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We propose an adaptive multiscale method to improve the efficiency and the accuracy of 
numerical computations by combining numerical homogenization and domain decomposi-
tion for modeling flow and transport. Our approach focuses on minimizing the use of fine 
scale properties associated with advection and diffusion/dispersion. Here a fine scale flow 
and transport problem is solved in subdomains defined by a transient region where spatial 
changes in transported species concentrations are large while a coarse scale problem is 
solved in the remaining subdomains. Away from the transient region, effective macroscopic 
properties are obtained using local numerical homogenization. An Enhanced Velocity 
Mixed Finite Element Method (EVMFEM) as a domain decomposition scheme is used to 
couple these coarse and fine subdomains [1]. Specifically, homogenization is employed 
here only when coarse and fine scale problems can be decoupled to extract temporal 
invariants in the form of effective parameters. In this paper, a number of numerical tests 
are presented for demonstrating the capabilities of this adaptive numerical homogenization 
approach in upscaling flow and transport in heterogeneous porous medium.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate modeling of flow and transport is important in evaluating oil and gas recovery, nuclear waste disposal systems, 
CO2 sequestration, and groundwater remediation in subsurface porous media. Efficient numerical modeling of the associated 
physical processes has several challenges due to the heterogeneity, the uncertainty and the multiscale nature of porous 
media parameters. The main source of obtaining these parameters is borehole measurements which are sparsely distributed 
in space. Reservoir parameters are populated using these measurements in conjunction with geostatistical methods including 
parameter estimation and uncertainty quantification. For a given scenario, however, a direct numerical simulation of the 
flow and transport problem based on these fine scale parameters is often computationally prohibitive. Additionally, the 
datasets obtained from different observation sources may vary strongly in characteristic spatial scales. For example, borehole 
and seismic measurements have a resolution varying between a few feet to hundreds of feet, respectively. A coarse scale 
numerical model, which can handle multiple Representative Elementary Volumes (REV), is therefore necessary to reduce 
computational overheads associated with solving a fine scale problem. However, ad-hoc averaging techniques may fail to 
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capture fine scale features resulting in a loss of numerical accuracy that compromises the predictive nature of the model. 
Thus, development of mathematically consistent upscaling techniques is necessary for preserving solution accuracy for field 
scale problems.

The multiscale nature of flow and transport problems in porous medium has been addressed in [2–7] giving rise to a 
number of approaches for upscaling. Each of these schemes performs computations at a coarse scale aiming to capture fine 
scale physics as close as possible. However, upscaling tends to reduce the fine scale property information either by averaging 
or by identifying a reduced number of characteristic parameters. We briefly discuss two widely used upscaling techniques, 
homogenization and multiscale bases.

Homogenization theory is a well-established and mathematically consistent, theoretical framework for understanding 
the multiscale nature of subsurface problems. Earlier studies by [8–12] use homogenization theory for upscaling rapidly 
oscillating model parameters. These parameters include rock properties such as permeability, porosity, dispersion as well 
as model parameters for relative permeability and heterogeneous chemical reactions. The two-scale homogenization theory 
relies upon the assumption of an identifiable period (or REV) in an otherwise heterogeneous medium with a characteristic 
length scale much smaller than the length scale of the medium under investigation. In other words, the ratio of the length 
of the period to the medium, denoted by ε, is sufficiently small. This assumption leads to a scale separation between fine 
and coarse scale problems thereby decoupling the computations associated with each of the two problems. Given fine scale 
parameters the effective properties at the coarse scale can then be evaluated following two-scale homogenization theory in 
the limit of ε → 0. In [13,14], the well-known Darcy law is derived from Stokes (Navier-Stokes) equation at the pore scale.

In numerical simulations a small value of ε is employed. However, the requirements of periodicity and scale separation 
are often too restrictive for direct application to realistic, heterogeneous, porous medium problems. Nevertheless, homog-
enization is an indispensable mathematical tool in providing valuable insight into the multiscale nature of porous media 
problems by describing coarse scale parameters as functions of fine scale variations. In Section 3, we describe how adaptivity 
can relax the scale separation and periodicity assumptions for flow and particularly transport problems.

A number of multiscale methods have been proposed for a wide range of problems. Although incomplete, we provide a 
brief literature description of several well-known approaches. Multiscale finite element methods (MsFEM) were introduced 
by Babuška et al. [15] in the framework of the generalized finite element method (GFEM) for elliptic problems with rough 
coefficients. Here, the multiscale basis functions were obtained by solving local problems with appropriate boundary condi-
tions and vanishing right hand sides. This idea was later extended to general heterogeneities by Hou and Wu in [16] using 
oversampling techniques to obtain improved accuracy. Further extensions [17,18] involved the development of the General-
ized Multiscale Finite Element Method (GMsFEM). This framework systematically enriches the coarse solutions by modifying 
the multiscale basis functions dynamically. A similar but locally mass conservative approach is the multiscale finite-volume 
method (MsFVM) [19–22]. These latter works rely upon effective transmissibility computations on a primal coarse grid by 
solving fine scale subdomain problems with boundary conditions obtained from a dual coarse grid solution.

The variational multiscale methods (VMS) introduced by Hughes et al. [23] decomposes the solution space into fine 
and coarse scale parts. This method combines dominant coarse and fine scale effects in the form of a stabilized variational 
problem to represent the coarse scale solution. Based on VMS a locally conservative mixed finite element, multiscale method 
was also presented by Arbogast et al. [4,24]. Another well-known multiscale scheme is the heterogeneous multiscale method 
(HMM), which has been applied to a number of multiphysics problems [25–27]. This method couples the macroscopic and 
microscopic models by assuming a scale separation similar to two-scale homogenization theory. Multiscale Mortar Mixed 
FEM (MM MFEM) is another approach for coupling multiscale and multiphysics subdomains through specialized interface 
conditions, where continuity conditions were imposed across different scales [28–33]. The mortar method had been used to 
improve solution accuracy of heterogeneous problems by adaptively enriching the multiscale mortar space.

