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Abstract

Finite Element Method (FEM) is a widely used method of solving initial boundary-
value problems from mechanical engineering. It allows addressing irregular domains
and force terms, while enabling careful analysis of the approximated solutions. In
this capstone project, a standard derivation of FEM from the mechanical engineering
standpoint is presented, then all the necessary mathematical machinery is introduced
to facilitate the discussion. Once the proper introduction to FEM is given, the paper
dives into the two main subjects of the matter. First, the derivation of the Euler-
Bernoulli beam equation is presented. It is a standard model for the analysis of re-
taining walls. Then a brief derivation of the swelling force, which models the effect of
soil swelling onto the retaining walls, is given. Second, the finite element solution to
the problem is derived, and the results are presented.

Keywords: finite element method, Euler-Bernoulli beam, swelling force, Hermite
cubic elements, Newark method.
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1 Introduction to Finite Element method in 1d

Our ever-changing world is governed by differential equations (DEs). From the motion of
stars to stock prices, from the population dynamics to the deformation of springs, numer-
ous phenomena can be modeled using differential equations.

The analytic study of DEs is a very challenging topic, wherein we only have results about
the simplest kinds of problems. But when it comes to Partial Differential Equations (PDEs)
with irregular geometries and potential non-linearities, we simply don’t have the means to
approach them analytically in general (yet).

For that reason, we appeal to numerical schemes, which allow us to obtain approximations
of the exact solutions using iterative techniques. There are many such schemes, like Finite
Difference Method (FDM), Finite Volume Method (FVM), Boundary Element Method
(BEM). In this project though, we are mostly concerned with the Finite Element Method
(FEM). The reason why it is so widely used in engineering and mathematical modeling is
because of its versatility. FEM can address

• Irregular domains of the problem,

• Irregular right-hand-side functions, like Dirac-Delta distribution,

• problems with analysis, like existence, uniqueness, and stability.

The study of this modern “subdomain” of Mathematics is by no means easy. One of its
main challenges comes from the fact that it is a multi-disciplinary study. It takes expertise
in different areas of mathematics, physics, and engineering from one to fully appreciate it.
But in the end, it is only as challenging as it is rewarding.

1.1 A toy problem

In order to even start talking about FEM, we need first to introduce the notion of the
Weak Formulations and Weak solutions to the boundary value problems. There are dif-
ferent ways to introduce these two concepts, we shall use a common one.

In this section, we will take a look at the physical (or engineering) derivation of the weak
formulation and the weak solution for one particular problem from engineering. Even though
it lacks generality, this small introduction gives a good physical justification to the proce-
dures that we are going to employ in the later sections.

1.1.1 A problem from Mechanical Engineering

Consider an elastic bar in 1d, as shown below, Figure (1).
As you can see, both ends of the bar are fixed at x = 0 and x = L. Moreover, there is
a force acting parallel to the axis of the bar. Our goal is to calculate the pointwise dis-
pacement u(x) (in the direction of x) of the elastic bar as a result of f(x). Figure (2) illus-
trates what we mean by u(x).
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x axis0 L
elastic bar

f(x)

Figure 1: An elastic bar fixed at both ends. The force is acting along the direction of the
bar.

x axis0 L

after f is applied

0 L

before f is applied
x
•
P

•
P

x′

u(x)

Figure 2: Displacement u of the point P (at x) is given by u(x) = x′ − x.

Imagine holding a weak spring in your hands vertically. You will notice that gravity pulls
each component of the spring downwards. Not only that, this deformation is not uniform,
it is larger at the center than closer to the endpoints. If you did the same in zero-G, there
will be no deformation. If we fix a point x0 ∈ (0, L) on the bar at zero-G by marking it,
then check its position when it is acted on by gravity, this difference will be u(x0).

Our goal is, given u(0), u(L) and f(x), to find u(x) on (0, L).

1.1.2 Hooke’s Law

Recall Hooke’s Law. In simple terms, it states that the force (F ) needed to extend or com-
press an elastic body by some (small) ∆x is proptional to ∆x, in particular,

F = k∆x, (1)

where k is a spring constant. The same law can be rewritten in terms of stress (σ) and
strain (ε), by dividing both sides of Eq. (1) by the cross-section area of the elastic body
(A):

σ = Eε, where (2)

• σ is defined as F/A,
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• E is Young’s modulus, or modulus of elasticity, which depends on the material the
body is made of, and

• ε is strain, a relative displacement of the body (ex. (x′ − x)/x), where x is the length
of the body before the deformation, and x′ is the length of the body after the force is
applied.

1.1.3 Constitutive relation σ = E du
dx

In fact, there are many ways to define strain. The definition in the previous section (ε =
(x′−x)/x) is called engineering strain. We would want to apply Hooke’s Law in the stress-
strain from Eq. (2) to our model problem.

To do that, we first need to fix a point on the rod P located at x0 ∈ (0, L). Consider a
neighbor of P (call it P1) at the position x0 + ∆x. Let’s say that P shifts from x0 to x′0.
At the same time, the small ∆x stretches (or compresses) to ∆x′, see Figure (3).

x axis0 L

after f is applied

0 L

before f is applied
x0

•
P
•
P1

•
P

x′0

•
P1

∆x

∆x′

Figure 3: As P is shifted from x0 to x′0, its neighbor P1 is shifted from x0 +∆x to x′+∆x′.

The infinitesimal strain at P can be now defined as

ε = lim
∆x→0

∆x′ −∆x

∆x

Recall that u(x) = x′ − x, then

ε =
du

dx
(3)

Therefore, we obtain our constitutive relation

σ = E
du

dx
. (4)

1.1.4 Force density f

Now we are getting closer to deriving the final equation. The last important step is to
clarify what we actually mean by f(x). In this case, f(x) is the force density, i.e. the dis-
tribution of the total force per infinitesimal volume dV (which in this case is actually dx,
but let’s keep it general). Therefore, the units of f(x) for this problem are N/m3. We will
see shortly why this is important.
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1.1.5 Mathematical formulation of the problem

Consider the equilibrium state of the elastic bar after the force is applied. We would like
to Newton’s Second Law for each infinitesimal volume dV of the elastic bar:

dσ

dx
+ f = 0. (5)

(Note that σ has units of N/m2, therefore dσ
dx

has units N/m3, the same as f .)

Plugging the constitutive relation (4) into equation (5), we arrive at

d

dx

(
E
du

dx

)
+ f = 0, or, equivalently,

E
d2u

dx2
+ f = 0.

Now, we are ready to state the mathematical formulation of the problem.

Find u : (0, L)→ R that satisfies

E
d2u

dx2
+ f = 0,

with the boundary conditions u(0) = u(L) = 0.

(6)

We call this formulation the strong formulation, as the second derivative of the solution u
appears explicitly in problem statement.

1.1.6 Principle of minimum potential energy

In this subsection we will reformulate our problem (6), in a different way by asking what it
means physically for the elastic bar to attain deformation u caused by the external force f .

Before we jump into the main subject of this subsection, we need to first introduce the
following definitions. [1]

Definition 1.1 (Strain energy) The strain energy Λ is the energy stored by a system
(defined on Ω) undergoing deformation. It is given by

Λ =
1

2

ˆ
Ω

σεdΩ.

In our case, Ω = [0, L], so the strain energy simplifies to

Λ =
1

2

ˆ L

0

σεdx.
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Recalling Hooke’s law (2), we arrive at

Λ =
1

2

ˆ L

0

Eε2dx.

Now we can use constitutive relation (3) to express Λ in terms of the solution u:

Λ =
1

2

ˆ L

0

E(u′)2dx (7)

From now on, we will be using Newton’s notation for derivative (e.g. u′ instead of du
dx

).

Definition 1.2 The work W done by the external forces f (force densities) on the body
(defined on Ω) undergoing deformation is given by

W =

ˆ
Ω

fvdΩ.

Again, since in our 1-d case Ω = [0, L], W simplifies to

W =

ˆ L

0

f(x)u(x)dx. (8)

Definition 1.3 (Total potential energy) The total potential energy Π of a system is
defined to be the difference between the total strain energy Λ and the work done by the
external forces W :

Π = Λ−W.

Recalling the equations for Λ and W obtained for our problem in (7) and (8), respectively,
we can express Π as

Π(u) =
1

2

ˆ L

0

E(u′)2dx−
ˆ L

0

f(x)u(x)dx. (9)

Now we are ready to state the principle of minimum potential energy.

Definition 1.4 The principle of minimum potential energy states that of all admissible
displacements v, the one (call it v0) that minimizes the total potential energy Π corre-
sponds to the equilibrium solution:

Π(v0) ≤ Π(v).

An admissible displacement is any displacement v that satisfies boundary conditions of the
problem. For the purposes of this section, we shall denote V as the set of all admissible
deformations.

Figure (4) illustrates some of the admissible dispalcements v for our problem.

So, the initial problem (6) is now reduced to the problem of finding v : [0, L] → R satisfy-
ing B.C., which minimizes Π given by Eq. (9):

u = arg min
v:[0,L]→R

(
1

2

ˆ L

0

E(v′)2dx−
ˆ L

0

f(x)v(x)dx

)
.
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How do we make sense of this? As you may have noticed, Π is a “function” that takes an-
other function as an argument and returns a scalar. Π is what is called functional. For the
purposes of this text, think of it as a mapping from a vector space (we can think of func-
tions as infinite-dimensional vectors) to R.

0 2 4 6 8 10

0

2

4

6

u(0) = 0 u(L) = 0

x

u
(x

)

Figure 4: Some of admissible deformations for our problem (6). Note that here L = 10. Of
all such admissible functions v, we need to find the one(s) that minimize Π.

1.1.7 Minimization of the total potential energy functional

In this section we will answer the question “How to minimize the total potential energy
functional?”.

