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Abstract:

In modern clinics, quantitative anal-
yses are used to diagnose and treat
gait pathology. Accordingly, foretast-
ing walking kinematics and kinetics
of people benefits to better under-
stand gait patterns and construct as-
sisting devices for rehabilitation. This
capstone research proposes a deep
learning algorithm (LSTM) for fore-
casting the walking kinematic of the
knee in the Cartesian coordinate sys-
tem. The hyper-parameter optimiza-
tion using Gaussian Process method
was used to predict walking kinemat-
ics of knee with an accuracy of 97%.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.nuece.info


Contents

1 Introduction 2

2 Methodology 4
2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Deep learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Creating the LSTM . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Hyper-Parameter Optimization . . . . . . . . . . . . . . . . . . 6

3 Results and Discussion 7

4 Conclusion and Future work 9

Bibliography 10

A Hyper-Parameter Optimization results matrix 12

1



Chapter 1

Introduction

The capstone II is going to study the given topic from a different perspective com-
pared to the capstone I, where tabular data was used to predict whether gait cy-
cles of subjects are normal or abnormal. Presently in clinics, the evidence-based
medicine works on the development of diagnosing and treating of pathologically
disordered movements using quantitative analysis [17]. To be precise, the pro-
cedure of quantitative gait analysis involves measurements of joint kinetics and
kinematics of the movement in three dimensions [3]. Attention is paid on deter-
mining deviations of pathological and asymptomatic populations from movement
descriptive data. The gait of pathological populations is regularly recognized at
their self-selected walking speed compared to asymptomatic populations [15]. A
walking speed mismatch between pathological and asymptomatic populations can
be observed by the spontaneous walking speed. For instance, stroke diagnosed
people walk with the speed that ranges between 0.18 and 1.03 m/s, while asymp-
tomatic populations speed that ranges between 1.04 and 1.60 m/s [16]. It should
be emphasized that gait kinematics, kinetics spatiotemporal parameters, and mus-
cular activity contribute walking speed [18].

Previous work

In [13], it is stated that motion and musculoskeletal forecasting is a powerful tool,
and can be used for a variety of applications from designing assistive devices to
testing theories of motor control. Here, the author made a prediction on quantita-
tive data using bilevel optimization, where cost function was be determined from
similar functions, representing an inverse optimal control problem [13]. The pre-
diction of gait parameters related to foot-to-ground clearance during the walking
provides an opportunity to see the risk tripping and falling risk in the older people
[11], and can be realized with generalized regression neural network with errors
2–8%. Meanwhile, the paper [5] claims a modern context-aware motion prediction
architecture, where the semantic-graph model was used with further implementa-
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tion to the Recurrent neural networks. In [6], means of multivariate nonlinear time
series prediction techniques are demonstrated, there is a possibility to increase
the forecasting accuracy by taking into consideration movements of other people,
with correlated mobility patterns as input data. Gait forecasting is not only for
distinguishing normal and abnormal gait cycles, but it also benefits to better un-
derstand gait patterns of a wide range of populations [8], and will help to develop
rehabilitation programs and gait performance [7].

The objective of this capstone research is an application of a deep learning al-
gorithm, which is a long-short term memory that forecasts walking, kinematics of
people. Moreover, the hyper-parameter optimization technique using the Gaussian
Process is going to be implemented to achieve the high accuracy of the model. The
study of bio-mechanical gait patterns of the knee joint is a promising diagnostic
method of assessing injuries and pathology of it[1]. The knee joints allow move-
ments with six degrees of freedom: three rotational components about the axes of
a coordinate system and three translational components along this [1]. The Carte-
sian coordinate system is the reference system in bio-mechanics[10]. Therefore, the
left and right knee movements of the subjects in the Cartesian system were chosen
as a target value of walking kinematics data. For this research "A public dataset of
overground and treadmill walking kinematics and kinetics in healthy individuals"
was used [8].



Chapter 2

Methodology

2.1 Data

"A public dataset of overground and treadmill walking kinematics and kinetics in
healthy individuals" was gathered by Fukuchi [8]. Data participants are 42 volun-
teers, including 24 young adults (age 27.6 ± 4.4 years, height 171.1 ± 10.5 cm, and
mass 68.4 ± 12.2 kg) and 18 older adults (age 62.7 ± 8.0 years, height 161.8 ± 9.5
cm, and mass 66.9 ± 10.1 kg). All participants were free of any lower-extremity
injury in the last six months before the data was collected, and all were free of
any orthopedic or neurological disease. Kinetics and kinematics data of partici-
pants walking at different speeds were generated for the dataset both overground
and on a treadmill. Participants were asked to walk with 8 different speeds on
the treadmill, where trials were conducted from 40% to 145% of the self-selected,
dimensionless speed. Not all older adults have walked at these 8 speeds. All
mentioned information is available for each participant in metadata [8].