In this work, we investigate local numerical homogenization for upscaling coupled flow and transport in porous medium. 
We obtain computational efficiency while maintaining solution accuracy by combining a local homogenization with an 
Enhanced Velocity Mixed Finite Element Method (EVMFEM) domain decomposition approach [1]. A fine scale problem is 
solved dynamically in subdomains defined by transient regions while a coarse scale problem is solved over remaining 
subdomains. The transient regions are identified by sharp fronts associated with species transport. In this aspect, our method 
shares similarities with the adaptive [34,35] multiscale methods, where a coarse problem is enriched locally to capture 
fine scale physical features. Away from the transient region, effective properties of macroscopic equations at the coarse 
scale are obtained using local numerical homogenization. Our method is locally mass conservative at both coarse and fine 
scales. The adaptivity allows us to circumvent expensive computations of effective dispersion tensor using local numerical 
homogenization.

This paper is organized as follows: Section 2 describes the coupled flow and transport model formulation, Section 3 pro-
vides a brief summary of effective macroscale equations using two-scale homogenization theory followed by a description 
of the EVMFEM adaptive mesh refinement (AMR) approach. The details of our proposed adaptive numerical homogenization 
scheme are then presented in Section 4. Numerical results in Section 5 demonstrate the feasibility of our scheme using 
realistic SPE10 datasets [36]. Finally, Section 6 summarizes and concludes our work.
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2. Model formulation

We begin by describing the flow and transport model formulation along with initial and boundary conditions. We con-
sider a single phase, slightly compressible fluid in porous medium with a non-reactive species transport. The phase mass 
conservation equation on a domain � is given by,

∂

∂t
(φρ) + ∇ · (ρu) = q in � × J (1)

Here, � ∈R
d(d = 1, 2 or 3), J = (0, T ], d is the number of spatial dimensions, q is the source/sink term, φ is the porosity, ρ

is the phase density, and u is the phase velocity. We remark that a Peacemann correction is used for modeling source/sink 
terms [37]. The slightly compressible fluid density is defined as a function of pressure as follows,

ρ = ρref eC f (p−pref ) (2)

where, C f is the fluid compressibility, and ρref is the reference density at reference pressure pref . The phase velocity u is 
given by the Darcy’s law as,

u = − K

μ
(∇p − ρg) , (3)

where, μ is the viscosity, K is the permeability (absolute permeability) tensor, ρ is the density of the fluid and g is the 
gravity vector. The conservation equation of a component i in the flowing phase is given by,

∂

∂t
(φciρ) + ∇ · (ciρu − φρDi∇ci) = qĉi, (4)

where, ci and Di are the normalized concentration and the positive definite, diagonal diffusion/dispersion tensor, respectively 
of component i in the flowing phase, and ĉi is the injection/production concentration of the component i. We define 
diffusive flux di for a component i as,

di = φDi∇ci . (5)

The concentrations ci are constrained by,

Nc∑
i=1

ci = 1. (6)

Although more general global boundary conditions can also be treated, we restrict ourselves to the following,

p = g on ∂� × J , and

Di∇ci · ν = 0 on ∂� × J ,
(7)

where ν is the unit outward normal. Additionally, the initial condition is given by,

p(x,0) = p0(x)

ci(x,0) = c0
i (x) at � × {0}. (8)

3. Methodology

In this work, we apply a local numerical homogenization scheme motivated by two-scale homogenization theory to 
obtain effective equations at the coarse scale starting from fine scale mass conservation equations and constitutive relation-
ship (Darcy’s law). Once the coefficients for the coarse scale equations have been evaluated, we apply a EVMFEM domain 
decomposition approach to couple coarse and fine subdomains.

3.1. Two-scale homogenization

We inherit the definition of ε = l/L from two-scale homogenization theory where l and L are the fine and coarse length 
scales. The assumption of scale separation (or ε → 0) is a theoretical requirement for two-scale homogenization. The scale 
separation assumption here inherently implies that the pressure, velocity and species concentration unknowns vary slowly 
(relatively non-oscillatory) at the coarse scale compared to faster variations (or highly oscillatory) at the fine scale. Under 
the aforementioned two-scale ansatz the unknowns in pressure, velocity, density and concentration are formally expanded 
as power series in ε as,
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Fig. 3.1. Schematic of REVs for layered (left) and general (right) permeability distribution.

aε(x) = a0(x, y) + εa1(x, y) + ε2a2(x, y) + .... (9)

Here, a can be any one of the primary unknowns pressure (p), velocity (u), density (ρ) or species concentration (c). Further, 
x and y represent the coarse and fine scales such that y = x

ε where a(x, y) is used to denote the variations in an unknown 
at both the scales.

3.1.1. Flow
We apply the two-scale homogenization theory to single phase slightly compressible flow problem in order to derive 

the effective flow equations at the coarse scale. The parameters permeability and porosity are assumed to be oscillatory (or 
heterogeneous) parameters at the fine scale. The flow equations for slightly compressible flow at the fine scale have the 
following form

uε = −K
( x

ε

)
∇pε in �

∂

∂t
(φρε) + div (ρεuε) = f in �

p = g on ∂�

(10)

where, ε denotes the two-scale variations in the unknowns aε = a(x, y), f ∈ L2(�) the source/sink term, and K and φ are 
the oscillatory (or heterogeneous) absolute permeability (symmetric, positive definite tensor) and porosity, respectively with 
period of oscillation y = x

ε , and x, y ∈R
d, d = 1, 2, 3.