The main idea is the same as minimizing functions from calculus: we need to take the
derivative and find its root(s). We shall now define the derivative of a functional.

Definition 1.5 (Directional derivative of a functional) Given functional F : S → R
the directional derivative of F in the direction of v ∈ S is defined as

lim
α→0

F (u+ αv)− F (u)

α
=

[
d

dα
F (u+ αv)

]
α=0

.

With the above definition in mind, we need to find u s.t. its directional derivative equals
zero in any direction v.

If we assume that u is the minimizer of Π, then we can think of v as an arbitrary pertur-
bation added to u, see Figure (5). As the magnitude of the perturbation gets smaller, the
system gets closer and closer to the equilibrium.
Now we shall state this problem in mathematical terms using new notation.
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0 2 4 6 8 10

0

2

4

6

u(0) = 0 u(L) = 0

x

u
(x

)

u
v

u+ αv

Figure 5: If we restrict v ∈ V (Def. 1.4) to also satisfy zero Dirichlet boundary conditions,
then u + αv ∈ V . Even if we had nonzero Dirichlet b.c. in our problem, v would still had
to satisfy zero b.c. (why?)

Find u ∈ V that satisfies[
d

dα
Π(u+ αv)

]
α=0

= 0

for all v ∈ V which also satisfy zero Dirichlet b.c.

(10)

From now on, everything is going to be more or less straightforward, as we established all
of the assumptions we needed to get to this point.

Let v ∈ V satisfying zero b.c., then

d

dα
Π(u+ αv) =

d

dα

(
1

2

ˆ L

0

E [(u+ αv)′]
2
dx−

ˆ L

0

f(u+ v)dx

)
=

d

dα

(ˆ L

0

1

2
E(u′ + αv′)2 − f(u+ v)dx

)
=

ˆ L

0

1

2
E
d

dα

[
(u′ + αv′)2

]
− d

dα
[f(u+ v)]dx

=

ˆ L

0

E(u′ + αv′)
d

dα
(u′ + αv′)− f d

dα
(u+ αv)dx

=

ˆ L

0

E(u′ + αv′)v′ − fvdx.

(We assumed that we can push the derivative operator inside the definite integral, which is
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not always true.) By fixing α = 0, we get[
d

dα
Π(u+ αv)

]
α=0

=

ˆ L

0

Eu′v′ − fvdx.

Finally, we want to force
[
d
dα

Π(u+ αv)
]
α=0

= 0, as stated in (10). This gives us

ˆ L

0

Eu′v′ − fvdx,

or, equivalently, ˆ L

0

Eu′v′dx =

ˆ L

0

fvdx. (11)

Since we let v be arbitrary, a function u that satisfies Eq. (11) is the minimizer of Π, and
by the Principle of Minimum Potential Energy, it must also be the solution to the original
problem (6).

(We assumed the Π does have the unique minimizer, which for this problem is true, but
we are not going to show it in this text.)

1.1.8 Weak formulation and weak solution of the model problem

Let’s recap what we did.

• We started with a model problem as illustrated on Figure (2). Our goal was to cal-
culated the deformation u(x) of an elastic bar of length L with fixed ends, as a result
of an external force per unit length f .

• We modelled this problem using Hooke’s law to arrive at the following mathematical
formulation:

Find u : (0, L)→ R that satisfies

E
d2u

dx2
+ f = 0,

with the boundary conditions u(0) = u(L) = 0. E is Young’s modulus of the mate-
rial, f is external force.

• Using the principle of minimum potential energy, we transformed the previous (strong
formulation) into the minimization problem given by

Find u ∈ V that satisfies [
d

dα
Π(u+ αv)

]
α=0

= 0

for all v ∈ V which also satisfy zero Dirichlet b.c.

8



Here, V is the set of all admissible deformations, i.e. the ones that are allowed by
the nature of the experiment (mathematically, all functions, for which Π exists and
which satisfy boundary conditions). Π is the total potential energy given by

Π(u) =
1

2

ˆ L

0

E(u′)2dx−
ˆ L

0

f(x)u(x)dx.

• Using methods of calculus of variations, we arrived at the new reformulation of the
problem:

Find u ∈ V s.t.

E

ˆ L

0

u′v′ =

ˆ L

0

fv

holds true for all v ∈ V with zero Diriclet b.c.

The last formulation of the problem is called weak formulation, and the solution to weak
formulation of the problem is called weak solution.

In the next section we will show a faster way to arrive at the weak formulation of the prob-
lem, state exactly what is the set V , and see how we can use weak formulations to obtain
an approximate solution to the model problem.

1.2 Weak formulation

Let’s remind ourselves with the strong formulation of the toy problem, i.e. deformation of
an elastic bar.

Find u : [0, L]→ R s.t. {
−Eu′′ = f(x), x ∈ (0, L), E > 0

u(0) = u(L) = 0.
(12)

We shall now present a simpler way to arrive at the weak formulation.

Suppose that v : [0, L]→ R is a sufficiently regular function. Now we will do the following.
We multiply both sides of the equation by v, and integrate both sides from 0 to L.

´ L
0
−Eu′′(x)v(x)dx =

´ L
0
f(x)v(x)dx.

(We call u a trial function, and v a test function, and we say that we “test” u with v)
(13)

Note that we can integrate the left hand side by parts:

ˆ L

0

−Eu′′(x)v(x)dx = −E [u′(x)v(x)]
∣∣L
0

+

ˆ L

0

Eu′(x)v′(x)dx (14)

Plugging (14) into (13) yields

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx+ Eu′(L)v(L)− Eu′(0)v(0). (15)

9



Let’s impose further condition on v that v(0) = v(L) = 0, then

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx. (16)

Now that we have obtained this equality, we would like to know two things:

• When does
´ L

0
Eu′(x)v′(x)dx make sense?

• What about
´ L

0
f(x)v(x)dx?

1.2.1 Deriving appropriate spaces

Now we shall address the questions raised in the previous section.

We first consider the integral
´ L

0
Eu′(x)v′(x)dx. We want to first make sure that∣∣∣∣ˆ L

0

Eu′(x)v′(x)dx

∣∣∣∣ <∞.
For that, recall (if that’s the case) one of the Cauchy-Schwartz inequalities:∣∣∣∣ˆ L

0

f(x)g(x)dx

∣∣∣∣ ≤ (ˆ L

0

[f(x)]2dx

) 1
2
(ˆ L

0

[g(x)]2dx

) 1
2

. (17)

Now we infer that∣∣∣∣ˆ L

0

Eu′(x)v′(x)dx

∣∣∣∣ ≤ (ˆ L

0

[Eu′(x)]2dx

) 1
2
(ˆ L

0

[v′(x)]2dx

) 1
2

.

We can see that if u′ and v′ are square-integrable, then the integral on the left-hand side
exists.

We now consider the integral
´ L

0
f(x)v(x)dx. Again, applying (17) yields∣∣∣∣ˆ L

0

f(x)v(x)dx

∣∣∣∣ ≤ (ˆ L

0

[f(x)]2dx

) 1
2
(ˆ L

0

[v(x)]2dx

) 1
2

.

Now we further infer that f needs to be square-integrable as well.

1.2.2 Note on function spaces

Before we jump into further discussion of the weak formulation, we would like to introduce
the appropriate notation for certain function spaces. One can think of a function space
FS(Ω) as of the set of all functions from Ω to R that satisfy certain properties.

We shall now present some of the important for our discussion function spaces.

10



• Cn(Ω) is the space of all functions from Ω to R, all of whose derivatives up to n-th
order are continuous. C0(Ω) denotes the space of all continuous functions f : Ω→ R.
C∞(Ω) denotes the space of all infinitely-many times differentiable functions from Ω
to R.

• Lp(Ω) (called Lebesgue spaces) are the spaces of all functions f : Ω→ R s.t.(ˆ
Ω

|f |pdΩ

) 1
p

<∞.

For the purposes of this text, we will use the L2-space, also known as the space of all
(Lebesgue) square-integrable functions, a lot. It is defined as

L2(Ω) =

{
f : Ω→ R

∣∣∣ ˆ
Ω

f 2dΩ <∞
}
.

• Hp(Ω) are called Sobolev spaces, and defined as

Hp(Ω) =
{
f : Ω→ R

∣∣∣f, f ′, ..., f (p) ∈ L2(Ω)
}
.

Note that some spaces can be subspaces of others, i.e. subsets which are closed under ad-
dition and scalar multiplication. For instance, H2 ⊂ H1, or H1 ⊂ L2. This will be crucial
when we discuss Galerkin’s method.

1.2.3 The weak formulation

Now, we present the weak formulation of the problem using appropriate spaces.

Let H1
0 =

{
v : [0, L]→ R

∣∣∣v ∈ H1([0, L]) and v(0) = v(L) = 0
}

.

Find u ∈ H1
0 s.t.

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx, ∀v ∈ H1
0 .

(18)

Note that v is from the same space as u, which happened because (12) also has zero Dirich-
let b.c. It is not the case in general. We will discuss other cases in section 1.2.7.

1.2.4 An important remark on weak solutions

Now that we have the weak formulation (18), you may wonder why do we bother doing
all these transformations to our original problem (12), when can just solve it explicitly
the way it is. Well, the latter is definitely true for this simple problem, however it will no
longer be true, once we make it more complicated. For instance, if we had

11



{
−Eu′′ = δ

(
x− L

2

)
, x ∈ (0, L)

u(0) = u(L) = 0.

where δ(x) is the Dirac-delta function (or rather distibution). In the more “classical” sense,
we would expect the solution to be two-times continuously differentiable (i.e., ∈ C2([0, L)).
However, for this particular problem, the solution is given by a piece-wise linear function:

u(x) =

{
1

2E
x, x ∈

[
0, L

2

)
L

2E
− 1

2E
x, x ∈

[
L
2
, L
]
,

whose first derivative does not exist at x = L
2
, and the second derivative can only be mod-

elled by a Dirac-delta distribution (not even a function). So, what is presented above is a
not a solution in the classical sense, but rather in a “weak” sense. Consider its weak for-
mulation:

Find u ∈ H1
0 s.t.