2.2 Data preprocessing

A treadmill dataset of walking kinematics of young individuals was extracted from
the public dataset [8]. 24 subjects with 8 different speeds were considered, as a
result, 192 trails were taken for this research. These 192 trials were randomized and
were divided into train and test sets by 70 and 30% respectively. As kinematics data
is time-series data, data points should be converted to supervised learning data,
which means each current data point should hold the next data point as a target
value. 26 data points were shifted upward used as target values of the current data
point. As it was mentioned in the introduction, 6 attributes were used as target
values such as the kinematics of the left and right knee in 3D dimensions. The
neural networks work best on values roughly -1 and 1 [14], so the data should
be scaled before using. Input (x) and target (y) values of the dataset were scaled
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2.3. Deep learning algorithm 5

independently because the target-data comes from the dataset of input values that
is merely time-shifted so that target-data could be from a different source with
different value-ranges. The following equation (equation 2.1) was used for scaling:

x =
x − min(x)

max(x)− min(x)
. (2.1)

2.3 Deep learning algorithm

In this capstone research, Long short-term memory (LSTM) was used for forecast-
ing walking kinematics of the knee. LSTM is an artificial recurrent neural network
(RNN) architecture [9] used for sequential data type in deep learning [4].

2.3.1 Creating the LSTM

The Keras API was used as a framework.

• Sequential Model type was chosen.

• To the model was added LSTM layer with input shape of the number of input
data attributes

• As an output a fully connected (or dense) layer was added because output
signals should predict 6 attributes of target values. As an activation function
sigmoid was used to squash an output to be between 0 and 1, which was
scaled previously.

• To penalize a misclassified response value a mean square error was applied as
the loss function. It should be mentioned that if the model only sees input-
signals for a few time-steps, so its generated output may be significantly
inaccurate [14]. The use of loss function at early time steps might cause the
model to distort its later output. To pretend this issue a warm-up period of
50 time-step was used in calculating its accuracy in the loss function.

• An Root mean square prop (RMSProp) was used as an optimization algo-
rithm.

Other details such as learning rate, number of dense layers, and nodes are going
to be discussed in the next subsection 2.3.2.
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2.3.2 Hyper-Parameter Optimization

Bayesian optimization is a sequential design process for finding global optimiza-
tion of black-box functions [12]. However, the process of sequentially searching
for the hyperparameters is expensive, therefore Bayesian optimization is going to
be determined using the Gaussian process [2]. The optimizing function values are
assumed to follow a multivariate gaussian. The covariance of the function values
is provided by a Gaussian process kernel range of the parameters. Then a smart
choice to choose the next parameter to evaluate can be made by the acquisition
function over the Gaussian prior which accelerates the hyperparameter search [2].

In this capstone research, the following hyper-parameters are tuned by Bayesian
optimization using Gaussian process:

• The learning-rate of the optimizer (ranged from 10−6 to 10−2).

• The number of fully-connected or dense layers (between 0 and 5 layers).

• The number of nodes for each of the dense layers (from 2 to 512 nodes).

• Whether to use "sigmoid" or "relu" activation in dense layers.

A function "create model" was written in python by inputting mentioned hyper-
parameter ranges, and those parameters were tuned by calling function gp_minimize
from scikit-optimize library [2].



Chapter 3

Results and Discussion

Hyper - parameter optimization using Gaussian Process demonstrated the follow-
ing results:

• learning-rate = 0.00020630710298876043 ≈ 2.1 ∗ 10−4

• number of dense layers = 0

• number of nodes = 171

• activation function of dense layers is "sigmoid"

An unexpected result demonstrated a hyper parameter "dense layers", with the
number of 0 layers. That means constructed model for forecasting seems quite
simple. The detailed representation of hyper-parameter results can be seen from
the figure A.1 in Appendix A. The red lines and points of the figure highlights the
optimal hyper parameters.

All tuned hyper-parameters were used in LSTM model training, after, the
model demonstrated 97% accuracy on the test dataset. As an example LSTM re-
sults for 40,000 data points can be seen from figure 3.1. As it can be found in plot
labels, orange and blue lines demonstrate predicted and true values of target data.

For a detailed representation of results, figure 3.2 can be discussed, where all
6 target values (R - Right and L - Left knee in 3 axes) were demonstrated for 4000
data points. Actually, the LSTM illustrated quite high performance, in plots where
vertical axis have labeled "R.KneeX" and "L.KneeX", true and predicted values are
almost identical. However, the lowest two graphs of both knees of right and left 3.2
have some distortions. Meanwhile, vertically situated middle plots (R.KneeY and
L.KneeY) are significantly similar despite the lowest points of the graphs. More-
over, it can be noticed the knee motion kinematics of the left leg is predicted with
a little more accuracy compared to the right.

Generally, the LSTM showed its significant-high accuracy and predicted move-
ment of Right and Left knee in all axis with quite acceptable results.
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Figure 3.1: LSTM results for 40 000 data points for Right Knee in X-axis

Figure 3.2: LSTM results for 4000 data points for left and right Knee in 3 axes



Chapter 4

Conclusion and Future work

In this capstone research, Hyper-Parameter optimization using Gaussian Process
was completed, and these tuned parameters were applied in the LSTM model for
forecasting the walking kinematics of people. The results were extensively ana-
lyzed, and suggest that the proposed model is able to predict walking kinematics
of the left and right knee in a Cartesian coordinate system with high accuracy.

For future work, more features can be considered such as walking kinematics, spa-
tiotemporal, demographic, and anthropometric parameters to better understand
the waling speed of people [17]. Moreover, the walking speed kinematics predic-
tion can be tested as biometric data in smart houses from camera data to detect
whether a moving person is an owner or stranger.
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Hyper-Parameter Optimization re-
sults matrix
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Figure A.1: Hyper-Parameter Optimization results matrix
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