γ ||x ′|(1−γ ) and |�V | = |(2−γ )(N−γ )||x ′|−γ .
Then (2.1) with

∥∥∥|�V | 1p u
∥∥∥
p

L p(Rn)
= |(2 − γ )(N − γ )|

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p

L p(Rn)

,
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∥∥∥∥∥
|∇V |

|�V | p−1
p

∇u

∥∥∥∥∥
L p(Rn)

= |2 − γ |
|(2 − γ )(N − γ )| p−1

p

∥∥∥∥∥
∇u

|x ′| γ−p
p

∥∥∥∥∥
L p(Rn)

,

∥∥∥|�V | 1p u
∥∥∥
p−1

L p(Rn)
= |(2 − γ )(N − γ )| p−1

p

∥∥∥∥∥
u

|x ′| γ
p

∥∥∥∥∥

p−1

L p(Rn)

,

and denoting α = γ−p
p and β

p−1 = γ
p , implies (2.7). ��

In particular, if we take β = (α + 1)(p − 1) and γ = p(α + 1), then (2.7) implies

|N − p(α + 1)|
p

∥∥∥∥
u

|x ′|α+1

∥∥∥∥
L p(Rn)

≤
∥∥∥∥

∇u

|x ′|α
∥∥∥∥
L p(Rn)

, (2.8)

where 1 < p < ∞, for all u ∈ C∞
0 (Rn\{x ′ = 0}), α ∈ R, with sharp constant. When

α = 0, 1 < p < N and 2 ≤ N ≤ n, the inequality (2.8) implies that

∥∥∥∥
u

|x ′|
∥∥∥∥
L p(Rn)

≤ p

N − p
‖∇u‖L p(Rn) , (2.9)

which given another proof of the Badiale-Tarantello conjecture from [3, Remark 2.3].

2.2.3 The local Hardy type inequality onG.

As another consequence of Theorem 2.1 we obtain the local Hardy type inequality
with the boundary term, with d being the L-gauge as in (1.2).

Corollary 2.4 Let � ⊂ G with 0 /∈ ∂� be an admissible domain in a stratified group
G of homogeneous dimension Q ≥ 3. Let 0 > α > 2 − Q. Let u ∈ C1(�\{0}) ∩
C(�\{0}). Then we have

|Q + α − 2|
p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
L p(�)

≤
∥∥∥∥d

p+α−2
p |∇Gd| 2−p

p |∇Gu|
∥∥∥∥
L p(�)

− 1

p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
1−p

L p(�)

×
∫

∂�

dα−1|u|p〈∇̃d, dx〉. (2.10)

This extends the local Hardy type inequality that was obtained in [19] for p = 2:

|Q + α − 2|
2

∥∥∥d
α−2
2 |∇Gd|u

∥∥∥
L2(�)

≤
∥∥∥d

α
2 |∇Gu|

∥∥∥
L2(�)

− 1

2

∥∥∥d
α−2
2 |∇Gd|u

∥∥∥
−1

L2(�)

×
∫

∂�

dα−1|u|2〈∇̃d, dx〉. (2.11)
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Proof of Corollary 2.4 First, we can multiply both sides of the inequality (2.1) by∥∥∥|LV | 1p u
∥∥∥
1−p

L p(�)
, so that we have

∥∥∥|LV | 1p u
∥∥∥
L p(�)

≤ p

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

−
∥∥∥|LV | 1p u

∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃V , dx〉.

(2.12)

Now, let us take V = dα . We have

Ldα = ∇G(∇Gε
α

2−Q ) = ∇G

(
α

2 − Q
ε

α+Q−2
2−Q ∇Gε

)

= α(α + Q − 2)

(2 − Q)2
ε

α−4+2Q
2−Q |∇Gε|2 + α

2 − Q
ε

α+Q−2
2−Q Lε.

Since ε is the fundamental solution of L, we have

Ldα = α(α + Q − 2)

(2 − Q)2
ε

α−4+2Q
2−Q |∇Gε|2 = α(α + Q − 2)dα−2|∇Gd|2.