ˆ L

0

Eu′(x)v′(x)dx = v

(
L

2

)
, ∀v ∈ H1

0 ∩ C0

({
L

2

})
.

What you can notice is that in the weak formulation we only require u to be from the
function space H1

0 , i.e. functions on [0, L] whose first derivative is square integrable. This
is a very relaxed, or weak condition compared to C2, which classical solutions require. We
do not even require the first derivative to be continuous, only square-integrable.

This is one of the reasons why weak formulations are so important for complicated prob-
lems: they allow us to relax the conditions on the solution, thus increasing the space of
functions wherein we look for the solution.

1.2.5 Bilinear forms

Recall the weak formulation (18). In order to work with weak formulation in a more sys-
tematic and consice way, we introduce two shortcuts for this problem:

• a(u, v) :=
´ L

0
Eu′(x)v′(x)dx, where a(·, ·) is a bilinear form, and

• (f, v) :=
´ L

0
f(x)v(x)dx, which is an inner product between f and v.

Definition 1.6 (Bilinear form) A bilinear form is a mapping from the cross product of
a vector (or function) space to R, which is also linear in the first and the second argument
separately.

Let’s make the basic properties of bilinear forms more explicit. Let V be a vector space.
Let u, v, w ∈ V , and α ∈ R. Let a : V × V → R be a bilinear form. Then, the following
holds true for all u, v, w, α:

• a(u+ w, v) = a(u, v) + a(w, v)
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• a(u, v + w) = a(u, v) + a(u,w)

• a(αu, v) = a(u, αv) = αa(u, v)

Bilinear forms can be symmetric, a(u, v) = a(v, u), which is the case in our problem:

a(u, v) =

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

Ev′(x)u′(x)dx = a(v, u).

1.2.6 Relation between three formulations

Let’s recall the derivation of the weak formulation obtained by minimizing the total poten-
tial energy functional (10). Let’s now rewrite it using the new notation.

Find u ∈ H1
0 s.t.

u = arg min
v∈H1

0

Π(v)

= arg min
v∈H1

0

[
1

2
a(v, v)− (f, v)

]
.

(19)

What we want to do now is we want to establish the relation between the weak formula-
tion (V), the energy minimization problem (M), and the strong formulation (D).

Theorem 1.7 (Relation between formulations) For our problem, the relation be-
tween (D), (V) and (M) is

(D) =⇒ (V) ⇐⇒ (M).

Proof : It suffices to prove (1) (D) =⇒ (V), (2) (V) =⇒ (M), and (3) (M) =⇒ (V).

(1): We actually already did it, refer to (12) - (18).

(2): Assume that u ∈ H1
0 is the solution to the weak formulation, that is

a(u, v) = (f, v), ∀v ∈ H1
0 .

Let v ∈ H1
0 , let w = v − u ∈ H1

0 . Then

Π(v) = Π(w + u)

=
1

2
a(w + u,w + u)− (f, w + u)

=
1

2
[a(w,w + u) + a(u,w + u)]− (f, w)− (f, u)

=
1

2
[a(w,w) + a(w, u) + a(u,w) + a(u, u)]− (f, w)− (f, u)

=

[
1

2
a(u, u)− (f, u)

]
+

[
1

2
a(u,w) +

1

2
a(v, u)− (f, w)

]
+

1

2
a(w,w)

=

[
1

2
a(u, u)− (f, u)

]
︸ ︷︷ ︸

Π(u)

+ [a(u,w)− (f, w)]︸ ︷︷ ︸
= 0

+
1

2
a(w,w)︸ ︷︷ ︸
≥ 0

≥ Π(u).

13



Thus, Π(u) ≤ Π(v) for any v ∈ H1
0 , which means that u is a minimizer of Π(v).

(3): Even though we have already showed informally that the minimization problem re-
duces to the weak formulation in 1.1.7, we shall now do it in a more rigorous way.

Assume that u ∈ H1
0 is a minimizer of Π(v). Then consider a perturbation of u (recall

Diagram 5):
Π(u) ≤ Π(u+ αv)︸ ︷︷ ︸

∈ H1
0

, ∀v ∈ H1
0 ,∀α ∈ R. (20)

Consider

g(α) = Π(u+ αv)

=
1

2
a(u+ αv, u+ αv)− (f, u+ αv)

=
1

2
[a(u, u) + a(u, αv) + a(αv, u) + a(αv, αv)]− (f, u)− (f, αv)

=
1

2
[a(u, v) + αa(u, v) + αa(v, u) + α2a(v, v)]− (f, u)− α(f, v)

=
1

2
a(u, u) + αa(u, v) +

1

2
α2a(v, v)− (f, u)− α(f, v).

If we let α = 0, then we get Π(u), thus g(α) attains a minimum at α = 0. In other words,
we need to compute g′(0) = 0.

g′(0) =
d

dα

[
1

2
a(u, u) + αa(u, v) +

1

2
α2a(v, v)− (f, u)− α(f, v)

]
α=0

= [a(u, v) + αa(v, v)− (f, v)]α=0

= a(u, v)− (f, v).

Now, if we enforce g′(0) = 0, we obtain a(u, v)− (f, v) = 0, which is our weak formulation.

Q.E.D.

Thus, in this section we established the following relation:

(D) =⇒ (V) ⇐⇒ (M).

One may also show that if u ∈ C2([0, L]), and (D) ⇐= (V). [2]

1.2.7 Boundary conditions

So far we have only considered the simplest case of boundary conditions given in (6). In
this section, we will briefly discuss what happens to the weak formulation with different
b.c. What we want to know is how to incorporate boundary conditions into our weak for-
mulation. In general, there are two ways to do that: 1) by imposing additional conditions
on the test space V (v ∈ V ), 2) by plugging b.c. into Eq. (15) directly.

14



Before we jump into the discussion, let’s first introduce a new bit of notation: let U denote
the trial space, i.e. u ∈ U .

Consider a new problem called a pure Dirichlet problem: Find u : [0, L]→ R s.t.
−Eu′′ = f(x), x ∈ (0, L), E > 0

u(0) = u0, u0 ∈ R
u(L) = uL, uL ∈ R.

(21)

As was discussed earlier, one necessary condition for u and v is that they are from H1([0, L]).
Taking into account the boundary conditions in (21), we need to further restrict the trial
space:

U = {u ∈ H1([0, L]);u(0) = u0, u(L) = uL}.

Now, if we “test” u with v, we obtain (as in Equation 15):

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx+ Eu′(L)v(L)− Eu′(0)v(0).

In this situation, we have to incorporate the Dirichlet b.c. into the test space by explicitly
imposing that v(0) = v(L) = 0 (this assumption is essential, hence Diriclet b.c. are also
called “essential”), thus eliminating the last two terms (which are called boundary contri-
bution). Thus, the test space is given by

V = {v ∈ H1([0, L]); v(0) = v(L) = 0}.

A good intuition why these additional assumptions on v are necessary can be seen in Fig-
ure (5). In general, we want u + αv ∈ U for the energy minimization method to work
properly (see Eq. 20).

Let’s now consider a pure Newmann problem
−Eu′′ = f(x), x ∈ (0, L), E > 0

u′(0) = u′0, u′0 ∈ R
u′(L) = u′L, u′L ∈ R.

(22)

Let for now u, v ∈ H1([0, L]) without any further assumptions. Let’s test u with v:

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx+ Eu′(L)v(L)− Eu′(0)v(0).

You may see that here we can actually incorporate the Newmann b.c. directly or “natu-
rally” (hence Newmann b.c. are also called “natural” b.c.) into the formulation:

ˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx+ Eu′Lv(L)− Eu′0v(0). (23)

Since we have already incorporated Newmann b.c. into the formulation, we no longer need
to impose it onto the spaces U and V , hence u + αv ∈ U still holds. The justification

15



comes from the fact that total potential energy includes the phenomena corresponding to
the Newmann b.c. naturally in its definition. One can derive the formula for Π for this
problem from (23).

Let’s now summarize the results in the final table:

B.C. Variational name Proper name How to treat?
u(x) = ux essential Dirichlet Impose u(x) = ux on U , v(x) = 0 on V
u′(x) = u′x natural Newmann Plug u′x directly into Eq. (15)

Table 1: How to incorporate different boundary conditions into the weak formulation, x =
0 or L. [3]

1.2.8 Ritz-Galerkin method

If we restrict ourselves to a finite subspace S ⊂ U rather than the entire space, will the
solution to the weak formulation in this subspace be the best approximation of the true
weak solution among all the functions in S?

Let’s go back to our weak formulation (18). Recall that U = V = {u ∈ H1([0, L]) : u(0) =
u(L) = 0}. Let S ⊂ U be a finite-dimensional subspace.

What we are trying to solve now is

Find uS ∈ S s.t.

a(uS, vS) = (f, vS), ∀vS ∈ S.
(24)

Since S is finite dimensional space, we can express S as span{φi}Ni=1 where φi : [0, L] → R.
Here, φi are called basis functions. We can express uS(x) =

∑N
i=1 uiφi(x), vS =

∑N
j=1 vjφj(x)

(ui, vj are scalars) [3]. Plugging uS and vS into (24), we get

ˆ L

0

E
d

dx

(
N∑
i=1

uiφi(x)

)
d

dx

(
N∑
j=1

vjφj(x)

)
dx =

ˆ L

0

f(x)

(
N∑
j=1

vjφj(x)

)
dx.