Using the formal expansion (Eqn. (9)) in the unknowns and substituting in the system of Eqns. (10) we can obtain the 
effective macroscale equations following the derivation in [12] as follows,

ũ = −Kef f ∇p0 in �

∂

∂t
(ρ0〈φ〉) + divx

(
ρ0ũ

) = f in �

p0 = g on ∂�

(11)

where 〈φ〉 = ∫
Y

φdy, ũ = ∫
Y u0dy, Kef f is a symmetric, positive definite tensor denoting the effective permeability at the 

coarse scale. Note that the effective permeability does not depend on the choice of the domain �, source term f , and 
boundary conditions on ∂�. Furthermore, the eigenvalues of the effective permeability tensor are bounded below and 
above by harmonic and arithmetic means of eigenvalues, respectively of the fine scale permeability tensors. Arbogast [3]
shows that the homogenized equations for the elliptic boundary value problem is well-posed which can be extended to the 
parabolic initial and boundary value problem discussed above. The effective permeability tensor is constructed using the 
solution (χ i) of the auxiliary problem or a unit-cell problem for a dimensionless form of the above equations, on a periodic 
domain Y as follows;

−∇ ·
(

K(y)
(
∇χ i + ei

))
= 0 in Y ,

χ i is perodic in Y .

(12)

Here, {ei}1≤i≤d ∈ R
d is the canonical basis for a finite dimensional problem of dimension d.

An analytical derivation of effective permeability, using two-scale homogenization, for layered permeability distribution, 
with diagonal permeability tensor, is presented in [38]. This derivation results in the well-known arithmetic and harmonic 
averaging for flow along and across the layered medium, respectively. However, in order to use this result the REV must be 
chosen carefully so that the layered medium assumption and hence the aforementioned averaging applies. Fig. 3.1 shows 
REV for layered and general distribution of permeability. One must note that it is not always possible to select an REV which 
satisfies the layered distribution wherein a more general approach such as adaptive numerical homogenization becomes 
indispensable.



Y. Amanbek et al. / Journal of Computational Physics 387 (2019) 117–133 121
3.1.2. Transport
In this section, we briefly discuss the derivation of the effective equations at the macroscopic scale for slightly compress-

ible flow similar to [12]. Although the effective macro-diffusion is not used in the present work, this discourse provides 
us insight into identification of invariants that can be used to reduce the computational costs in future works. We discuss 
the details of the computational costs and invariants in Subsection 4.3. It is important to note that, in this respect homog-
enization theory guides us towards development of adaptive solution algorithms to reduce the computational costs while 
preserving features/quantities of interest of a physical process.

A similar discourse, as discussed in Sub-section 3.1.1, is applied to the advection and diffusion problem Eqn. (4) to obtain 
the effective equations at the macroscopic scale described below. Here we briefly discuss the derivation of these equations; 
following the original work for incompressible flow in [12], for the sake of completeness. Since ρ0 = ρ0(x) or the ε0 order 
density varies only at the coarse scale, the derivation of effective transport equations for slightly compressible flow remains 
unchanged from the original derivation for incompressible flow. We define ε = l/L, Pe = u0l/D0, tc = φ0L/u0 and denote 
u0, D0, K 0, ρ0 and φ0 as characteristic Darcy velocity, diffusivity, permeability and rock porosity respectively. Based on 
this setting we introduce dimensionless space variable x 	→ x/L, the dimensionless characteristic convection time t 	→ t/tc . 
Here, we assume scale separation, ε 
 1 and large Peclet number Pe = O (1); namely the fine scale transport is advection 
dominated. For more details see [12].

The dimensionless form of the transport equation is given by,

φ
( x

ε

) ∂ (ρεcε)

∂t
+ uε · ∇ (ρεcε) = ε

Pe
∇ ·

(
ρεD

( x

ε

)
∇cε

)
on � × J ,

cε(x,0) = c0(x) on � × {0}.
(13)

Using the two-scale ansatz for cε , ρε and uε as formulated in Eqn. (9). Similarly the homogenized equation; for ε1 order 
accuracy in species concentration, is given by,

〈φ〉∂
(
ρ1

ε c1
ε

)
∂t

+ 〈u0〉 · ∇x
(
ρ1

ε c1
ε

) = ε

Pe
divx

(
ρ1

εD
ef f ∇xc1

ε

)
. (14)

where, c1
ε and ρ1

ε are the macroscale species concentration. In addition, Def f is the effective diffusivity tensor computed by 
solving another auxiliary problem. Further, 〈φ〉 is the volume averaged porosity and 〈u0〉 is the effective (or coarse) Darcy 
velocity. As in [12], we obtain the effective diffusivity for each x ∈ �

D
ef f (x) = Dh (Pe∇p0(x)) +M (Pe∇p0(x)) . (15)

We discuss the computational costs of evaluating this effective diffusion tensor and EVMFEM as an efficient alternative in 
Subsection 4.3.