We can observe that Ldα < 0, and also the identities

∥∥∥|Ldα| 1p u
∥∥∥
L p(�)

= α
1
p |Q + α − 2| 1p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
L p(�)

,

∥∥∥∥∥
|∇Gdα|

|Ldα| p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

= α
1
p |Q + α − 2| 1−p

p

∥∥∥∥d
α−2+p

p |∇Gd| 2−p
p |∇Gu|

∥∥∥∥
L p(�)

,

∥∥∥|Ldα| 1p u
∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃dα, dx〉 = α
1
p |Q + α − 2| 1−p

p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
1−p

L p(�)∫

∂�

dα−1|u|p〈∇̃d, dx〉.

Using (2.12) we arrive at

|Q + α − 2|
p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
L p(�)

≤
∥∥∥∥d

p+α−2
p |∇Gd| 2−p

p |∇Gu|
∥∥∥∥
L p�

− 1

p

∥∥∥d
α−2
p |∇Gd| 2p u

∥∥∥
1−p

L p(�)

∫

∂�

dα−1|u|p〈∇̃d, dx〉,

which implies (2.10). ��

2.3 Uncertainty type principles

The inequality (2.12) implies the following Heisenberg-Pauli-Weyl type uncertainty
principle on stratified groups.
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Corollary 2.5 Let � ⊂ G be admissible domain in a stratified group G and let V ∈
C2(�) be real-valued. Then for any complex-valued function u ∈ C2(�)∩C1(�) we
have

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

≥ 1

p
‖u‖2L p(�) + 1

p

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃V , dx〉.
(2.13)

In particular, if u vanishes on the boundary ∂�, then we have

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

≥ 1

p
‖u‖2L p(�) . (2.14)

Proof of Corollary 2.5 By using the extended Hölder inequality and (2.12) we have

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥∥∥
|∇GV |

|LV | p−1
p

|∇Gu|
∥∥∥∥∥
L p(�)

≥ 1

p

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
L p(�)

+ 1

p

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃V , dx〉,

≥ 1

p

∥∥∥|u|2
∥∥∥
L

p
2 (�)

+ 1

p

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃V , dx〉.

= 1

p
‖u‖2L p(�) + 1

p

∥∥∥|LV |− 1
p u

∥∥∥
L p(�)

∥∥∥|LV | 1p u
∥∥∥
1−p

L p(�)

∫

∂�

|u|p〈∇̃V , dx〉,

proving (2.13). ��
By setting V = |x ′|α in the inequality (2.14), we recover the Heisenberg–Pauli–

Weyl type uncertainty principle on stratified groups as in [17] and [20]:

(∫

�

|x ′|2−α|u|pdx
) (∫

�

|x ′|α+p−2|∇Gu|pdx
)

≥
(
N + α − 2

p

)p (∫

�

|u|pdx
)2

.

In the abelian case G = (Rn,+), taking N = n ≥ 3, for α = 0 and p = 2
this implies the classical Heisenberg–Pauli–Weyl uncertainty principle for all u ∈
C∞
0 (Rn\{0}):

(∫

Rn
|x |2|u(x)|2dx

) (∫

Rn
|∇u(x)|2dx

)
≥

(
n − 2

2

)2 (∫

Rn
|u(x)|2dx

)2

.
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By setting V = dα in the inequality (2.14), we obtain another uncertainty type
principle:

(∫

�

|u|p
dα−2|∇Gd|2 dx

) (∫

�

dα+p−2|∇Gd|2−p|∇Gu|pdx
)

≥
(
Q + α − 2

p

)p (∫

�

|u|pdx
)2

;

taking p = 2 and α = 0 this yields

(∫

�

d2

|∇Gd|2 |u|2dx
) (∫

�

|∇Gu|2dx
)

≥
(
Q − 2

2

)2 (∫

�

|u|2dx
)2

.

3 Weighted Lp-Rellich type inequalities

In this section we establish weighted Rellich inequalities with boundary terms. We
consider first the L2 and then the L p cases. The analogous L2-Rellich inequality on
R
n was proved by Schmincke [23] (and generalised by Bennett [5]).

Theorem 3.1 Let � be an admissible domain in a stratified group G with N ≥ 2
being the dimension of the first stratum. If a real-valued function V ∈ C2(�) satisfies
LV (x) < 0 for all x ∈ �, then for every ε > 0 we have

∥∥∥∥∥
|V |

|LV | 12
Lu

∥∥∥∥∥

2

L2(�)

≥ 2ε
∥∥∥V

1
2 |∇Gu|

∥∥∥
2

L2(�)
+ ε(1 − ε)

∥∥∥|LV | 12 u
∥∥∥
2

L2(�)

− ε

∫

∂�

(|u|2〈∇̃V , dx〉 − V 〈∇̃|u|2, dx〉), (3.1)

for all complex-valued functions u ∈ C2(�) ∩ C1(�). In particular, if u vanishes on
the boundary ∂�, we have

∥∥∥∥∥
|V |

|LV | 12
Lu

∥∥∥∥∥

2

L2(�)

≥ 2ε
∥∥∥V

1
2 |∇Gu|

∥∥∥
2

L2(�)
+ ε(1 − ε)

∥∥∥|LV | 12 u
∥∥∥
2

L2(�)
.