ˆ L

0

E

(
N∑
i=1

uiφ
′
i(x)

)(
N∑
j=1

vjφ
′
j(x)

)
dx =

ˆ L

0

f(x)

(
N∑
j=1

vjφj(x)

)
dx.

This must hold for any vS ∈ S. But since S is finite and a vector space, it is equivalent to
saying that the above equation must hold for all coefficients vj. Let’s expand the sum:
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E

ˆ L

0

N∑
j=1

N∑
i=1

uiφ
′
i(x)vjφ

′
j(x)dx =

ˆ L

0

N∑
j=1

vjf(x)φj(x)dx

E

ˆ L

0

N∑
j=1

vj

N∑
i=1

uiφ
′
i(x)φ′j(x)dx =

ˆ L

0

N∑
j=1

vj [f(x)φj(x)] dx

E

ˆ L

0

N∑
j=1

vj

[
N∑
i=1

φ′i(x)φ′j(x)

]
uidx =

ˆ L

0

N∑
j=1

vj [f(x)φj(x)] dx

Moving everything to the left-hand side:

ˆ L

0

N∑
j=1

vj

([
N∑
i=1

Eφ′i(x)φ′j(x)

]
ui − [f(x)φj(x)]

)
dx = 0

N∑
j=1

vj

ˆ L

0

[
N∑
i=1

Eφ′i(x)φ′j(x)

]
ui − f(x)φj(x)dx = 0

Consequently,

N∑
j=1

vj

[
N∑
i=1

(ˆ L

0

Eφ′i(x)φ′j(x)dx

)
ui −

ˆ L

0

f(x)φj(x)dx

]
= 0

must be satisfied for any vj ∈ R. If we let Kij =
´ L

0
Eφ′i(x)φ′j(x)dx, Fj =

´ L
0
f(x)φj(x)dx,

then
N∑
j=1

vj

[
N∑
i=1

Kijui − Fj

]
= 0, ∀vj. (25)

Here, K = [Kij] ∈ RN×N is called stiffness matrix, and F = [Fj] ∈ RN is called load vector.

One can notice that by linearity of S, Eq. (25) is equivalent to

vj

[
N∑
i=1

Kijui − Fj

]
= 0, ∀vj ∈ R.

Consequently, we arrive at
N∑
i=1

Kijui − Fj = 0. (26)

If we let U = [ui] ∈ RN , then Eq. (26) can be expressed in a more compact form as

KU = F. (27)

What we need now is to show that we can solve (27) and that the solution U is unique.
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Theorem 1.8 (K is s.p.d.) The stiffness matrix K is symmetric positive definite.

Proof : K is s.p.d. ⇐⇒ ∀x ∈ RN \ {0},xTKx > 0. Let x ∈ RN , then

xTKx =
[
x1 · · · xN

] 
´ L

0
Eφ′1(x)φ′1(x)dx · · ·

´ L
0
Eφ′1(x)φ′N(x)dx

...
. . .

...´ L
0
Eφ′N(x)φ′1(x)dx · · ·

´ L
0
Eφ′N(x)φ′N(x)dx


x1

...
xN



=
[
x1 · · · xN

] 
∑N

i=1

´ L
0
Exiφ

′
1(x)φ′i(x)dx

...∑N
i=1

´ L
0
Exiφ

′
N(x)φ′i(x)dx



=
[
x1 · · · xN

]

E
´ L

0
φ′1(x)

[∑N
i=1 xiφ

′
i(x)

]
dx

...

E
´ L

0
φ′N(x)

[∑N
i=1 xiφ

′
i(x)

]
dx


= E

ˆ L

0

[
N∑
j=1

xjφ
′
j(x)

][
N∑
i=1

xiφ
′
i(x)

]
dx

=

ˆ L

0

E(v′)2dx ≥ 0.

We need to show that xTKx = 0 ⇐⇒ x = 0. (⇐= ) is trivial, so we only show ( =⇒ ).

( =⇒ )
´ L

0
E(v′)2dx = 0 =⇒ v′ = 0 =⇒ v is const., but since v ∈ S ⊂ U =⇒ v(0) =

0 =⇒ v = 0 ⇐⇒
∑N

j=1 xjφj(x) = 0. Since {φj} forms a basis for S, we conclude that
x = 0.

Therefore, ∀x ∈ RN \ {0},xTKx > 0, or, equivalently, K is s.p.d.

Q.E.D.

Since K is s.p.d., it must be invertible. If we assume that f ∈ L2([0, L]), then U is unique,
and, consequently, uS ∈ S is unique for Dirichlet b.c. [2]

1.2.9 Galerkin orthogonality

So far we have shown that under certain assumption, we can always find a unique solution
uS in a finite-dimensional subspace of U . Still, this does not imply that it is the “best”
solution in S, and by “best” we mean the closest approximation to u w.r.t. some norm.

Definition 1.9 (Norm) Let V be a vector space. Then norm on V is defined by a func-
tion ‖ · ‖ : V → Rnonneg that satisfies

1. ‖x‖ = 0 ⇐⇒ x = 0
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2. ‖cx‖ = |c|‖x‖

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

∀x, y ∈ V, c ∈ R. In addition, (V, ‖ · ‖) is called normed space, or normed vector space, or
normed linear space. [4]

One can verify that ‖v‖ :=
√
a(v, v) defines a norm on H1

0 . Since this norm is not unique
for H1

0 , we shall denote it as ‖ · ‖H1
0

to avoid ambiguity.

Before we state the Galerkin orthogonality theorem, the following Schwarz’ inequality will
be of great use:

a(u, v) ≤ ‖u‖H1
0
‖v‖H1

0
, ∀u, v ∈ H1

0 . (28)

Theorem 1.10 (Galerkin orthogonality) If u ∈ H1
0 is the solution to (18), and uS ∈ S

is the solution to (24), then ‖uS − u‖H1
0
≤ ‖vS − u‖H1

0
,∀vS ∈ H1

0 .

Proof : Suppose u ∈ H1
0 solves (18), then a(u, v) = (f, v), ∀v ∈ H1

0 . Since S ⊂ H1
0 , we can

test u against vS ∈ S:
a(u, vS) = (f, vS), ∀vS ∈ S. (29)

Suppose uS ∈ S solves (24), then

a(uS, vS) = (f, vS), ∀vS ∈ S. (30)

If we subtract (30) from (29), we obtain

a(u− uS, vS) = 0, ∀vS ∈ S. (31)

‖u− uS‖2
H1

0
= a(u− uS, u− uS)

= a(u− uS, u− vS + vS − uS)

= a(u− uS, u− vS) + a(u− uS, vS − uS)

we use the fact that a(u− uS, wS) = 0 where wS = vS − uS ∈ S by (31),

= a(u− uS, u− vS)

≤ ‖u− uS‖H1
0
‖u− vS‖H1

0
, by Ineq. (28)

Consequently, we obtain

‖u− uS‖H1
0
≤ ‖u− vS‖H1

0
, ∀vS ∈ S.

Thus, uS ∈ S is in fact the best approximation to u ∈ H1
0 w.r.t. H1

0 -norm. [3]

Q.E.D.
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Equation 31 was the key in the proof. It is called Galerkin orthogonality. It says that the
error ‖u− uS‖H1

0
is “orthogonal” to the finite-dimensional subspace S.

So far we have shown that K is invertible, that uS ∈ S exists and unique (assuming f ∈
L2([0, L])), and that uS is the best approximation to u (w.r.t. H1

0 -norm) from all S.

By choosing different S and it basis, we will get different matrices K, and all of them are
guaranteed to be invertible, which is great news. Now, we need to switch our framework,
and think about how to choose S and its basis so that our computations become the least
expensive.

1.3 Finite element method in 1d

Now we can finally talk about the central topic of this project, which is Finite Element
Method, or simply FEM. In essence, it is a special case of Ritz-Galerkin’s method, where
we choose a special kind of finite-dimensional subspace S with a special kind of basis func-
tions φi(x), which make the stiffness matrix K as sparse as possible.

1.3.1 Motivation

Why does it matter whether K is sparse or not? Recall from the previous section, that we
have reduced our weak formulation given by Eq. (18) to a linear system given by Eq. (27).
Thus, by fixing the finite-dimensional subspace S and its basis {φi}Ni=1, we need to solve
KU = F for U.

The best known algorithms for solving a general linear system of n equations have compu-
tational complexity of approximately O(n2.373) [5, 6]. Both of these algorithms are based
on Coppersmith–Winograd algorithm, whose complexity is approximately O(n2.375) [7].
Even though they have the best complexities, it comes with a very large constant. Hence
they are only efficient for extremely large systems.

In practice, Strassen’s algorithm is used for moderately large systems, whose complexity
is O(nlog2 7) ≈ O(n2.8074) [8], and Gaussian elimination with O(n3) is used for the smaller
ones.

The point is that if the matrix K is large and dense, then our computation of the solution
vector U may become infeasible. This may not be a problem for linear 1d problems, but
it will surely be if we go to higher dimensions and also have non-linearities. But if we find
a way to make K sparse (meaning most of the entries are zero), then we can employ very
fast algorithms like Thomas algorithm for tridiagonal systems which is only O(n) [9].

1.3.2 Discretization of the domain

First, we shall discretize the domain. Let Ω = [0, L]. Let 0 = x0 < ...xj < ... < xNE = L
be the partition of Ω. Let Ωe = [xe−1, xe], e = 1, ..., NE. We shall call Ωe an element of Ω.
Thus, we have NE number of elements, and each element has two nodes. It will also be
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Figure 6: Discretization of the domain.

very useful to define a local node numbering. Let x
(e)
i = xe+i−2, then Ωe = [x

(e)
1 , x

(e)
2 ]. See

Figure (6).