3.2. Enhanced Velocity mixed FEM

We briefly discuss the EVMFEM scheme that is used in our adaptive numerical homogenization approach. EVMFEM 
has been applied successfully to a wide variety of complex multicomponent, multiphase flow and transport processes in 
porous medium including Equation of State (EOS), compositional flow [39]. In this section, we reiterate a semi-discrete vari-
ational formulation of the flow and transport problems using an EVMFEM domain decomposition approach [1]. This scheme 
enhances the trace of the discrete velocity space at the non-matching interface to construct a locally mass conservative 
H(div, �) conforming velocity approximation. The Enhanced Velocity space V∗

h is defined in [1] as,

V∗
h =

n⊕
i=1

V0
h,i

⊕
V	

h ∩ H(div;�),

where V0
h,i = {v ∈ Vh,i : v · ν = 0 on 	i} is the subspace of Vh,i . We note that

Vh,i = {v ∈ H(div;�i) : v

∣∣∣∣
T

∈ Vh(T ),∀T ∈ Th,i} i ∈ {1, ...n}

where Th,i is a conforming, quasi-uniform and rectangular partition of �i , 1 ≤ i ≤ n, with maximal element diameter hi . 
At the non-matching interface, the virtual partitioning for subelements allows us to construct the fine-scale fluxes by con-
sidering additional basis functions in RT0, as shown in Fig. 3.2. V	

h is the span of all such basis functions defined on these 
sub-elements [1]. The pressure finite element approximation space on � is defined as,

Wh(�) = {w ∈ L2(�) : w

∣∣∣∣
T

∈ Wh(T ),∀T ∈ Th}. (16)
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Fig. 3.2. Degrees of freedom for velocity and the Enhanced Velocity space at non-conforming interface 	i, j between �i and � j .

For the flow problem, a weak solution of Eqns. (1)-(3) and Eqns. (7)-(8), is the pair uh ∈ L2
(

J ,V∗
h

)
and ph ∈ H1 ( J , Wh) such 

that
(
K−1uh,v

) − (ph,∇ · vh) = −〈g,vh · ν〉∂� ∀vh ∈ V∗
h, (17)(

φC f ρref
∂ ph

∂t
, wh

)
+ (∇ · (ρ(ph)uh), wh) = ( f , wh) ∀wh ∈ Wh. (18)

We also inherit the definition V∗,0
h ≡ V∗

h ∩ {v : v · ν = 0 on ∂�} for the transport problem from [1]. The semi-discrete vari-

ational formulation for the transport problem is: Given uh ∈ L2
(

J ,V∗
h

)
and ph ∈ H1 ( J , Wh), find di,h ∈ L2

(
J ,V∗,0

h

)
and 

ci,h ∈ H1 ( J , Wh) such that,(
1

φ
D−1

i di,h,vh

)
= (

ci,h,∇ · vh
) ∀vh ∈ V∗,0

h , (19)
(

φC f ρref
∂ ph

∂t
ci,h, wh

)
+

(
φρ(ph)

∂ci,h

∂t
, wh

)

+ (∇ · (ρ(ph)uhci,h), wh
) − (∇ · (ρ(ph)di,h), wh

) = ( f , wh) ∀wh ∈ Wh.

(20)

The EVMFEM ensures that both advective and diffusive fluxes are continuous at the subdomain interfaces resulting in local 
mass conservation. For single phase flow and species transport, the flow problem is inherently decoupled from the transport 
problem and therefore these two problems can be solved consecutively, as discussed above. A fully coupled formulation can 
also be described as: Find uh ∈ L2

(
J ,V∗

h

)
, ph ∈ H1 ( J , Wh), di,h ∈ L2

(
J ,V∗,0

h

)
, and ci,h ∈ H1 ( J , Wh) such that, Eqns. (17)

through (20) are satisfied. Fully coupled formulations have been applied for two-phase, black-oil, and EOS compositional 
flow in earlier works [1,39]. Further, a backward Euler scheme is used for temporal discretization resulting in a fully implicit 
system.

4. Adaptive homogenization

The adaptive homogenization approach presented here has two key steps: (1) numerical homogenization to obtain ef-
fective parameters (permeability, porosity etc.) at the coarse scale by solving local auxiliary problems, (2) use EVMFEM for 
AMR, with coarse and fine mesh regions identified using an adaptivity criterion, to solve coupled flow and transport prob-
lems. The subsections below describe the local numerical homogenization scheme, transient region identification using an 
indicator function, and the computational costs associated with effective dispersion tensor.

4.1. Local numerical homogenization

We first perform numerical homogenization to obtain coarse scale parameters for a given set of fine scale properties. To 
evaluate coarse scale parameters, we solve local auxiliary problems given by Eqn. (12) using fine scale parameters on a set 
of subdomains with periodic boundary conditions. The term local here is used to differentiate between a global periodic 
medium with a characteristic length scale, as opposed to a locally periodic or non-periodic medium. Fig. 4.1 depicts global 
and local periodicities in porous medium. Please note that this figure is only for the purpose of illustration and the shapes 
of the microstructures chosen are of no consequence. These local periodicities are often observed in well log data, where 
each layer represents a sedimentation and consolidation cycle.

The periodic porous medium is a convenient construct for mathematical analyses, however, such an assumption is not 
always valid for realistic subsurface problems. In our work, we consider highly heterogeneous flow parameters, where we 
relax these aforementioned assumptions. Fig. 4.2 shows a schematic of this local numerical homogenization where auxiliary 
problems are solved on a subdomain (Fig. 4.2, �i , dotted red, left) at the fine scale. Each of these cell problems provides 
a coarse scale parameter on the coarse grid (Fig. 4.2, dotted red, right). These calculations are called offline, since they are 
performed as a pre-processing step once prior to the actual numerical simulations.
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Fig. 4.1. Globally (left) and locally (right) periodic medium.

Fig. 4.2. Schematic of numerical homogenization to obtain coarse scale (right) parameters from fine scale (left). (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

4.2. Transient region identification and adaptivity criteria

The adaptive homogenization approach presented in this work uses coarse scale properties in the non-transient region 
identified using an indicator function. This indicator function (or adaptivity criteria) and details regarding transient and 
non-transient region demarcation are described here.