Proof of Theorem 3.1 Using Green’s second identity (1.8) and that LV (x) < 0 in �,
we obtain

∫

�

|LV ||u|2dx = −
∫

�

VL|u|2dx −
∫

∂�

(|u|2〈∇̃V , dx〉 − V 〈∇̃|u|2, dx〉)

= − 2
∫

�

V
(
Re(uLu) + |∇Gu|2

)
dx

−
∫

∂�

(|u|2〈∇̃V , dx〉 − V 〈∇̃|u|2, dx〉).
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Using the Cauchy–Schwartz inequality we get

∫

�

|LV ||u|2dx ≤ 2

(
1

ε

∫

�

|V |2
|LV | |Lu|2dx

) 1
2
(

ε

∫

�

|LV ||u|2dx
) 1

2

− 2
∫

�

V |∇Gu|2dx −
∫

∂�

(|u|2〈∇̃V , dx〉 − V 〈∇̃|u|2, dx〉)

≤ 1

ε

∫

�

|V |2
|LV | |Lu|2dx + ε

∫

�

|LV ||u|2dx

− 2
∫

�

V |∇Gu|2dx −
∫

∂�

(|u|2〈∇̃V , dx〉 − V 〈∇̃|u|2, dx〉),

yielding (3.1). ��
Corollary 3.2 Let G be a stratified group with N being the dimension of the first
stratum. If α > −2 and N > α + 4 then for all u ∈ C∞

0 (G\{x ′ = 0}) we have
∫

G\{x ′=0}
|Lu|2
|x ′|α dx ≥ (N + α)2(N − α − 4)2

16

∫

G\{x ′=0}
|u|2

|x ′|α+4 dx . (3.2)

Proof of Corollary 3.2 Let us take V (x) = |x ′|−(α+2) in Theorem 3.1, which can be
applied since x ′ = 0 is not in the support of u. Then we have

∇GV = −(α + 2)|x ′|−α−4x ′, LV = −(α + 2)(N − α − 4)|x ′|−(α+4).

Let us set CN ,α := (α + 2)(N − α − 4). Observing that

LV = −CN ,α|x ′|−(α+4) < 0,

for |x ′| �= 0, it follows from (3.1) that

∫

G\{x ′=0}
|Lu|2
|x ′|α dx ≥ 2CN ,αε

∫

G\{x ′=0}
|∇Gu|2
|x ′|α+2 dx

+ C2
N ,αε(1 − ε)

∫

G\{x ′=0}
|u|2

|x ′|α+4 dx . (3.3)

To obtain (3.2), let us apply the L p-Hardy type inequality (2.2) by taking V (x) =
|x ′|α+2 for α ∈ (−2, N − 4), so that

∫

G\{x ′=0}
|∇Gu|2
|x ′|α+2 dx ≥ (N − α − 4)2

4

∫

G\{x ′=0}
|u|2

|x ′|α+4 dx,

and then choosing ε = (N +α)/4(α + 2) for (3.3), which is the choice of ε that gives
the maximum right-hand side. ��
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We can now formulate the L p-version of weighted L p-Rellich type inequalities.

Theorem 3.3 Let� be an admissible domain in a stratified groupG. If 0 < V ∈ C(�),
LV < 0, and L(V σ ) ≤ 0 on � for some σ > 1, then for all u ∈ C∞

0 (�) we have

∥∥∥|LV | 1p u
∥∥∥
L p(�)

≤ p2

(p − 1)σ + 1

∥∥∥∥∥
V

|LV | p−1
p

Lu
∥∥∥∥∥
L p(�)

, 1 ≤ p < ∞. (3.4)

Theorem 3.3 will follow by Lemma 3.5, by putting C = (p−1)(σ−1)
p in Lemma 3.4.