The last step is to define the step size hj = xj − xj−1, j = 1, ..., NE. For the purposes of
this toy problem, let’s assume that we use an equidistant mesh, i.e. h1 = h2 = ... = hNE =
h = L

NE
.

1.3.3 Basis functions

Now, we define the piecewise linear basis functions φi(x), i = 1, ..., NE − 1 as

φj(x) =


x−xj−1

h
if xj−1 ≤ x ≤ xj

xj+1−x
h

if xj ≤ x ≤ xj+1

0 otherwise.

(32)

x

y

1

x0 x1 x2 · · · xj−1 xj xj+1 · · · xNE−2 xNE−1 xNE

0
L

Ω1 Ω2 Ωe Ωe+1 ΩNE−2 ΩNE−1 ΩNE

· · ·

φj−1 φj φj+1

· · ·

φNE−1φ1

Figure 7: Piecewise linear basis functions, also known as “hat” functions.

Figure (7) illustrates the basis functions φi(x). As you may or may not recognize, these
functions actually form a basis for the piecewise linear Lagrange interpolating polynomials,
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i.e. their linear combination can produce any piecewise linear polynomials on Ω (assuming
the start and end points are fixed to 0).

1.3.4 Global stiffness matrix

A remarkable property of these functions is that they are zero mostly everywhere. This
results in φi(x)φj(x) = 0 for all i, j with |i − j| > 1. In other words, the product is only
nonzero if φi and φj are adjacent. Same applies to their derivatives which are given by

φ′j(x) =


1
h

if xj−1 ≤ x ≤ xj

− 1
h

if xj ≤ x ≤ xj+1

0 otherwise.

(33)

Now consider the stiffness matrix K:

Kij =

ˆ L

0

φ′i(x)φ′j(x)dx.

As was mentioned earlier, φ′i(x)φ′j(x) = 0 unless |i − j| ≤ 1. Thus, there are only three
cases to consider: Kii, Ki,i+1, Ki+1,i. Actually, since we know that K is symmetric, we in-
fer that Ki,i+1 = Ki+1,i. Let’s now compute K:

Kii =

ˆ L

0

[φ′i(x)]2dx =

ˆ xi

xi−1

[
1

h

]2

dx+

ˆ xi+1

xi

[
−1

h

]2

dx =
2

h
.

Ki+1,i = Ki,i+1 =

ˆ L

0

φ′i(x)φ′i+1(x)dx =

ˆ xi+1

xi

1

h

(
−1

h

)
dx = −1

h
.

(34)

From Eq. (34) we can now construct K.

K =
1

h



2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 −1 2 −1 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 2


(35)

As expected, this matrix is tridiagonal, and produces a system that can be solved in linear
time (w.r.t. to NE).

Thus, the main idea of finite elements is to choose such basis functions that are zero ev-
erywhere but a small subdomain. In mathematical terms, such basis functions are said to
have a compact support, meaning that they are zero outside of a compact set.

22



1.3.5 Stiffness matrix assembly

Even though we have obtained a simple closed formula for the stiffness matrix K, we had
to integrate piecewise functions, which is not very straightforward (nor efficient) in com-
putational sense. To illustrate the last big idea behind FEM, we need to switch our con-
ceptual framework a little bit. Instead of thinking about global basis functions, let’s now
think about each element Ωe (See Figure 8), and all the basis functions that are associated
with it.

x

y

1

· · · xj−1 xj · · ·
Ωe

x
(e)
1 x

(e)
2

φj−1

φ
(e)
1

φj

φ
(e)
2

Figure 8: A closer look at element Ωe.

Recall that Ω1, ...,Ωe, ...ΩNE is the partition of Ω = [0, L]. Then

Kij =

ˆ
Ω

φ′i(x)φ′j(x)dx =
NE∑
e=1

ˆ
Ωe

φ′i(x)φ′j(x)dx. (36)

We know that
´

Ωe
φ′i(x)φ′j(x)dx is nonzero if and only if xi, xj are both nodes of Ωe. If we

simply plug each term Kij from Eq. (36) into K as they are, and then remove all terms
which give zero, then we are left with

K =


´

Ω1
φ′1φ

′
1

´
Ω1
φ′1φ

′
2 0 0 0 · · ·´

Ω1
φ′2φ

′
1

´
Ω1
φ′2φ

′
2 +
´

Ω2
φ′2φ

′
2

´
Ω2
φ′2φ

′
3 0 0 · · ·

0
´

Ω2
φ′3φ

′
2

´
Ω2
φ′3φ

′
3 +
´

Ω3
φ′3φ

′
3

´
Ω3
φ′3φ

′
4 0 · · ·

...
...

...
...

...
. . .

 (37)

By taking a closer look, we can see a blocking pattern, which is illustrated on Figure (9).
Let K(e) be a local stiffness matrix defined by

K
(e)
ij =

ˆ
Ωe

d

dx

[
φ

(e)
i (x)

] d

dx

[
φ

(e)
j (x)

]
dx (38)
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where i, j ∈ {1, 2} is local numbering, corresponding to the numbering of x
(e)
j Fig. (7).

Thus, each K(e) is a 2-by-2 matrix, which can be computed by integrating the product of
two continuous polynomials over the element Ωe.

Having computed each K(e), we can “assemble” the global stiffness matrix K. We first
initialize K as a zero matrix. Then we loop over the elements and add the values of each
K(e) to its cooresponding location (See Figure 9).

K(1)

K(2)

K(3)

Figure 9: Global stiffness matrix layout. The global stiffness matrix K can be obtained by
“assembling” local stiffness matrices K(e).

The same idea applies to the load vector F, we can compute it by assembling local load
vectors F(e).

At first sight, this may sound like we over-complicated our problem again. In reality, these
procedures make FEM much easier to implement.

1.3.6 Shape functions and the master element

In the previous section we reduced our problem of computing the global stiffness matrix K
(which involved integrating piecewise functions) to a problem of computing small 2-by-2
matrices, which involve integrating continuous functions. In this section we will introduce
another trick that allows us to further reduce the number of integrations.

Recall Eq. (38). To compute K(e), we need to integrate φ′iφ
′
j over the element Ωe:

K
(e)
ij =

ˆ
Ωe

d

dx

[
φ

(e)
i (x)

] d

dx

[
φ

(e)
j (x)

]
dx

The last improvement is that we can actually perform integration over the same reference
element, if we do a simple change of variable:

x = xj + ξ(xj+1 − xj) = xj + ξh, ξ ∈ [0, 1].

dx = hdξ =⇒ dx

dξ
= h =⇒ dξ

dx
=

1

h
.

If we apply this change of variable to K
(e)
ij , then we obtain
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K
(e)
ij =

ˆ
Ωe

d

dx

[
φ

(e)
i (x)

] d

dx

[
φ

(e)
j (x)

]
dx

=

ˆ 1

0

d

dξ

dξ

dx

[
φ

(e)
i (x(ξ))

] d
dξ

dξ

dx

[
φ

(e)
j (x(ξ))

]
hdξ

=
1

h

ˆ 1

0

d

dξ

[
φ

(e)
i (x(ξ))

] d
dξ

[
φ

(e)
j (x(ξ))

]
dξ

Now we need to figure our what are φ
(e)
i (x(ξ)) and φ

(e)
j (x(ξ)). This is actually very simple

if you refer to Figure (7).

φ
(e)
i (x(ξ)) =

x−x(e)1

h
, i = 1

x
(e)
2 −x
h

, i = 2

=

x
(e)
1 +ξh−x(e)1

h
, i = 1

x
(e)
2 −(x

(e)
1 +ξh)

h
, i = 2

=

{
ξh
h
, i = 1

h−ξh
h
, i = 2

=

{
ξ, i = 1

1− ξ, i = 2

This gives us two very simple linear functions defined on [0, 1]. We call them shape func-
tions and denote them by Ni(ξ). We call the reference element [0, 1] the master element,
and denote it by ΩM .

Going back to K
(e)
ij :

K
(e)
ij =

1

h

ˆ 1

0

d

dξ

[
φ

(e)
i (x(ξ))

] d
dξ

[
φ

(e)
j (x(ξ))

]
dξ

=
1

h

ˆ
ΩM

d

dξ
Ni(ξ)

d

dξ
Nj(ξ)dξ

As a result, it is sufficient to perform only one integration in the entire procedure of calcu-
lating K, as once

´
ΩM

d
dξ
Ni(ξ)

d
dξ
Nj(ξ)dξ is computed, K

(e)
ij depends only on the step size he

(which we chose to be uniform for this toy problem).

Numerical integration can be performed using appropriate Gauss-Legendre quadrature
rule. For our problem, we can use the cheapest midpoint rule to compute K.

1.3.7 A note on boundary conditions

If take a closer look at Figure (7), you may wonder why don’t we have φ0 and φNE. The
answer has to do with the boundary conditions. Since in our toy problem (Eq. 6), both
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b.c. are zero Dirichlet, we must have that

uS(x) =
NE−1∑
i=1

uiφi(x)

also satisfies zero Dirichlet b.c. If we include φ0 or φNE in our basis, then we are not guar-
anteed that their linear combination will satisfy zero Dirichlet b.c., which are enforced on
H1

0 and consequently on S as well.

If we have, for instance, a non-zero Dirichlet b.c. at x = 0, then we must include φ0 in our
basis. Same goes for the other boundary.

If we have a Neumann b.c. at one end, let’s say at x = L, then we must include φNE in
our basis by the same logic. Not only that, but we must also be able to recover u′(0) if it
is unknown. Let’s elaborate on that.