For multicomponent flow and transport in porous medium, the accuracy of the numerical solution depends upon how 
accurately the species concentration front is captured. In order to capture the front accurately, the fluid velocities must 
be resolved accurately along the front. This necessitates that a fine scale problem be solved, with fine scale properties for 
flow and transport, in the vicinity of the front for accuracy. The computational overheads are reduced by solving a coarse 
scale problem away from the transient region using coarse scale properties obtained from numerical homogenization. We 
therefore define a transient region in space, where the changes in species concentration are larger than a given threshold. 
This notion has also been used earlier by others [35] to reduce computational costs associated with different problems. In 
this work, we use the following adaptivity criteria to identify the transient region for spatial domain decomposition:

• Criterion 1

� f = {
x : max|cn(x) − cn(y)| > εadap ∀y ∈ �neighbor(x)

}
(21)

We define �neighbor(x) = {y : y ∈ E j, |∂ Ei ∩ ∂ E j | �= ∅, if x ∈ Ei}.
• Criterion 2

� f = {
x : for cn(x) �= 0, max|cn(x) − cn(y)|/cn(x) > εadap ∀y ∈ �neighbor(x)

}
(22)

In other words, the criterion 1 and 2 involves determining local maximum of differences in species concentrations in an 
absolute and relative sense.

Based upon these criteria, we divide the domain (�) into non-overlapping transient (� f ) and non-transient (�c ) subdo-
mains, where flow and transport problems are solved at the fine and coarse scales, respectively. Fig. 4.3 shows a schematic 
of the domain decomposition approach used here. In what follows, coarse and non-transient, and fine and transient can be 
used interchangeably to refer to a subdomain. Further, the coarse and fine subdomain problems are coupled at the interface 
using the EVMFEM spatial discretization described earlier in section 3.2.

4.3. Species transport and dispersion

In this section, we describe the computational complexity of numerical homogenization associated with the flow and 
transport problems. We first discuss the computational costs of evaluating effective permeabilities for the coarse scale flow 
Eqn. (11). For the slightly compressible flow problem at hand, we solve d (spatial dimension) auxiliary problems defined by 
Eqn. (12) to obtain temporally invariant constants (effective permeability tensors). These invariants are computed and stored 
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Fig. 4.3. Schematic of adaptive mesh refinement with coarse (�c ) and fine (� f ) domains.

once as a pre-processing step and later reused during simulation runtime as effective parameters for the coarse scale flow 
solve. The effective porosity is also an invariant and is trivially evaluated as a weighted arithmetic average of the fine scale 
values. The reduction in computational cost is evident, since these quantities need not be recalculated as the flow problem 
evolves in time.

We now consider the computational cost of evaluating macro-diffusivity tensor (Eqn. (15)) for the effective transport 
problem with advection and diffusion. As described in [12], effective parameters can be obtained by solving d and d × d
auxiliary problems each for the first and second terms on the right hand side of Eqn. (15). The macro-diffusivities are 
temporally invariant only when the coarse scale velocities are also temporally invariant (Pe∇p0(x)) and can therefore be 
pre-computed and stored for later use as before. However, for our practical problems of interest these coarse scale velocities 
can vary due to time varying boundary conditions and source/sink terms (q). For such cases, the effective macro-diffusivities 
must be recalculated at every time-interval. This is true even for compressible flow problems, where velocities can vary with 
time even in the absence of time varying boundary conditions and source/sink terms. The re-evaluation of these effective 
macro-diffusivities, therefore, becomes computationally expensive compared to solving the original fine scale problem di-
rectly.

In order to avoid these issues, we are using the EVMFEM domain decomposition approach to solve the fine scale problem 
in the vicinity of the species concentration front (or subdomains where gradient of concentration is large) coupled to a 
coarse scale problem away from this front, where gradient of species concentration is small. In addition, realistic porous 
media are highly heterogeneous and an adaptive mesh refinement using the EVMFEM domain decomposition allows us to 
circumvent the scale separation and periodic medium assumptions of the formal two-scale homogenization theory.

Further, the derivation of effective macroscale equations in [12] relies upon an assumption of high Peclet numbers or 
in other words ε order diffusion. This results in restriction on the choice of coarse subdomains so as to preserve this 
assumption. A local mesh refinement in the vicinity of the species concentration front also allows us to relax this restriction 
on the choice of coarse subdomains. We note that for realistic porous media, local Peclect numbers (high, moderate, or 
low) vary spatially and are dictated by the heterogeneous property distributions. In the later sections, we present numerical 
experiments on Gaussian, channelized and heterogeneous permeability distributions using this adaptive homogenization 
approach that are in good agreement with fine scale solutions for a wide range of Peclet numbers.

4.4. Solution algorithm

This subsection describes the solution algorithm for the adaptive homogenization approach discussed above. The unit-cell 
(auxiliary) problems are solved (assuming local periodicity) as a pre-processing step to evaluate coarse scale coefficients 
using numerical homogenization. This step can be carried out in parallel to further improve computational efficiency, since 
the unit-cell problems are mutually independent. We refer to this calculation as the offline stage because the parameters 
(permeability, porosity, etc.) remain temporally invariant.