Lemma 3.4 Let � an admissible domain in a stratified group G. If V ≥ 0, LV < 0,
and there exists a constant C ≥ 0 such that

C
∥∥∥|LV | 1p u

∥∥∥
p

L p(�)
≤ p(p − 1)

∥∥∥∥V
1
p |u| p−2

p |∇Gu| 2p
∥∥∥∥
p

L p(�)

, 1 < p < ∞, (3.5)

for all u ∈ C∞
0 (�), then we have

(1 + C)

∥∥∥|LV | 1p u
∥∥∥
L p(�)

≤ p

∥∥∥∥∥
V

|LV | p−1
p

Lu
∥∥∥∥∥
L p(�)

, (3.6)

for all u ∈ C∞
0 (�). If p = 1 then the statement holds for C = 0.

Proof of Lemma 3.4 Wecan assume that u is real-valued by using the following identity
(see [7, p. 176]):

∀z ∈ C : |z|p =
(∫ π

−π

| cosϑ |pdϑ

)−1 ∫ −π

π

|Re(z) cosϑ + Im(z) sin ϑ |pdϑ,

which can be proved by writing z = r(cosφ + i sin φ) and simplifying.
Let ε > 0 and set uε := (|u|2 + ε2)p/2 − ε p. Then 0 ≤ uε ∈ C∞

0 and

∫

�

|LV |uεdx = −
∫

�

(LV )uεdx = −
∫

�

VLuεdx,

where

Luε = L
(
(|u|2 + ε2)

p
2 − ε p

)
= ∇G · (∇G((|u|2 + ε2)

p
2 − ε p))

= ∇G(p(|u|2 + ε2)
p−2
2 u∇Gu)

= p(p − 2)(|u|2 + ε2)
p−4
2 u2|∇Gu|2 + p(|u|2 + ε2)

p−2
2 |∇Gu|2

+ p(|u|2 + ε2)
p−2
2 uLu.
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Then
∫

�

|LV |uεdx = −
∫

�

(
p(p − 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Gu|2dx

− p
∫

�

Vu(u2 + ε2)
p−2
2 Ludx .

Hence
∫

�

|LV |uε +
(
p(p − 2)u2(u2 + ε2)

p−4
2 + p(u2 + ε2)

p−2
2

)
V |∇Gu|2dx

≤ p
∫

�

V |u|(u2 + ε2)
p−2
2 |Lu|dx .

When ε → 0, the integrandon the right is boundedbyV (max |u|2+1)(p−1)/2 max |Lu|
and it is integrable because u ∈ C∞

0 (�), and so the integral tends to
∫
�
V |u|p−1|Lu|dx

by the dominated convergence theorem. The integrand on the left is non-negative and
tends to |LV ||u|p + p(p− 1)V |u|p−2|∇Gu|2 pointwise, only for u �= 0 when p < 2,
otherwise for any x . It then follows by Fatou’s lemma that

∥∥∥|LV | 1p u
∥∥∥
p

L p(�)
+ p(p − 1)

∥∥∥∥V
1
p |u| p−2

p |∇Gu| 2p
∥∥∥∥
p

L p(�)

≤ p

∥∥∥∥V
1
p |u| p−1

p |Lu| 1p
∥∥∥∥
p

L p(�)

.

By using (3.5), followed by the Hölder inequality, we obtain

(1 + C)

∥∥∥|LV | 1p u
∥∥∥
p

L p(�)
≤ p

∥∥∥∥|LV |(p−1)V
1
p |u| p−1

p |LV |−(p−1)|Lu| 1p
∥∥∥∥
p

≤ p
∥∥∥|LV | 1p u

∥∥∥
p−1

L p(�)

∥∥∥∥∥
|V |

|LV | p−1
p

Lu
∥∥∥∥∥
L p(�)

.

This implies (3.6). ��
Lemma 3.5 Let � be an admissible domain in a stratified groupG. If 0 < V ∈ C(�),
LV < 0, and LV σ ≤ 0 on � for some σ > 1, then we have

(σ − 1)
∫

�

|LV ||u|pdx ≤ p2
∫

{x∈�,u(x) �=0}
V |u|p−2|∇Gu|2dx < ∞, 1 < p < ∞,

(3.7)
for all u ∈ C∞

0 (�).

