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Abstract. The main purpose of this capstone project is to do some analysis re-
lated to (p,q)-sub-Laplacians on the Heisenberg group. In the first part of the
project, Green’s identities for (p,q)-sub-Laplacians are given on the Heisenberg
group and used further in proof of the uniqueness of a weak solution of a nonlinear
Dirichlet boundary value problem for the (p,q)-sub-Laplacian. Moreover, concepts
of CC and Kaplan balls are discussed to illustrate the smoothness of the considered
domain for the BVP.

1. Introduction

Group, G is a set given with the binary operation, (G, ◦) which satisfies some so
called Group axioms:

• Closure : ∀a, b ∈ G, the result of operation a ◦ b ∈ G;
• Associativity : ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c);
• Identity element : ∃e ∈ G, such that for every element in G, e ◦ a = a ◦ e =
a holds;
• Inverse element : For each a ∈ G,∃b ∈ G, denoted as a−1,

such that a ◦ b = c ◦ a = e, where e is the identity element.

The Heisenberg group is Hn = (R2n+1, ◦). We use the notation

ξ := (z, t) = (z1, z2, ..., zn, t) = (x1, y1, ..., xn, yn, t)

for the points of Hn (see, e.g. [2]). In simpler case when n = 1 group law:

(x1, y1, t1) ◦ (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 2(y1x2 − x1y2)),

and dilation rule:

δλ(x, y, t) = (λx, λy, λ2t), (x, y, t) ∈ R3

are defined as given above. The Laplace operator in classical (commutative) analysis
is defined as:

∆ := ∇ · ∇ =
n∑
j=1

∂2

∂2xj
, (x1, ..., xn) ∈ Rn

where ∇ is known as gradient:

∇ :=

(
∂

∂x1

, ...,
∂

∂xn

)
. (1.1)
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Whereas on the Heisenberg group the sub-Laplacian operator L on Hn is defined as
follows:

L :=
n∑
j=1

(
X2
j + Y 2

j

)
,

where Xj and Yj are left invariant (with respect to the group law) vector fields:

Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t.

The gradient (horizontal) on Hn is given by

∇H := (X1, . . . , Xn, Y1, . . . , Yn).

For further discussions on the analysis on the Heisenberg group, we refer to [7] and
[9].

The p-Laplacian in the classical analysis is a quasilinear elliptic partial differential
operator of 2nd order:

∆pu := ∇ · (|∇u|p−2∇u), 1 < p <∞

where ∇ is defined in (1.1). It is a nonlinear generalization of the above-mentioned
Laplace operator for any u in Rn, where |∇u|p−2 is defined as

|∇u|p−2 :=

((
∂u

∂x1

)2

+ ...+

(
∂u

∂xn

)2) p−2
2

, (x1, ...xn) ∈ Rn.

Again, the p-Laplacian can be generalized to the so-called (p, q)-Laplacian. The case
when p > q (p, q)-Laplacian is used to model steady state solutions of reaction-
diffusion equations that arise in many areas such as biophysics, plasma physics, mod-
els of elementary particles, etc (see, e.g. [1]).

Analogously, the (p, q)-Laplacian on Hn, that is, on the Heisenberg group is known
as the (p, q)-sub-Laplacian and is defined as follows

Lp,q := −∇H · (|∇H |p−2∇H)−∇H · (|∇H |q−2∇H), 1 < q < p. (1.2)

The aim of this paper is to extend Green’s identities for the (p, q)-sub-Laplacians
and use it in the process of proving the uniqueness for the solution of BVP. Green’s
identities defined for more general stratified groups were established in [6]. Then they
were obtained for p-sub-Laplacians [8] (see also [5] and [4]). In this paper, we extend
them to the (p, q)-sub-Laplacian on the Heisenberg group and consider some of their
applications.