Suppose that u′(L) = ũ′L ∈ R, and u(0) = ũ0 ∈ R are the new boundary conditions of our
toy problem. Then our weak formulation is given byˆ L

0

Eu′(x)v′(x)dx =

ˆ L

0

f(x)v(x)dx+ Eũ′Lv(L), recall Eq. (22). (39)

As explained earlier, our basis functions will contain φ0 and φNE:

φ0(x) =

{
x1−x
h

if x ∈ Ω1

0 otherwise.
, φNE(x) =

{
x−xNE−1

h
if x ∈ ΩNE

0 otherwise.
,

and {φi(x)}NE−1
i=1 is the same as in Eq. (32). Thus, uS is given by

uS(x) =
NE∑
i=0

uiφi(x).

This means that U ∈ RNE+1, the global stiffness matrix K ∈ R(NE+1)×(NE+1), and F ∈
RNE+1. Let us also introduce a new term Q ∈ RNE+1 to address the boundary term(s) in
the weak formulation (Eq. 39). It is given by

Q =


Eu′0

0
...
0

Eu′L

 , where u′0 and u′L are unknowns.

Thus, our linear system KU = F + Q takes the following form:

 K0,0 · · · K0,NE
...

. . .
...

KNE,0 · · · KNE,NE




u0

u1
...

uNE−1

uNE

 =

 f0
...

fNE

+


Eu′0

0
...
0

Eu′L

 (40)
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Recall that u0 is given, and u0 = ũ0 from the Dirichlet b.c. We also know that u′L = ũ′L
from the Neumann b.c. Thus, we can plug those in directly into Eq. (40),

 K0,0 · · · K0,NE
...

. . .
...

KNE,0 · · · KNE,NE




ũ0

u1
...

uNE−1

uNE

 =

 f0
...

fNE

+


Eu′0

0
...
0

Eũ′L

 (41)

From Eq. (41), we can see that our degrees of freedom (DOF, or simply unknowns) are
{Eu′0, u1, u2, ..., uNE}. That makes NE + 1 unknowns in a system of NE + 1 equations.
Thus, if we solve this system, then we obtain u1, ..., uNE and u′0 as well. We can move all
the degrees of freedom into a single vector U∗ to get the final system

K∗U∗ = F,

where K∗ is a modified version of K obtained by moving Q to the left-hand side and ad-
justing the first and last rows to accomodate the new solution vector U∗.

1.3.8 Summary

We have covered the very basics of the Finite Element method. Let us summarize the key
procedures that we need to do to apply it to a boundary-value problem.

1. Derive the weak formulation, see Section 1.2.

2. Discretize the domain, see Section 1.3.2.

3. Choose basis functions, see Section 1.3.3.

4. Compute local stiffness matrices K(e), local load vectors F(e), see Section 1.3.6.

5. Assemble the global stifness matrix K and the global load vector F, see Section 1.3.5.

6. Compute the boundary contribution term Q, see Section 1.3.7.

7. Solve the linear system KU = F + Q for the degrees of freedom.

8. Plug the solution vector U into uS(x) =
∑

i uiφi(x) to get the approximate solution.

9. Recover u′(0) or u′(L), if applicable.

The last note in this section is that we do not have to use piecewise linear polynomials to
approximate u(x). In fact, there is a myriad of different basis and shape functions at our
disposal. We can even use basis functions of different orders in a single approximation.
This gives us a great flexibility. You can read more about higher-order basis functions in
[10].
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2 Euler-Bernoulli beam

Now that we have given a proper introduction to Finite Element Method, we can start dis-
cussing a more complicated problem, which we will also attack with FEM. The underlying
differential equation is called the Euler-Bernoulli beam equation. It models deflection of a
beam, see Figures (10, 11).

x
0 L

elastic beam before f is applied

f(x)

Figure 10: Euler-Bernoulli beam setup in 1d. The beam is fixed at 0. The force acts per-
pendicular to the axis of the beam, thus each point of the beam will deflect in y-direction.

x

x

y

y

0 L

0 L

before f is applied

after f is applied

x′

x0

u(x0)

Figure 11: Euler-Bernoulli beam with its left end fixed. Given the distributed lateral force
f(x), we need to calculate the deflection u(x) in y-direction. The cross section of the beam
is plane and is perpendicular to the neutral axis (dashed, x′).

This model has many applications in mechanical and structural engineering, one of which
is the retaining wall (see Figure 12). These kind of walls are used to separate and hold
back two ground levels. They can often be seen in parks and reserves.

The scheme of the retaining wall is illustrated on Figure (13). The wall is fixed at the bot-
tom, and the force is acting on the wall from the right laterally (to the axis of the wall).
We would like to know how much will the wall deflect while being acted upon by this force.
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Figure 12: An example of a retaining
wall.

Figure 13: Retaining wall design and
terminology.

2.1 Euler-Bernoulli beam equation

Euler-Bernoulli beam is in fact the simplest model of beam deflection. It makes the follow-
ing assumptions about the beam:

• the deflection is very small compared to the length of the beam

• the cross-section area of the bent beam is perpendicular to the neutral axis and is a
straight segment (planar).

A great derivation of the Euler-Bernoulli beam is given in Stepan Timoshenko’s “Strength
of materials” [11]. Here we present the equation itself.

The Euler-Bernoulli beam equation is given by

d2

dx2

[
EI

d2u

dx2

]
= f(x),

where E is Young’s modulus, I is the second moment
of area of the beam’s cross section w.r.t. to the neutral
axis (see Fig. 11), u is the deflection of the beam in y-
direction, and f is the lateral force (or distributed load)
acting on the beam.

(42)

Note that the second moment of area is a geometrical property that shows how area is dis-
tributed on the domain. In general, Ia =

´
Ω
ρ2dA, where a is some axis, dA is an element

of area, and is the distance between dA and a.
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In our case, we consider the cross-section area of the beam, and the axis is simply the x-
axis. Suppose that the beam has thickness 2d. Then, I can be calculated as

I =

ˆ d

−d
y2dy =

2

3
d3.

Thus, E and I are both constant in our 1d problem, and the Euler-Bernoulli beam equa-
tion can be simplified to

EI
d4u

dx4
= f(x). (43)

2.2 Swelling force

Now we shall talk about the distributed load f that we are going to use in this capstone.
As the title of this project suggests it is the swelling force.

Swelling force is caused by the expansion of the soil (clay or rock), which can happen due
to an increased humidity. This expansion creates pressure on the wall laterally across its
height. Determining the deflection resulting from the swelling force is an important prob-
lem in the design of retaining walls.

The simplest model of the swelling pressure is due to K. Grob et al, 1972, [12], who gives a
stress-strain relationship:

ε = −c log

(
σ

σ0

)
, (44)

where c is swelling parameter, and σ is the maximum pressure on the wall [13]. Let d be
the distance from the distance from the location where swelling occurs to the retaining
wall, then the strain is given by

ε =
u(x)

d
. (45)

Then Eq. (44, 45) can be solved for the swelling pressure as

σ = σ010−
1
cd
u(x). (46)

From Eq. (46) we can obtain the formula for the distributed load:

f = sσ010−
1
cd
u(x) (47)

where s is the length of the wall. Note that for the purposes of our problem, L denotes
the height of the wall, so s 6= L. We need s and also the thickness of the wall in order to
calculate the second moment of area I [14].

Thus, our equation for the Euler-Bernoulli beam with the swelling force is written as
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d4u

dx4
= Be−Cu, (48)

where B = sσ0
EI
, C = ln 10

cd
. Note that this is a nonlinear problem, as the distributed load

depends on the deflection.

2.3 Boundary conditions

In order to find a particular solution to Eq. (48), we need four conditions. Depending on
the prescribed boundary conditions, we obtain models of different, see Table 2.

Beam type Boundary conditions
cantilever u(0) = u′(0) = u′′(L) = u′′′(L) = 0

simply supported u(0) = u(L) = u′′(0) = u′′(L) = 0
fixed u(0) = u(L) = u′′(0) = u′′(L) = 0

Table 2: Different beam variations with the corresponding boundary conditions. Here we
use the prime-notations for the derivatives w.r.t. x [15].

Referring to the design of a retaining wall (Figure 13), we can see that the cantilever beam
model describes the retaining wall subjected to a lateral force best.

Thus, we can now present the strong formulation of the steady-state Euler-Bernoulli beam:

Find u : (0, L)→ R that satisfies

d4u

dx4
= Be−Cu,

with the boundary conditions u(0) = u′(0) = u′′(L) =
u′′′(L) = 0. Coefficients B,C are given in Eq. (48).

(49)

2.4 Dynamic Euler-Bernoulli beam

In the previous section we have derived the BVP for the lateral deflection of the retain-
ing wall subjected to a swelling pressure, Eq. (49). The solution to Eq. (49) gives us the
deflection u(x) at steady state, i.e. if we let the system go to equilibrium. What we might
also want to know is how exactly will the beam go to the equilibrium state as a function of
time. This leads us to consider the dynamic Euler-Bernoulli beam equation, given by

µ
∂2u

∂t2
+ EI

∂4u

∂x4
= f(x, u), (50)

where µ denotes mass per unit length of the beam [16]. If we plug the swelling force (Eq.
47) into Eq. (50), then we get

µ
∂2u

∂t2
+ EI

∂4u

∂x4
= sσ010−

1
cd
u(x), (51)
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for the meaning of E, I, s, σ0, c, and d, refer to Eq. (44)-(48). If we let A = EI
µ

, B = sσ0
µ

,

C = ln 10
cd

, then arrive at the strong formulation of the dynamic Euler-Bernoulli beam that
describes the vibration in lateral direction of the retaining wall subjected to swelling pres-
sure:

Find u : (0, L)× Rnonneg → R that satisfies

∂2u

∂t2
+ A

∂4u

∂x4
= Be−Cu

with the boundary conditions u(0) = ux(0) = uxx(L) = uxxx(L) = 0
and initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x).

