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by
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Master of Science in Applied Mathematics

Abstract

This thesis is aimed to study boundary conditions for heat potentials for degenerate-
type diffusion equations with initial condition and conductivity coefficient given by
a time variable. Equations can be one-dimensional or multi-dimensional. The latter
gives a new look to the problem. It is worth to mention that the coefficient is not
always positive and therefore, it causes a degeneracy for the equation. The found
boundary conditions make the solution, which is in the form of potential, unique.
These boundary conditions are commonly called transparent boundary conditions or
Kac’s boundary conditions. This kind of results first appeared in M. Kac’s work in
the middle of last century. He developed potential theory and established further ap-
plications. Since then, many researchers have been studying potential theory related
to the field. Some problems can be solved by simple integration, whereas others need
more efforts to put in. Even though the works of past decades play an important
role in potential theory, there exist problems which are still hard to solve. Hence,
potential theory needs further developments and modern approaches.

Thesis Supervisor: Durvudkhan Suragan
Title: Associate Professor
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Chapter 1

Introduction

The history of potential theory for parabolic equations such as heat equations (diffu-

sion equations) is long enough. It has been used to handle the initial-boundary value

problems of parabolic equations with different levels of difficulty for several years.

This strategy is implemented by using volume potentials, Poisson integrals, single

and double layer potentials which are the elements of potential theory. Despite the

long history and many works done in this sphere, potential theory has some shortcom-

ings which need further developments. It needs to use modern approaches to solve

them. Up to now, potential theory was applied to both one-dimensional and multi-

dimensional parabolic equations. Usually, firstly one finds the fundamental solution

which can be obtained by applications of transform operations such as Laplace and

Fourier. The structure of this thesis is simple. In Chapter 2, we consider the elements

of potential theory for one-dimensional degenerate parabolic equation. To do so, we

first explain the fundamental solution to this equation. After that, different potentials

will be characterised. Namely, volume potential, single-layer potential and double-

layer potential. Note that discussion of this session is based on Malyshev’s work [5].

In Chapter 3, we discuss the elements of potential theory for multi-dimensional de-

generate parabolic equations based on work done by Karazym and Suragan in [4]. It

is done by first considering the fundamental solution and Cauchy problems. Then,

types of potentials such as Poisson integral and volume potential will be figured out.

In Chapter 4, we discuss the gap left in one-dimensional parabolic equation. Namely,
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we find what boundary can be put in to make the given potential a unique solution

of one-dimensional parabolic equation respect to zero source function. The analogue

of this in multi-dimensional case is considered in [4]. Finally, in the last chapter, the

key ideas and meaning of the findings are summarized.
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Chapter 2

Elements of potential theory for

one-dimensional degenerate

parabolic equation

In [5], the author studied the parabolic potentials for the initial-boundary-value prob-

lems in a semi-infinite domain given by:

𝐿𝑘𝑦(𝑧, 𝜏) :=
𝜕𝑦(𝑧, 𝜏)

𝜕𝜏
− 𝑘(𝜏)

𝜕2𝑦(𝑧, 𝜏)

𝜕𝑧2
= 𝑔(𝑧, 𝜏), 𝑧 > 0, 𝜏 > 0; (2.1)

𝑦(𝑧, 0) = 𝜁(𝑧), 𝑧 ≥ 0; (2.2)

𝑦(0, 𝜏) = 𝜂(𝜏), 𝜏 ≥ 0. (2.3)

The conductivity coefficient 𝑘(𝜏) with 𝜏 ∈ [0, 𝑇 ] is not always positive and follows

one of the following two assumptions:

(a) 𝑘(𝜏) ≥ 0, the coefficient can accept zero values at isolated points.

(b) 𝑘1(𝜏) given by integral

𝑘1(𝜏) =

∫︁ 𝜏

0

𝑘(𝜈)𝑑𝜈

is greater than zero for any 𝜏 > 0. This means, 𝑘(𝜏) can be negative somewhere
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in the interval.