This Capstone project report has the following structure: extension of Green’s first
identity on the Heisenberg group for (p, q)-sub-Laplacians is discussed in Section 2;
in Section 3 a weak formulation of the Dirichlet Boundary Value Problem involv-
ing (p, q)-sub-Laplacian is given and uniqueness of its solution is proven using some
mathematical tools, such as Young inequality, comparison principle, etc; Section 4
is dedicated to the discussion of Carnot-Caratheodory Ball and Kaplan Ball to give
better understanding of the smoothness of domain in the Heisenberg group, balls
were printed out using the 3D printer.
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2. (p, q)-sub-Laplacian Green’s Identities

We say that dν is the the volume element on Hn. Note that the Lebesque mea-
sure on R2n+1 is the (left) Haar measure for Hn (see, e.g. [2, Proposition 1.3.21]).
Throughout this paper we assume that a domain Ω ⊂ Hn is an admissible domain.

Theorem 2.1. [6] Let fk ∈ C1(Ω)
⋂
C(Ω) and k = 1, ..., n (where n is the topological

dimension of Hn), we then have

∫
Ω

(Xk + Yk)fkdν =

∫
∂Ω

fk〈(Xk + Yk), dν〉. (2.1)

Therefore, ∫
Ω

n∑
k=1

(Xk + Yk)fkdν =

∫
∂Ω

n∑
k=1

fk〈(Xk + Yk), dν〉, (2.2)

where dν is the volume element on Hn.

f ∈ C1(Ω) means ∇Hf ∈ C(Ω). Green’s first identity for the (p, q)-sub-Laplacian
is obtained from the above-mentioned divergence formula:

Theorem 2.2. [Green’s first identity]. For 1 < p < ∞ (as well as 1 < q < ∞) let
v ∈ C1(Ω)

⋂
C(Ω) and u ∈ C2(Ω)

⋂
C1(Ω). So

∫
Ω

(
(|∇Hu|p−2∇̃v)u+ (|∇Hu|q−2∇̃v)u+ vLp,qu

)
dν

=

∫
∂Ω

(|∇Hu|p−2 + |∇Hu|q−2)v〈∇̃u, dν〉, (2.3)

∇̃u =
n∑
k=1

(
(Xku)Xk + (Yku)Yk

)
. (2.4)

Lp,q is the (p, q)-sub-Laplacian operator defined on Hn.

Proof of Theorem 2.2. Let us define f as follows: fk = v|∇Hu|p−2Xku+v|∇Hu|q−2Yku,
then we have

n∑
k=1

(Xk + Yk)fk = (|∇Hu|p−2∇̃v)u+ (|∇Hu|q−2∇̃v)u+ vLp,qu.
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By taking integrals of both sides over Ω and considering Theorem 2.1 we arrive at∫
Ω

(
(|∇Hu|p−2∇̃v)u+ (|∇Hu|q−2∇̃v)u+ vLp,qu

)
dν

=

∫
Ω

n∑
k=1

(Xk + Yk)fkdν

=

∫
∂Ω

n∑
k=1

〈fk(Xk + Yk), dν〉

=

∫
∂Ω

n∑
k=1

〈v|∇Hu|p−2XkuXk + v|∇Hu|q−2YkuYk, dν〉

=

∫
∂Ω

(|∇Hu|p−2 + |∇Hu|q−2)v〈∇̃u, dν〉.

�

3. Uniqueness of a positive weak solution

This section is devoted to the proof of the weak formulation of the Dirichlet bound-
ary value problem (3.1). Math tools involved in the process are comparison principle,
green’s identities proven in the section (2), Young’s inequality. The method was
based on the paper [3].

We start by considering the Dirichlet boundary value problem containing (p, q)−sub-
Laplacian

Lp,qu = f(ξ)h(u), u > 0 in Ω, u = 0 on ∂Ω, (3.1)

where 1 < q < p, f(ξ) is a non-negative bounded function, Ω is the smooth domain
(its importance is explained in Section 4)and h satisfies the following conditions:

• h : (0,∞)→ (0,∞) is a non-decreasing function
• h(s)s1−β is non-increasing for some β such that 1 ≤ β < q.

We expand the (p, q)−sub-Laplacian in the equation (3.1) using the fact that Lp,qu =
−∇H · (|∇Hu|p−2∇Hu) − ∇H · (|∇Hu|q−2∇Hu) and get the following formulation of
the equation:

f(ξ)h(u) = −∇H · (|∇Hu|p−2∇Hu)−∇H · (|∇Hu|q−2∇Hu).