(52)

2.5 What this capstone is about

In this capstone project, the Finite Element solution to the steady-state Euler-Bernoulli
beam problem (Eq. 49) will be presented with each step annotated, and the working code
will be shared. In addition, a FEM scheme for solving the dynamic Euler-Bernoulli beam
(Eq. 52) will be provided. It is important to note that, while the steady-state Euler-Bernoulli
beam with swelling force is a relatively well-studied problem, its dynamic variation is still
a novel problem.
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3 Steady-state Euler beam in 1d

We shall first attack the steady state version of the 1d Euler-Bernoulli beam. The tech-
niques are similar to the ones we used to solve the toy problem, however there are slight
modifications, as we will see.

3.1 Strong formulation

Let Ω = (0, L). Find u : Ω→ R, s.t.
d4

dx4
u(x) = Be−Cu(x), x ∈ Ω = (0, L), B, C ∈ R+,

u(0) = d
dx
u(0) = 0,

d2

dx2
u(L) = d3

dx3
u(L) = 0.

(53)

3.2 Weak formulation

Let v : Ω → R be some sufficiently regular function. We shall use the prime notation for
the derivative w.r.t. x in this section.

ˆ L

0

u′′′′(x)v(x)dx =

ˆ L

0

Be−Cu(x)v(x)dx.

We integrate the left-hand side by parts:

ˆ L

0

u′′′′(x)v(x)dx = [u′′′(x)v(x)]L0 −
ˆ L

0

u′′′(x)v′(x)dx

= [u′′′(L)v(L)]− [u′′′(0)v(0)]−
ˆ L

0

u′′′(x)v′(x)dx

we assume that v(0) = 0

= −
ˆ L

0

u′′′(x)v′(x)dx.

(54)

We can apply integration by parts again:

ˆ L

0

−u′′′(x)v′(x)dx = [−u′′(x)v′(x)]L0 −
ˆ L

0

−u′′(x)v′′(x)dx

= [u′′(L)v′(L)− u′′(0)v′(0)] +

ˆ L

0

u′′(x)v′′(x)dx

we assume that v′(0) = 0

=

ˆ L

0

u′′(x)v′′(x)dx.

(55)

In the end, we have ˆ L

0

u′′(x)v′′(x) dx =

ˆ L

0

Be−Cu(x)v(x)dx. (56)
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Following the same steps as in Section 1.2.1, we can see that the necessary conditions on u
and v are ˆ L

0

[u′′(x)]2dx <∞, and

ˆ L

0

[v′′(x)]2dx <∞, respectively.

Thus, u, v ∈ H2(Ω) (see Section 1.2.2). If we let H2
0 = {v ∈ H2(Ω) : v(0) = v′(0) = 0},

then weak formulation is given by

Find u ∈ H2
0 s.t.

ˆ L

0

u′′(x)v′′(x)dx =

ˆ L

0

Be−Cu(x)v(x)dx, ∀v ∈ H2
0 .

(57)

3.3 Note on boundary conditions

In Section 1.3.7, we introduced the notions of “essential” and “natural” boundary con-
ditions. For the second-order problems, essential b.c. is equivalent to Dirichlet b.c., and
natural is equivalent to Neumann b.c. (see Table 1). In this case, however, boundary con-
ditions involving both u and u′ are classified as “essential”, while b.c. involving u′′ and u′′′

are “natural”.

As we have already seen in Eq. (54, 55) we imposed v(0) and v′(0) onto H2 thus making
them essential b.c., while u′′(L) and u′′′(L) appeared explicitly in the weak formulation
(Eq. 54 and 55, though we cancelled them out immediately) thus making them natural.

3.4 Basis and shape functions

For they toy problem we used piecewise linear basis functions. They will not work for this
problem, because they are not in H2(Ω) (their second derivative is not square-integrable,
as it is the Dirac-delta distribution). In fact, it can be shown that H2(Ω) implies C1(Ω),
thus our basis functions must be continuously differentiable.

If you recall interpolation theory, we need to use the basis for splines. The best candidate
for this is Hermite cubic splines. Given the values of some function f at points a, b (call it
v1, v2) and the values f ′ at a, b (call it m1,m2), we need to interpolate a cubic polynomial
through a, b. Thus, the degree of freedom at each inner node is 2 instead of 1 (see Figure
15), as it was in the first section.

To derive Hermite cubic shape functions, we first choose the master element, which in our
case is ΩM = [0, 1]. Then given v1, v2,m1,m2, we shall find polynomials Ni(ξ) ∈ P3(ΩM)
such that

N(ξ) = N1(ξ)v1 +N2(ξ)m1 +N3(ξ)v2 +N4(ξ)m2.

By letting N(ξ) =
∑3

i=0 aixi, we first obtain the coefficients ai in terms of v1, v2,m1,m2 by
solving a system of algebraic equations. From that we derive Ni(ξ).
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0

1

1

N1

N2

N3

N4

Figure 14: Hermite cubic shape functions.

The Hermite cubic basis functions on ΩM (see Figure 14) are given by

N1(ξ) = 2ξ3 − 3ξ2 + 1, N2(ξ) = ξ3 − 2ξ2 + ξ,

N3(ξ) = −2ξ3 + 3ξ2, N4(ξ) = ξ3 − ξ2.

Given our weak formulation (Eq. 57), we also need to know the second derivatives of the
shape functions.

d2

dξ2
N1(ξ) = 12ξ − 6,

d2

dξ2
N2(ξ) = 6ξ − 4,

d2

dξ2
N3(ξ) = −12ξ + 6,

d2

dξ2
N4(ξ) = 6ξ − 2.

If we let 0 = x0 < ... < xn = L be a partition of Ω for some n, then Hermite cubic elements
allow us to compute both u(xi) and u′(xi) at each node.

3.5 Discretization of the domain

Now that we have chosen basis functions, we can now split our domain Ω into elements.
Let NE denote the number of elements. Let 0 = x0 < x1 < ... < xNE = L be the
partition of Ω. Let x

(e)
1 and x

(e)
2 denote the coordinates of the e-th element, e = 1, ..., NE

(See Figure 15). Let l(e) = x
(e)
2 − x

(e)
1 denote the length of the e-th element.

Let ΩM = [0, 1] denote the domain of the master element, and Ωe denote the domain of
the element e.

At each node xi, i ∈ {0, ..., NE} we want to find u(xi) and u′(xi).

Let u2i = u(xi) and u2i+1 = u′(xi), i ∈ {0, ..., NE}. These are our unknowns with global
DOF numbering.

Let u
(e)
j = u2e+j−3, e ∈ {1, ..., NE}, j ∈ {1, 2, 3, 4}. Note that u

(e)
j is our local numbering of

DOF, wherein e denotes the element number, and j denotes the degree of freedom of this
element. Since each element e has two nodes, it means that it has up to 4 (local) degrees
of freedom.
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Figure 15: Discretization of the domain.

3.5.1 Change of variable

The transformation from local coordinates to the global ones is given by x(ξ) = x
(e)
1 +(

x
(e)
2 − x

(e)
1

)
ξ. Thus, dx

dξ
= l(e), the same transformation that we had with the toy problem.

3.6 Local element matrices

By Galerkin method, let

u(x) ≈ uS(x) =
2NE+1∑
i=0

uiφi(x).

Then, the local stiffness matrices K(e) can be computed using

K
(e)
ij =

ˆ
Ωe

d2

dx2
N

(e)
i

d2

dx2
N

(e)
j dx

=

ˆ
ΩM

d2

dξ2

dξ2

dx2
Ni

d2

dξ2

dξ2

dx2
Nj

[
l(e)dξ

]
(change of variable),

=
1

[l(e)]
3

ˆ
ΩM

d2

dξ2
Ni

d2

dξ2
Nj dξ,

and the load vector by

F
(e)
j =

ˆ
Ωe

Be−C
∑2NE+1

i=0 uiφi(x)N
(e)
j dx

3.6.1 Dealing with the exponent

In order to simplify the load vector, we use Taylor series for ex

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+O(x5).
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Let exp(x) =
∑4

n=0
xn

n!
, then

F
(e)
j =

ˆ
Ωe

Bexp

(
−C

2NE+1∑
i=0

uiφi(x)

)
Nj dx. (58)

3.6.2 Gauss quadrature

Note that Ni(ξ) ∈ P3 and exp(x) ∈ P4. Therefore, Bexp
(
−C

∑2NE+1
i=0 uiφi(x)

)
∈ P12.

Consequently, the force term (Eq. 58) is an integral over a polynomial of degree 15 (we
multiply by additionally Nj), which means that 8-point Gauss-Legendre quadrature rule
will suffice to get the exact result (up to the precision of the IEEE-754 double).

3.7 Assembling global matrices

Since each node has 2 degrees of freedom, the overlap between two adjacent elements ac-
cordingly has 2 degrees of freedom as well. We address this by modifying the procedure of
assembling the global system, see Figure (16).

Figure 16: Global Element matrix layout for 3 Hermite cubic elements. Each small square
represents a 4× 4 matrix, and the big black square has 8× 8 size.

3.8 The global system

The final system is given by
KU = F + Q, (59)

where Q is the boundary contribution given by

uxx(0)
uxxx(0)

0
...
0

uxx(L)
uxxx(L)


=



uxx(0)
uxxx(0)

0
...
0
0
0


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as prescribed in the problem statement (Eq. 49).