It is clear that if a function fits the condition (a), it automatically fits the condition

(b) too. It is very important to mention that (2.1) is never reducible to the heat

operator in standard form 𝑦𝜏 − 𝑦𝑧𝑧 due to several reasons. The demonstration can be

done by using evident substitution:

𝛾 =

∫︁ 𝜏

0

𝑘(𝜈)𝑑𝜈,

which is under (a) refers the presence of inverse function 𝜏(𝛾) with derivative 𝜏 ′𝛾 = 1
𝑘(𝜏)

at the points where the denominator is not equal to zero. Under (b) the inversion

is impossible. To avoid these difficulties, we develop the fundamental solution and

potentials with characteristics. Note that discussion of this session is based on Maly-

shev’s work [5].

2.1 Fundamental solution

The boundary N of the domain can be divided into two parts. The first part is given

by 𝑁1 = (𝑧 ≥ 0, 𝜏 = 0) and the second part is given by 𝑁2 = (𝑧 = 0, 𝜏 ≥ 0). If the

function satisfies (b), then the fundamental solution of (2.1) can be constructed by

using Fourier transform in 𝑧 in forms of:

𝜉𝑘(𝑧, 𝜏) = 𝜉(𝑧, 𝑘1(𝜏)) =
𝐻(𝜏)

2
√︀
𝜋𝑘1(𝜏)

exp(− 𝑧2

4𝑘1(𝜏)
). (2.4)

It is worth to mention that here 𝑘1(𝜏) > 0 and 𝐻(𝜏) is the Heaviside function.

The fundamental solution has a following property:

∫︁ ∞

−∞
𝜉𝑘(𝑧, 𝜏)𝑑𝑧 = 1; 𝜉𝑘(𝑧, 𝜏) → 𝛿(𝑧) 𝑤𝑖𝑡ℎ 𝑧 → 0+. (2.5)
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After assuming 𝑔, 𝑦 be equal to zero for the values of 𝑧, 𝜏 out of boundary 𝑁 , the

initial-boundary value problem (2.1)− (2.3) can be reduced to general form

𝐿𝑘𝑌 = 𝐺(𝑧, 𝜏) + [𝑌 ]𝑁1𝑐𝑜𝑠(𝑛, 𝑒1)𝛿𝑁1 − 𝑘(𝜏)

[︂
𝜕𝑌

𝜕𝑧

]︂
𝑁2

𝑐𝑜𝑠(𝑛, 𝑒2)𝛿𝑁2

− 𝜕

𝜕𝑧
(𝑘(𝜏)[𝑌 ]𝑁2𝑐𝑜𝑠(𝑛, 𝑒2)𝛿𝑁2) = 𝐹 (𝑧, 𝜏),

(2.6)

where [𝑌 ]𝑁 is a jump of 𝑦 on boundary 𝑁 = 𝑁1 ∪ 𝑁2, 𝑛 is an external normal to

boundary 𝑁 and 𝑒1, 𝑒2 are unit vectors along 𝜏, 𝑧 axis-es.

If the operator 𝐿𝑘 had a constant coefficient, the solution of the equation (2.6) could

be of the form 𝑦 = 𝜉𝑘 * 𝐹 . However, in our case it is not obvious [5].

Lemma 2.1.1 Under (a) the distributional solution of (2.6) is unique and can be

represented as a convolution of the fundamental solution 𝜉𝛼 with the right-hand side

of (2.6), that is 𝑦 = 𝜉𝛼 * 𝐹 , where, as in,

𝜉𝛼(𝑧 − 𝜖, 𝜏 − 𝛾) = 𝜉(𝑧 − 𝜖, 𝛼1(𝜏 − 𝛾)), (2.7)

and

𝛼1(𝜏 − 𝛾) =

∫︁ 𝜏

𝛾

𝑘(𝑗)𝑑𝑗 = 𝑘1(𝜏)− 𝑘1(𝛾); 𝛼1(𝜏) = 𝑘1(𝜏).

Namely, 𝑘1(𝜏) is considered as a time variable. Apparently, 𝛼1 is continuous and,

respect to the condition (a) 𝛼1(𝜏 − 𝛾) > 0 for 𝜏 − 𝛾 > 0 [5].