In order to get weak formulation of the equation we start by multiplying the it by
the some function from the same class as u, which is φ, ∀φ ∈ S1,p

0 (Ω) , φ ≥ 0, we get:

f(ξ)h(u)φ = −∇H · (|∇Hu|p−2∇Hu)φ−∇H · (|∇Hu|q−2∇Hu)φ.

By integrating it over Ω and using the Theorem 2.2 about Green’s first identity the
equation transforms to∫

Ω

f(ξ)h(u)φdν =

∫
Ω

(|∇Hu|p−2 + |∇Hu|q−2)∇Hu · ∇Hφdν.
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Definition 3.1. A function u(x) ∈ S1,p
0 (Ω) ∩ C(Ω̄) is called a weak solution to (3.1)

if we have ∫
Ω

(|∇Hu|p−2 + |∇Hu|q−2)∇Hu · ∇Hφdν =

∫
Ω

f(ξ)h(u)φdν. (3.2)

Theorem 3.2. The equation (3.1) has at most one positive weak solution.

We apply comparison principle in order to prove the uniqueness result for the given
equation.

Theorem 3.3. Let u(x) ∈ S1,p
0 (Ω) ∩ C(Ω̄) be a positive solution to∫

Ω

(|∇Hu|p−2 + |∇Hu|q−2)∇Hu · ∇Hφdν ≤∫
Ω

f(ξ)h(u)φdν, ∀φ ∈ S1,p
0 (Ω), φ ≥ 0, (3.3)

and let v(x) ∈ S1,p
0 (Ω) ∩ C(Ω̄) be a positive solution to∫

Ω

(|∇Hv|p−2 + |∇Hv|q−2)∇Hv · ∇Hφdν ≥∫
Ω

f(ξ)h(v)φdν, ∀φ ∈ S1,p
0 (Ω), φ ≥ 0. (3.4)

Then, u ≤ v in Ω.

Proof of Theorem 3.3. First of all, let us define some set K elements of which sat-
isfy the condition: K = {ξ ∈ Ω : u(ξ) > v(ξ)}. The theorem is proved by using
contradiction argument, which means by claiming that K is non-empty set. Assume
uε = u+ ε and vε = v + ε for ε > 0. By introducing test function

ψ1(ξ) = max

[
uβε (ξ)− vβε (ξ)

uβ−1
ε (ξ)

, 0

]
,

the inequality (3.3) can be rewritten as∫
K

(|∇Hu|p−2 + |∇Hu|q−2)∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν ≤∫

K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν. (3.5)

Using another test function

ψ2(ξ) = max

[
uβε (ξ)− vβε (ξ)

vβ−1
ε (ξ)

, 0

]
,

the inequality (3.4) can be transformed similarly∫
K

(|∇Hv|p−2 + |∇Hv|q−2)∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν ≤∫

K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν. (3.6)
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Subtracting (3.6) from (3.5) we obtain the following inequality∫
K

|∇Hu|p−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hu|q−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|p−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν (3.7)

+

∫
K

|∇Hv|q−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν

≤
∫
K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν

+

∫
K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν.

On the other hand, we have

∇H

(
uβε − vβε
uβ−1
ε

)
= ∇Hu+ (β − 1)

(
vε
uε

)β
∇Hu− β

(
vε
uε

)β−1

∇Hv,

and

∇H

(
vβε − uβε
vβ−1
ε

)
= ∇Hv + (β − 1)

(
uε
vε

)β
∇Hv − β

(
uε
vε

)β−1

∇Hu.

Thus, the sum of second and fourth integrals in (3.7) on the left hand side can be
expanded as follows:∫

K

|∇Hu|q−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|q−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν (3.8)

=

∫
K

{
|∇Hu|q

(
1 + (β − 1)

(
vε
uε

)β )
− β|∇Hu|q−2

(
vε
uε

)β−1

∇Hu · ∇Hv

}
dν

+

∫
K

{
|∇HV |q

(
1 + (β − 1)

(
uε
vε

)β )
− β|∇Hv|q−2

(
uε
vε

)β−1

∇Hv · ∇Hu

}
dν.