We obtain a non-linear system of equations from the fully discrete (space and time) formulation of the flow and trans-
port PDEs. A Newton method is then applied to this non-linear system of equations to obtain a linear algebraic system of 
equations that can be solved using an appropriate linear solver. Algorithm 1 shows a brief outline of the solution algorithm. 
We note that n and k are the time and non-linear iteration counter, tn and tn+1 are the current and next time, �t current 
time-step size, T the final time, max(�Rnl) the max norm of the non-linear residual vector, and εnl the non-linear tolerance. 
At each time iterate, we evaluate the adaptivity criteria (Eqn. (21) or (22)); at the coarse scale, to identify the transient re-
gion and perform a domain decomposition into fine (� f ) and coarse �c subdomains. A projection/reconstruction operation 
is performed if the identifier changes from coarse to fine or vice versa, respectively. Note that we only consider semi-
structured, nested grids as shown in Fig. 4.2. The reconstruction is performed by simply using previous time step unknowns 
(p, c) and since these are intensive properties the operation remains mass conservative. In other words, coarse grid values 
from the previous time-step (n) are used to initialize the fine grid computation for the next time-step (n + 1) such that, for 
given qH ∈ Wh(�c),
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Algorithm 1: Adaptive multi-scale solution algorithm for the coupled flow and transport problem.
Solve unit-cell problems, Eqns. (12), on subdomains (�i ) using fine scale parameters to obtain coarse scale parameters for the entire domain 
(� = ∪�i , see Fig. 4.1).
while tn ≤ T do

Identify transient (� f ) region using adaptivity criteria (Eqn. (21) or (22) ) and p, c at tn (� f ∪ �c = �).
Mass conservative initialization of primary unknowns:

1. Reconstruct primary unknowns pn+1,0, cn+1,0 for the fine scale transient region (� f ).
2. Project primary unknowns pn+1,0, cn+1,0 for the coarse scale non-transient region (�c).

while max(�Rnl) > εnl do

1. Use fine and coarse scale parameters in the transient (� f ) and non-transient (�c ) regions, respectively.
2. Use enhanced velocity (EV) scheme to couple coarse and fine subdomains.
3. Solve linear algebraic system for the coupled flow and transport problem to obtain a Newton update pn+1,k+1, cn+1,k+1.

end
tn+1 = tn + �t , n := n + 1

end

qn+1,0
h := qn

H

∣∣∣∣
T j

T j ⊂ T , j ∈ {1, ..m}. (23)

Here, T j ∈ T n+1
h (� f ) and T ∈ T n

h (�c).
On the other hand, a mass conservative projection (L2-projection) is used for coarsening which reduces to a simple 

arithmetic average of fine scale unknowns (p, c) for an incompressible flow problems. In other words, for given qh ∈
Wh(� f ), the L2-projection is defined by

(qh − P H qh, w) = 0 ∀w ∈ W H (�c). (24)

We set qn+1,0
h := P H qn

h . We note that the projection and reconstruction operations on qh can be applied to pressure (ph) and 
concentration (ch) unknowns. This is followed by a non-linear solve of the system of algebraic equations resulting from the 
spatial and temporal discretization after domain decomposition. The non-linear iterations are performed until the max norm 
satisfies a desired tolerance corresponding to the error in phase and component mass conservation equations. Significant 
computational savings are obtained for time dependent problems since the effective values of porosity and permeability are 
only evaluated once for a given fine scale distribution.

5. Numerical results

Three numerical experiments are presented to demonstrate our proposed adaptive numerical homogenization approach. 
The first numerical example is a comparison between adaptive and fine scale simulations for homogeneous property distri-
bution. This is followed by similar comparisons for heterogeneous porous media with two different property distributions, 
namely: Gaussian and channelized permeability. The heterogeneous permeabilities were obtained from SPE10 dataset [36]: 
(1) layer 20 and (2) layer 37.

The reservoir domain is 110 ft × 30 ft (33 m × 9 m) with fine scale permeability distribution available for a 220 × 60
grid with grid block size 0.5 ft×0.5 ft (0.15 m × 0.15 m). A coarse scale permeability distribution for a 22 × 6 grid is 
obtained using two-scale homogenization, as a preprocessing step at the beginning of the simulation, with grid block size 
of 5 ft × 5 ft (1.5 m × 1.5 m). Here a local cell problem, for a 10 × 10 grid, with periodic boundary conditions is solved at 
the fine scale.

A rate specified injection well and a pressure specified production well are located at the bottom left and top right 
corner, respectively. The production pressure is specified at 1000 psi (6.89 × 106 Pa) with a continuous species injection 
of ĉ = 1. The initial reservoir pressure and species concentrations are taken to be 1000 psi (6.89 × 106 Pa) and zero, 
respectively. Further, the fluid compressibility, density, and viscosity are assumed to be 1 × 10−6 psi−1 (1.45 × 10−10 Pa−1), 
66.5 lb/ft3 (1065.228 kg/m3), and 1 cP (0.001 Pa · s), respectively. Further, we define the computed Peclet number as,

Pek = |uk|l
D0

. (25)

Here, uk is the velocity in k direction, l is the fine scale length (0.5 ft (0.15 m)), and D0 is the fine scale, diffusion/dispersion 
coefficient (0.001 ft2/day (9.3 ×10−4 m2/day)). All simulations are performed for a total duration of 200 days with a no-flow 
external boundary condition unless explicitly stated otherwise in the subsections below. The timestep size is chosen to be 
1 day for all the numerical experiments. Although porosity distributions are not shown, the coarse scale porosities were 
obtained from the fine scale SPE10 dataset by using a volume weighted arithmetic average.
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Fig. 5.1. Concentration profiles at 50 days for fine (top), adaptive (middle) approaches and difference (bottom) in homogeneous permeability and porosity.

Fig. 5.2. Species concentration history at the production well for the homogeneous permeability distribution.