Proof 2.1.1 Suppose that (a) is true. Then 𝜉𝛼(𝑧− 𝜖, 𝜏 − 𝛾) from equation (2.7) is a

distributional solution of

𝐿𝑘𝜉𝛼(𝑧 − 𝜖, 𝜏 − 𝛾) =
𝜕𝜉

𝜕𝜏
− 𝑘(𝜏)

𝜕2𝜉

𝜕𝑧2
= 𝛿(𝑧 − 𝜖, 𝜏 − 𝛾) 𝑖𝑛 𝑧, 𝜏,

and

𝐿+
𝑘 𝜉𝛼(𝑧 − 𝜖, 𝜏 − 𝛾) = −𝜕𝜉

𝜕𝛾
− 𝑘(𝛾)

𝜕2𝜉

𝜕𝜖2
= 𝛿(𝑧 − 𝜖, 𝜏 − 𝛾) 𝑖𝑛 𝜖, 𝛾.

It can be checked by using Fourier transform strategy. Hence, integration by parts
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gave us the result that 𝑦 = 𝜉𝛼 * 𝐿𝑘𝑦, then by simple derivative 𝑦 = 𝐿𝑘(𝜉𝛼 * 𝑦), that

brings to:

𝐿𝑘(𝜉𝛼 * 𝑌 ) = (𝐿𝑘𝜉𝛼) * 𝑌 = 𝜉𝛼 * 𝐿𝑘𝑌

The uniqueness of distributional solution is obvious, because

𝐿𝑘𝑦 = 0 ⇒ 𝜉𝛼 * 𝐿𝑘𝑦 = 𝐿𝑘𝜉𝛼 * 𝑦 = 𝛿 * 𝑦 = 𝑦 = 0.

After generalizing the initial-boundary value problem (2.1)-(2.3), the author found

the solution of the problem in terms of sum of four integrals:

𝑦(𝑧, 𝜏) =

∫︁ 𝜏

0

𝑑𝛾

∫︁ ∞

0

𝑔(𝜖, 𝛾)𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑑𝜖+

∫︁ ∞

0

𝑦(𝜖, 0)𝜉𝛽(𝑧 − 𝜖, 𝜏)𝑑𝜖

+

∫︁ 𝜏

0

𝑘(𝛾)𝑦(0, 𝛾)
𝜕(𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾))

𝜕𝜖

⃒⃒⃒⃒
𝜖=0

𝑑𝛾 −
∫︁ 𝜏

0

𝑘(𝛾)
𝜕𝑦

𝜕𝜖
(0, 𝛾)𝜉𝛽(𝑧, 𝜏 − 𝛾)𝑑𝛾.

(2.8)

In equation (2.8), 𝑦(𝑧, 𝜏) is given by the sum of four integrals where each integral is

a potential called:

(i) volume potential

𝑃 (𝑧, 𝜏) =

∫︁ 𝜏

0

𝑑𝛾

∫︁ ∞

0

𝑔(𝜖, 𝛾)𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑑𝜖; (2.9)

(ii) single-layer potential with (𝑧 ≥ 0, 𝜏 = 0)

𝑃 1(𝑧, 𝜏) =

∫︁ ∞

0

𝑙(𝜖)𝜉𝛽(𝑧 − 𝜖, 𝜏)𝑑𝜖; (2.10)

(iii) single-layer potential with (𝜏 ≥ 0, 𝑧 = 0)

𝑃 2(𝑧, 𝜏) =

∫︁ 𝜏

0

𝑘(𝛾)𝑚(𝛾)𝜉𝛽(𝑧, 𝜏 − 𝛾)𝑑𝛾; (2.11)

(iv) double layer potential with (𝜏 ≥ 0, 𝑧 = 0)

𝐷(𝑧, 𝜏) =

∫︁ 𝜏

0

𝑘(𝛾)𝑛(𝛾)
𝜕(𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾))

𝜕𝜖

⃒⃒⃒⃒
𝜖=0

𝑑𝛾[5]. (2.12)
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2.2 Volume Potential

Volume potential 𝑃 (𝑧, 𝜏) (2.9) represented above is a partial solution of a boundary

value problem related to source function 𝑔(𝑧, 𝜏). There is a theorem related to volume

potential.