Let us recall the Young inequality which states the following

A ·B ≤ 1

s
|A|s +

1

q
|B|q, 1

s
+

1

q
= 1 for A,B ∈ Rn. (3.9)

Plugging |A|q−2A instead of A we get

|A|q−2A ·B ≤ 1

s
|A|q +

1

q
|B|q.
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Also replacing A by λA (λ >0) we have

|A|q−2λq−1A ·B ≤ 1

s
λq|A|q +

1

q
|B|q.

We set λ =
(
vε
uε

)β−1
q−1

, A = ∇Hu and B = ∇Hv, so

|∇Hu|q−2

(
vε
uε

)β−1

∇Hu · ∇Hv ≤
1

s

(
vε
uε

)s(β−1)

|∇Hu|q +
1

q
|∇Hv|q.

Similarly, we set λ =
(
uε
vε

)β−1
q−1

, A = ∇Hv and B = ∇Hu, that is, we have

|∇Hv|q−2

(
uε
vε

)β−1

∇Hv · ∇Hu ≤
1

s

(
uε
vε

)s(β−1)

|∇Hv|q +
1

q
|∇Hu|q.

Finally, equation (3.8) can be rewritten as∫
K

|∇Hu|q−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|q−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν

≥
∫
K

{
|∇Hu|q

[
1 + (β − 1)

(
vε
uε

)β
− β

s

(
vε
uε

)s(β−1)

− β

q

]}

+

{
|∇Hv|q

[
1 + (β − 1)

(
uε
vε

)β
− β

s

(
uε
vε

)s(β−1)

− β

q

]}
dν.

By introducing

φ(t) = 1 + (β − 1)tβ − β

s
ts(β−1) − β

q
, (3.10)

the latter inequality takes the form∫
K

|∇Hu|q−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|q−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν

≥
∫
K

{
|∇Hu|qφ

(
vε
uε

)
+ |∇Hv|qφ

(
uε
vε

)}
.

Since φ(1) = 0 and φ′(t) = β(β− 1)tβ−1(1− t
β−q
q−1 ), so φ(t) ≥ 0 for t > 0, and we have∫

K

|∇Hu|q−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|q−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν ≥ 0.
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Thus, (3.7) implies

∫
K

|∇Hu|p−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|p−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν ≤

∫
K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν

+

∫
K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν. (3.11)

Left part of the latter inequality can be rewritten the same way as equation (3.8)
with q replaced by p:

∫
K

|∇Hu|p−2∇Hu · ∇H

(
uβε − vβε
uβ−1
ε

)
dν

+

∫
K

|∇Hv|p−2∇Hv · ∇H

(
uβε − vβε
vβ−1
ε

)
dν

=

∫
K

|∇Hu|p
(

1 + (β − 1)

(
vε
uε

)β )
dν (3.12)

−
∫
K

β|∇Hu|p−2

(
vε
uε

)β−1

∇Hu · ∇Hvdν

+

∫
K

|∇Hυ|p
(

1 + (β − 1)

(
uε
vε

)β)
dν

−
∫
K

β|∇Hv|p−2

(
uε
vε

)β−1

∇Hv · ∇Hudν.

From the inequality

|A|p−2λp−1A ·B ≤ 1

r
βp|A|p +

1

p
|B|p, 1

r
+

1

p
= 1,

it follows that

|∇Hu|p−2

(
vε
uε

)β−1

∇Hu · ∇Hv ≤
1

r

(
vε
uε

)r(β−1)

|∇Hu|p +
1

p
|∇Hv|p,

as well as

|∇Hv|p−2

(
uε
vε

)β−1

∇Hv · ∇Hu ≤
1

r

(
uε
vε

)r(β−1)

|∇Hv|p +
1

p
|∇Hu|p.
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Thus, combining (3.11) and (3.12) we obtain∫
K

{
|∇Hu|p

(
1 + (β − 1)

(
vε
uε

)β
− β

r

(
vε
uε

)r(β−1)

− β

p

)
+ |∇Hv|p

(
1 + (β − 1)

(
uε
vε

)β
− β

r

(
uε
vε

)r(β−1)

− β

p

)}
dν

≤
∫
K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν

+

∫
K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν.