5.1. Homogeneous case

A homogeneous and isotropic permeability distribution is assumed using a diagonal permeability tensor of 50 mD and 
porosity of 0.1. The injection rate is taken to be 2 STB/day (10.87 ×105 m3/s). Fig. 5.1 shows the spatial distribution of 
the species concentrations after 50 days for the fine (top), adaptive (middle) simulations and difference (bottom). The 
difference between adaptive and fine scale solutions, Fig. 5.1 (bottom), uses reconstructed species concentration for the 
coarse subdomains of the adaptive grids.

Fig. 5.2 shows the species concentration history at the production well after 200 days. The fine and adaptive results 
are in excellent agreement. Since the fine scale permeability distribution is homogeneous the homogenized or coarse scale 
distribution is also spatially invariant at 50 mD (49.3462 ×10−15 m2).

5.2. Gaussian permeability distribution

For this numerical test, we chose a near Gaussian permeability distribution as shown in Fig. 5.3 (top) from layer 20 of 
SPE10 dataset. The coarse scale permeability, Fig. 5.3 (bottom), distribution and coarse scale porosity was evaluated using 
numerical homogenization. The injection rate was assumed to be 3 STB/day (16.30 ×105 m3/s).
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Fig. 5.3. Fine and coarse scale permeability distributions in log scale for SPE 10 layer 20.

Fig. 5.4. Concentration profiles at 50 days for fine (top) and adaptive (middle) approaches and the difference (bottom) between them.

Figs. 5.4 (top and middle) shows the concentration profiles after 50 days for fine scale and adaptive homogenization 
approaches. Fig. 5.4 (bottom) gives the difference between adaptive and fine scale solutions that uses reconstructed species 
concentration for the coarse subdomains of the adaptive grids. Fig. 5.5 shows the species concentration history at the 
production well after 200 days. The results show that the concentrations using adaptive homogenization approaches are in 
good agreement with the fine scale solution.

Fig. 5.6 shows the species concentration histories comparing fine and adaptive simulation for different injection rates 
of 1 STB/day (5.43 ×105 m3/s), 5 STB/day (27.17 ×105 m3/s) and 10 STB/day (54.34 ×105 m3/s). Please note that for 
heterogeneous permeability distributions we obtain a range of Peclet numbers by changing the injection rates. We label 
the species concentration histories with Pe1, Pe2, and P e3 corresponding to 1 STB/day (5.43 ×105 m3/s), 5 STB/day (27.17 
×105 m3/s) and 10 STB/day (54.34 ×105 m3/s), such that the average Peclet numbers satisfy Pe1 < Pe2 < Pe3. Table 1
shows the range of Peclet numbers obtained for each of these injection rates. The species concentration histories for the 
fine and adaptive simulations are in good agreement for the three cases.
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Fig. 5.5. Species concentration history at the production well for SPE 10 layer 20.

Fig. 5.6. Different Pe numbers species production history for fine and adaptive methods.

Table 1
Range of Peclet numbers for SPE 10 layer 20.

qinj Pex Pe y

1 3.3 × 10−4 3.8 × 10−3 Min
1 6.5 × 102 4.0 × 102 Max

5 1.7 × 10−3 1.8 × 10−2 Min
5 3.2 × 103 2.0 × 103 Max

10 3.3 × 10−3 3.8 × 10−2 Min
10 6.5 × 103 4.0 × 103 Max

5.3. Channelized permeability distribution

Here we choose the permeability distribution from layer 37 of the SPE10 dataset. The coarse scale permeabilities, Fig. 5.7
(bottom), are again evaluated using local numerical homogenization. It is important to note that the channel connectivity 
is lost in the homogenized coarse scale permeabilities. Our proposed approach recovers this connectivity by solving a fine 
scale problem in the transient region.

Figs. 5.8 (top and middle) shows the concentration profile after 50 days for fine scale and adaptive homogenization 
approaches. Fig. 5.8 (bottom) gives the difference between adaptive and fine scale solutions that uses reconstructed species 
concentration for the coarse subdomains of the adaptive grids. These results indicate that even for highly channelized 
permeability distributions our proposed approach is able to accurately capture the species concentration front.



Y. Amanbek et al. / Journal of Computational Physics 387 (2019) 117–133 129
Fig. 5.7. Fine and coarse scale permeability distributions in log scale for SPE 10 layer 37.

Fig. 5.8. Concentration profiles at 50 days for fine (top), adaptive (middle) approaches and difference (bottom).

Fig. 5.9 shows that species concentration history at the production well after 200 days for the fine and adaptive cases 
are in good agreement.

Similar to the Gaussian permeability distribution, Fig. 5.10 shows the species concentration histories comparing fine 
and adaptive simulation for different injection rates of 2 STB/day (10.87 ×105 m3/s), 5 STB/day (27.17 ×105 m3/s) and 
10 STB/day (54.34 ×105 m3/s). Again, a heterogeneous permeability distributions results in a range of Peclet numbers for 
different injection rates. The species concentration histories are labeled as Pe1, Pe2, and Pe3 corresponding to 2 STB/day 
(10.87 ×105 m3/s), 5 STB/day (27.17 ×105 m3/s and 10 STB/day (54.34 ×105 m3/s), such that the average Peclet numbers 
satisfy Pe1 < Pe2 < Pe3, as before. Table 2 shows the range of Peclet numbers obtained for each of these injection rates. 
Again, the species concentration histories for the fine and adaptive simulations are in good agreement for the three cases.

5.4. Effect of adaptivity criteria and tolerance

We present a sensitivity analysis for the choice of tolerance on the two adaptivity criteria and the resulting changes in 
computational speedup and solution accuracy. We define the relative error in a domain � at time t as follows,
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Fig. 5.9. Species concentration history at the production well for SPE layer 37.