Putting Q on the left hand side and modifying the terms accordingly, we obtain

K∗U∗ = F, (60)

where U∗ is given by 

uxx(0)
uxxx(0)
u2

u3
...

u2NE+1


3.9 Numerical results

3.9.1 Fixed-point iteration

To obtain the steady-state solution, we need to solve Eq. (60) by the means of the fixed-
point iteration.

U∗n+1 = [K∗]−1F(U∗n)

with U∗0 = 0.

3.9.2 Results

The numerical solver was implemented using Python 3. Given (B,C) = (1.47×10−8, 1.68×
10−1),

Figure 17: My FEM solution Figure 18: Reference solution [14].
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4 Dynamic Euler beam in 1d

From Section 2.4 we obtained the following strong formulation of the problem:

Find u : [0, L]× Rnonneg → R s.t.

utt + Auxxxx = Be−Cu, x ∈ Ω = (0, L), t ∈ R+,

A,B,C are positive constants,

u(x, 0) = u0(x), x ∈ Ω,

ut(x, 0) = u1(x), x ∈ Ω,
∂i

∂xi
u(0, t) = 0, t ∈ R+, i ∈ {0, 1},

∂j

∂xj
u(L, t) = 0, t ∈ R+, j ∈ {2, 3}.

4.1 Weak formulation and discretization

4.1.1 Function spaces

Deriving the weak formulation for a time-dependent problem is slightly different from the
steady-state ones. For that, we need to first introduce new function spaces in addition to
the ones defined in Section 1.2.2.

• H−1(0, L) is the dual space of H2
0 (Ω). A dual space of some vector space V is the

space of all bounded linear functionals from V to R.

• Lp(0, T ;Hq(Ω)), a Bochner space. The formal definition of the Boncher space is be-
yond the scope of this project. The intuition is that it allows us to consider a func-
tion of space and time as a collection of functions in space only, parametrized by
time. We will need this space in order to derive the weak formulation.

4.1.2 Weak formulation

Let v : Ω → R be a sufficiently regular function. Using the results from Eq. (54-57), we
infer that ˆ

Ω

uttv + Auxxvxxdx =

ˆ
Ω

Be−Cuvdx.

Let H2
0 = {v(x) ∈ H2(Ω) : v(0) = vx(0) = 0}. Then the weak formulation is given by

Find u(x, t) ∈ L2(0, T ;H2
0 (Ω)) with ut ∈ L2(0, T ;L2(Ω)), utt ∈ L2(0, T ;H−1(Ω)) s.t.

ˆ L

0

uttv + Auxxvxx dx =

ˆ L

0

Be−Cuvdx, ∀v ∈ H2
0 (Ω). [17]

(61)
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4.2 Discretization

We use the same domain discretization as given in Figure (15), we shall also use the same
Hermite cubic shape functions. There are two key differences in the dynamic case:

• Discretization of u. u(x, t) ≈ uS =
∑N

i=1 ui(t)φi(x) =
∑NE

e=1

[
χ(e)(x)

∑4
i=1 u

(e)
i N

(e)
i (x)

]
,

where χ(e)(x) is the indicator function. Notice here, that the coefficients before global
basis functions are no longer constant, but functions of time. v(x), on the other hand,
is discretized in the same way as it was in the steady-state case.

• The final system. Since we have an additional term in the weak formulation (Eq.
61), our system of equations will take a different form. Let us elaborate on this one.

Let Ωe be the domain of the e-th element. Let u
(e)
i = [u(e)], N

(e)
i (x) = [N (e)], uj = [u],

ˆ
Ωe

uttv + Auxxvxxdx =

ˆ
Ωe

Be−Cuvdx.

By Galerkin method, we get

ˆ
Ωe

[
N (e)

]T [
N (e)

] [∂2u(e)

∂t2

]
+ A

[
d2N (e)

dx2

]T [
d2N (e)

dx2

] [
u(e)
]
dx =

=

ˆ
Ωe

Be
−C

∑NE
e=1

[
χ(e)(x)

∑4
i=1 u

(e)
i N

(e)
i (x)

]
[N (e)]dx.

We know already know that

K
(e)
ij =

1

[l(e)]
3

ˆ
ΩM

A
d2

dξ2
Ni

d2

dξ2
Nj dξ,

and

F
(e)
j =

ˆ
Ωe

Bexp

(
−C

2NE+1∑
i=0

uiφi(x)

)
Nj dx.

If we let

M
(e)
ij =

ˆ
Ωe

N
(e)
i N

(e)
j dx

= l(e)
ˆ

ΩM

NiNj dξ,

Then our system of equations would take the form of

MUtt + KU = F + AQ, (62)

By moving Q to the left hand side, we arrive at the system

M∗U∗tt + K∗U∗ = F, (63)

where U∗ = [uxx(0), uxxx(0), u2, ..., u2NE+1]T .

Now the question is, how do we solve for U(t)?
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4.3 Newmark-β method

So, how do we attack the dynamic case? Recall our system

M∗U∗tt + K∗U∗ = F.

Let’s first clean up the notation a little bit: let M = M∗, ü = U∗tt,K = K∗,u = U∗, and
f = F. Thus,

Mü + Ku = f.

A well-established method for solving such systems is called the Newmark method [18, 19].

Let ∆t be the temporal step size. Let uj = u(j∆t). This method assumes that ü is linear
with time, see Figure (19).

t

ü

0 tj τ tj+1

Figure 19: Linear acceleration approximation [19].

Thus, on the time interval (tj, tj+1),

ü = üj +
1

∆t
(üj+1 − üj)τ, 0 ≤ τ ≤ ∆t.

Integrating over time gives

u̇ = u̇j + üjτ +
1

2∆t
(üj+1 − üj)τ

2 (64)

since u̇ = u̇j when τ = 0.

Integrating again,

u = uj + u̇jτ +
1

2
üjτ

2 +
1

6∆t
(üj+1 − üj)τ

3 (65)

since u = uj when τ = 0.

Evaluating Eq. (64) and (65) at τ = ∆t gives

u̇j+1 = u̇j +
∆t

2
(üj + üj+1)
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and

uj+1 = uj + u̇j∆t+
(∆t)2

6
(2üj + üj+1).

In Newmark method, new parameters γ and β are introduced to transforms the last two
equations into the following

u̇j+1 = u̇j + ∆t((1− γ)üj + γüj+1) (66)

and

uj+1 = uj + u̇j∆t+ (∆t)2

((
1

2
− β

)
üj + βüj+1

)
. (67)

If we use Eq. (67) to solve for üj+1, we obtain

üj+1 =
1

β(∆t2)
(uj+1 − uj)−

1

β∆
u̇j −

(
1

2β
− 1

)
üj. (68)

Plugging the above equation into Eq. (66),

u̇j+1 =
γ

β∆t
(uj+1 − uj) +

(
1− γ

β

)
u̇j + ∆t

(
1− γ

2β

)
üj (69)

Now we want to plug Eq. (68) into our system Mü + Ku = f, we get(
1

β(∆t)2
M + K

)
uj+1 = fj+1 +

1

β(∆t)2
Muj +

1

β∆t
Mu̇j +

(
1

2β
− 1

)
Müj. (70)

As you can see, everything on the right hand side is explicit, except the force term. In
most application, f depends only on x, so this method becomes explicit. In our case, how-
ever, f does depend on u, and thus this method still requires fixed-point iteration.

One question that may arise is how do we calculate ü0 for the very first iteration. And the
answer is, we simply plug the initial condition into Mü0 + Ku0 = f(u0) and solve for ü0.
Then, everything else follows from the application of Eq. (68, 69 and 70).

5 Conclusion

This capstone project gave an extensive introduction to finite element method, and gave a
detailed case study of a real-life engineering application. There is still room for improve-
ment though, the next steps would be to implement the dynamic beam solver, and to try
to attack the 2d version of this problem.
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A Implementation

All the codes can be found in a github repository [20].

A.1 Polynomial tools

I wrote a small library that allows to do manipulations with basis functions. Given an n×
n matrix, it can generate an array of n polynomials of degree n − 1 (they are stored as
functions using functional programming in Python). It can also find its derivatives using
linear algebra (polynomial derivative matrix). Lastly, it can integrate a polynomial using
Gauss-Legendre quadrature.

The code is very short, so I decided to include it.

1 import numpy as np

2 import functools as ft

3

4 def get_monomial_basis(size):

5 return np.array ([( lambda pow: lambda x: x**pow)(pow) for pow in range(

size)])

6

7 def get_basis_functions(coefficient_matrix):

8 size = len(coefficient_matrix)

9 monomial_basis = get_monomial_basis(size)

10 basis = [ft.reduce( (lambda monom1 , monom2: lambda x: monom1(x) +

monom2(x)), [( lambda monom , scalar: lambda x: monom(x)*scalar)(

monomial_basis[j], coefficient_matrix[i,j]) for j in range(size)]) for

i in range(size)]

11 return np.array(basis).ravel()

12

13 def get_basis_derivatives(coefficient_matrix , order):

14 der_mat = get_derivative_matrix(len(coefficient_matrix), order)

15 return get_basis_functions(coefficient_matrix@der_mat)

16

17 def get_derivative_matrix(basis_order , derivative_order):

18 derivative_matrix = np.zeros (( basis_order , basis_order))

19 for i in range(derivative_order , basis_order):

20 derivative_matrix[i,i-derivative_order] = ft.reduce(lambda xx,yy:

xx*yy, range(i,i-derivative_order ,-1))

21 return derivative_matrix

22

23 def gauss(fun , a, b, gauss_points_num):

24 x, w = np.polynomial.legendre.leggauss(gauss_points_num)

25 return ft.reduce(lambda xx ,yy: xx+yy , map(lambda xx ,ww: (b-a)/2*ww*fun

((b-a)/2*xx + (a+b)/2), x,w))

26

27

Listing 1: Polynomial tools
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