By inserting

φ(t) = 1 + (β − 1)tβ − β

r
tr(β−1) − β

p
,

we get the following∫
K

{
|∇Hu|pφ

(
vε
uε

)
+ |∇Hv|pφ

(
uε
vε

)}
dν

≤
∫
K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν +

∫
K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν.

By the definitions for h, we obtain

lim
ε→0

∫
K

f(ξ)h(u)

(
uβε − vβε
uβ−1

)(
u

uε

)β−1

dν

+ lim
ε→0

∫
K

f(ξ)h(v)

(
uβε − vβε
vβ−1

)(
v

vε

)β−1

dν

=

∫
K

f(ξ)

(
h(u)

uβ−1
− h(v)

vβ−1

)
(uβ − vβ)dν ≤ 0.

As ε→ 0 ∫
K

{
|∇Hu|pφ

(
vε
uε

)
+ |∇Hv|pφ

(
uε
vε

)}
dν ≤ 0. (3.13)

φ(1) = 0 and φ′(t) = β(β− 1)tβ−1(1− t
β−p
p−1 ), hence φ(t) > 0 for t 6= 1. Since u

v
> 1 in

K, by (3.13) we must have |∇Hu| = |∇Hv| = 0 in K. Therefore, ∇H(u − v) = 0 in
K and u− v = 0 on ∂K. So, u(x) = v(x), which contradicts the definition of K. �

Proof of Theorem 3.2. Any weak solution must satisfy (3.2). That is, at the same
time a (weak) solution can be considered both sub and sup-solution. Let us assume
that the equation has two solutions, say, u1 and u2. Thus, u1 can be considered a
sub-solution and u2 is a sup-solution. Therefore, by Theorem 3.3 we get u1 ≤ u2.
Now by exchanging the roles of u1 and u2 , we get u1 ≥ u2. This yields u1 = u2 which
means we can’t have two different solutions, that is, we have uniqueness. �
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4. Kaplan and Carnot-Carathéodory balls in the Heisenberg group

This section is dedicated to explanation of the distance in non-commutative anal-
ysis. Kaplan and Carnot-Carathéodory balls were printed out using 3D printer and
their 3D model is given as well. We start by explaining what is distance in classi-
cal (commutative) analysis by recalling the fundamental solution for the p-Laplacian
equation. The fundamental solution for the following equation

−∆εc(x) = δ(x), x ∈ Rn

is given by

εc(x) :=
1

ωn|x|n−2
, |x| =

√
x2

1 + x2
2 + ...+ x2

n.

Let Q be the homogeneous dimension (it’s the same as topological dimension in
commutative analysis) of Hn and let ε be the fundamental solution for the sub-
Laplacian.

d(x) := ε(x)
1

2−Q

is known as distance. Let δλ(x) be dilation, then:

d(δλ(x)) = λd(x).

Using the same logic it was found by Folland that the fundamental solution on the
Heisenberg group H1 is given by:

ε(x) :=

(
C d(x)−1

) 1
2−Q

, (4.1)

where Q is 4 and d(x) is

d(x) :=

((√
x2

1 + x2
2

)4

+ 16x2
3

) 1
2

. (4.2)

This distance is called the Kaplan distance.

Figure 4.1. Kaplan Ball.
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The 3D model of the Kaplan Ball is illustrated in Fig. 1.

The Carnot-Carathéodory distance between two points is known as minimum time
needed to connect these points by curves, whose derivatives are spanned by the vec-
tor fields Xj, Yj of the Heisenberg group [10]. The parametric equation for the unit
CC-ball is given by:

x(θ, φ) =
cosθ(1− cosφ) + sinθsinφ

φ
;

y(θ, φ) =
−sinθ(1− cosφ) + cosθsinφ

φ
;

t(θ, φ) =
2(φ− sinφ)

φ2
; 0 ≤ θ ≤ 2π,−2π ≤ φ ≤ 2π.

Figure 4.2. Carnot-Carathéodory Ball.
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