Fig. 5.10. Different Pe numbers species production history for fine and adaptive methods.

Table 2
Range of Peclet numbers for SPE 10 layer 37.

qinj Pex Pe y

2 3.8 × 10−6 1.4 × 10−6 Min
2 1.9 × 103 1.6 × 103 Max

5 9.4 × 10−6 3.5 × 10−6 Min
5 4.9 × 103 4.0 × 103 Max

10 1.8 × 10−5 6.9 × 10−6 Min
10 9.8 × 103 8.1 × 103 Max

ec,� =
∥∥c f (·, t) − cadapt(·, t)

∥∥
l2∥∥c f (·, t)

∥∥
l2

(26)

where c f is the fine scale concentration solution obtained from fine scale discretization, cadapt is the solution obtained using 
adaptive numerical homogenization. We define a different relative error at the production well for the time interval (0, T ]
as follows,

ẽc,� =
∥∥c f (x̃, ·) − cadapt(x̃, ·)∥∥l2∥∥c f (x̃, ·)∥∥l2

(27)
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Table 3
Errors for entire domain ec,� and tolerance for the Gaussian permeability case.

εadapt
Criterion 1 Criterion 2

Speedup ec,� Speedup ec,�

0.4 ≈ 12 0.1716 ≈ 3 0.1092
0.3 ≈ 5 0.1256 ≈ 3 0.0838
0.2 ≈ 3 0.0855 ≈ 2 0.0579
0.1 ≈ 2 0.0321 ≈ 2 0.0309
0.05 ≈ 2 0.0271 ≈ 2 0.0266

Table 4
Errors at Production well ẽc and tolerance for the Gaussian permeability case.

εadapt
Criterion 1 Criterion 2

Speedup ẽc Speedup ẽc

0.4 ≈ 12 0.1329 ≈ 3 0.0434
0.3 ≈ 5 0.1090 ≈ 3 0.0265
0.2 ≈ 3 0.0827 ≈ 2 0.0228
0.1 ≈ 2 0.0311 ≈ 2 0.0184
0.05 ≈ 2 0.0166 ≈ 2 0.0168

Table 5
Errors for entire domain ec,� and tolerance at T = 200 day for the Channelized 
permeability case.

εadapt
Criterion 1 Criterion 2

Speedup ec,� Speedup ec,�

0.4 ≈ 10 0.3967 ≈ 3 0.1556
0.3 ≈ 4 0.2746 ≈ 3 0.0838
0.2 ≈ 3 0.1002 ≈ 3 0.0583
0.1 ≈ 2 0.0668 ≈ 2 0.0523
0.05 ≈ 2 0.0510 ≈ 2 0.0510

Table 6
Errors at Production well ẽc and tolerance for the Channelized permeability case.

εadapt
Criterion 1 Criterion 2

Speedup ẽc Speedup ẽc

0.4 ≈ 10 0.3207 ≈ 3 0.0448
0.3 ≈ 4 0.2204 ≈ 3 0.0334
0.2 ≈ 3 0.1336 ≈ 3 0.0266
0.1 ≈ 2 0.0612 ≈ 2 0.0279
0.05 ≈ 2 0.0268 ≈ 2 0.0286

where x̃ is the production well location, t ∈ (0, T ]. The computational speedup is defined as the ratio of CPU times for the 
fine scale simulation to the adaptive simulation.

As shown in Tables 3–6, this sensitivity analysis suggests that Criterion 2 is weakly related to the choice of tolerance εadap
compared to criterion 1 for a desired solution accuracy. On the other hand, Criterion 1 results in substantial computational 
speedups if a lower solution accuracy is required. We present two different error calculations ec,� and ẽc,� one for the entire 
computational domain at the final time and another for the production well over the entire time interval, respectively. 
However, for subsurface porous media applications the second error calculation is considered practically more relevant. 
Furthermore, engineering applications and planning often require evaluation of a large number of scenarios such as well 
placement, injection and production schedules with a lower emphasis on the requirement of desired accuracy. For such 
cases, our adaptive numerical homogenization approach provides additional computational speedups when the accuracy 
requirements are not high. A break-even or optimal threshold can only be strictly determined if the fine scale solution is 
known beforehand which is seldom the case. Our sensitivity analysis shows that we obtain a speedup of at least 2 times 
for a very tight tolerance on adaptivity criteria for an accurate solution.

6. Conclusions

We developed a locally mass conservative, adaptive multiscale method by combining local numerical homogenization and 
EVMFEM domain decomposition for flow and transport problems in heterogeneous porous media. Our proposed approach 
was compared against fine scale solution using benchmark SPE10 datasets. The results are in excellent agreement for both 
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Gaussian and channelized permeability distributions due to accurate identification of the species concentration fronts (or 
the transient zones). The adaptive homogenization approach relaxes the scale separation and periodicity assumptions of the 
two-scale homogenization theory allowing flexibility in the treatment of realistic porous media. The adaptivity captures the 
effects of dispersion irrespective of the Peclet numbers that can vary by orders of magnitude. Since the scale separation 
assumption is relaxed, the choice of REV is not restrictive. Specifically, for channelized permeabilities we do not require REV 
to be restricted by the channel width to preserve connectivity.

Furthermore, a brief sensitivity study on the choice of tolerance for the adaptivity criteria is also presented. We note 
that the solution accuracy can be further increased by using stricter tolerances for the two adaptivity criteria. Extensions 
to general multiphase flow and transport problems with appropriate error estimators as better adaptivity criteria will be 
presented in future works.
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