Proof of Lemma 3.5 We shall use that

0 ≥ L(V σ ) = σV σ−2
(
(σ − 1)|∇GV |2 + VLV

)
, (3.8)

and hence
(σ − 1)|∇GV |2 ≤ V |LV |.
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Now we use the inequality (2.2) for p = 2 to get

(σ − 1)
∫

�

|LV ||u|2dx ≤ 4(σ − 1)
∫

�

|∇GV |2
|LV | |∇Gu|2dx

≤ 4
∫

�

V |∇Gu|2dx = 4
∫

{x∈�;u(x) �=0,|∇Gu|�=0}
V |∇Gu|2dx,

(3.9)

the last equality valid since |{x ∈ �; u(x) = 0, |∇Gu| �= 0}| = 0. This proves
Lemma 3.5 for p = 2.

For p �= 2, put vε = (u2 + ε2)p/4 − ε p/2, and let ε → 0. Since 0 ≤ vε ≤ |u| p
2 ,

the left-hand side of (3.9), with u replaced by vε , tends to (σ − 1)
∫
�

|LV ||u|pdx by
the dominated convergence theorem. If u �= 0, then

|∇Gvε |2V =
∣∣∣
p

2
u(u2 + ε2)

p−4
4 ∇Gu

∣∣∣
2
V .

For ε → 0 we obtain

|∇Gu|pV = p2

4
|u|p−2|∇Gu|2V .

It follows as in the proof of Lemma 3.4, by using Fatou’s lemma, that the right-hand
side of (3.9) tends to

p2
∫

{x∈�;u(x) �=0,|∇Gu|�=0}
V |u|p−2|∇Gu|2dx,

and this completes the proof. ��
Corollary 3.6 Let G be a stratified group with N being the dimension of the first
stratum. Then for any 2 < α < N and all u ∈ C∞

0 (G\{x ′ = 0}) we have the
inequality ∫

G

|u|p
|x ′|α dx ≤ C p

(N ,p,α)

∫

G

|Lu|p
|x ′|α−2p dx, (3.10)

where

C(N ,p,α) = p2

(N − α) ((p − 1)N + α − 2p)
. (3.11)

Proof of Corollary 3.6 Let us choose V = |x ′|−(α−2) in Theorem 3.3, so that

LV = −(α − 2)(N − α)|x ′|−α,

and we note that when 2 < α < N , we have LV < 0 for |x ′| �= 0. Now it follows
from (3.4) that

(α − 2)p(N − α)p
∫

G

|u|p
|x ′|α dx ≤ p2p

[(p − 1)σ + 1]p
∫

G

|Lu|p
|x ′|α−2p dx . (3.12)
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By taking σ = (N − 2)/(α − 2), we arrive at

∫

G

|u|p
|x ′|α dx ≤ p2p

(N − α)p ((p − 1)N + α − 2p)p

∫

G

|Lu|p
|x ′|α−2p dx,

which proves (3.10)–(3.11). ��

Corollary 3.7 Let G be a stratified Lie group and let d = ε
1

2−Q , where ε is the funda-
mental solution of the sub-LaplacianL. Assume that Q ≥ 3,α < 2, and Q+α−4 > 0.
Then for all u ∈ C∞

0 (G\{0}) we have

(Q + α − 4)2(Q − α)2

16

∫

G

dα−4|∇Gd|2|u|2dx ≤
∫

G

dα

|∇Gd|2 |Lu|2dx . (3.13)

The inequality (3.13) was obtained by Kombe [14], but now we get it as an imme-
diate consequence of Theorem 3.3.

Proof of Corollary 3.7 Let us choose V = dα−2 in Theorem 3.3. Then

LV = (α − 2)(Q + α − 4)dα−4|∇Gd|2.

Note that for Q + α − 4 > 0 and α < 2, we have LV < 0 for all x �= 0. If p = 2
then from (3.4) it follows that

(α − 2)2(Q + α − 4)2
∫

G

dα−4|∇Gd|2|u|2dx ≤ 16

(σ + 1)2

∫

G

dα

|∇Gd|2 |Lu|2dx .

By taking σ = (Q − 2α + 2)/(α − 2) we get

(Q + α − 4)2(Q − α)2

16

∫

G

dα−4|∇Gd|2|u|2dx ≤
∫

G

dα

|∇Gd|2 |Lu|2dx,

proving inequality (3.13). ��
Remark 3.8 In the abelian case, whenG ≡ (Rn,+) with d = |x | being the Euclidean
norm, and α = 0 in inequality (3.13), we recover the classical Rellich inequality [16].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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