Theorem 2.2.1 Having 𝑘(𝜏) ∈ 𝐿1(0, 𝑇 ) and fit the condition (a),

1. for 𝑔 ∈ 𝑁,𝑃 (𝑧, 𝜏) ∈ 𝑁 ;

2. for 𝑧 ≥ 0, 𝜏 ≥ 0, 𝑃 (𝑧, 𝜏) is a distributional solution of (2.1);

3. if we extend 𝑔 ∈ 𝐶2 ∀𝑧, 𝜏 ≥ 0 and the first and second derivatives in boundary

N, then 𝑃𝑧𝑧(𝑧, 𝜏) is continuous in 𝑧 ≥ 0, 𝜏 ≥ 0, and 𝑃𝜏 exists for any 𝑧, 𝜏 is

continuous in 𝑧, and its smoothness in 𝜏 is determined by that of 𝑘(𝜏) itself;

hence, if also 𝑘(𝜏) ∈ 𝐶(𝑅+), then 𝑃 (𝑧, 𝜏) satisfies (2.1) in the classical sense.

Proof 2.2.1 Now we express our volume potential 𝑃 (𝑧, 𝜏) in new form. To do so,

we need a new variable. Let 𝑥(𝛼1(𝜏 − 𝛾) > 0 𝑓𝑜𝑟 𝜏 − 𝛾 > 0)

𝑧 − 𝜖 = 2𝑥
√︀

𝛼1(𝜏 − 𝛾),

for 𝑧 ≥ 0, 𝜏 ≥ 0 we write 𝑃 (𝑧, 𝜏) as

𝑃 (𝑧, 𝜏) =
1√
𝜋

∫︁ 𝜏

0

𝑑𝛾

∫︁ 𝑧

2
√

𝛼1(𝜏−𝛾)

−∞
𝑔(𝑧 − 2𝑥

√︀
𝛼1(𝜏 − 𝛾); 𝛾)𝑒−𝑥2

𝑑𝑥, (2.13)

and its time-derivative (𝜏 > 0):

𝜕𝑃

𝜕𝜏
= 𝑔(𝑧, 𝜏)− 𝑘(𝜏)√

𝜋

∫︁ 𝜏

0

𝑑𝛾

∫︁ 𝑧

2
√

𝛼1(𝜏−𝛾)

−∞
𝑔′(𝑧 − 2𝑥

√︀
𝛼1(𝜏 − 𝛾); 𝛾)

𝑥√︀
𝛼1(𝜏 − 𝛾)

𝑒−𝑥2

𝑑𝑥.

(2.14)

By using equations (2.13) and (2.14), it is seen that 𝑃 (𝑧, 𝜏) ∈ 𝐶2(𝑧 ≥ 0, 𝜏 >

0) ∩ 𝐶1(𝑧 ≥ 0, 𝜏 ≥ 0) for 𝑔 and 𝑘 fitting the third part part of Theorem 2.2.1. Con-

currently, volume potential P is a classical solution to 𝐿𝑘𝑃 = 𝑔 (Du Bois Reimond
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Theoerem),

Next, as 𝑔 ∈ 𝑁 and 𝜉𝛼 satisfies (2.5),

|𝑃 (𝑧, 𝜏)| ≤ ||𝑔||
∫︁ 𝜏

0

𝑑𝛾

∫︁ +∞

−∞
𝜉𝛼𝑑𝜖 ≤ 𝜏 ||𝑔||.

As the consequences we can see that 𝑃 ∈ 𝑁 and fits the initial condition of zero.

The remaining second part of the Theorem 2.2.1 can be derived like in Lemma 2.1.1,

because

𝐺 = 𝛿 *𝐺 = 𝐿𝑘𝜉𝛼 *𝐺 = 𝐿𝑘(𝜉𝛼 *𝐺) = 𝐿𝑘𝑃.[5]

2.3 Single-layer Potential

(A) Single-layer potential 𝑃 1(𝑧, 𝜏) as shown in equation (2.10) is a part of solution

respect to the condition 𝑦(𝑧, 0) = 𝜁(𝑧) with 𝑧 ≥ 0.

Theorem 2.3.1 Suppose that (b) is satisfied. Then,

I. For 𝑙 ∈ 𝑁,𝑃 1(𝑧, 𝜏) ∈ 𝑁 ;

II. 𝑃 1 is a distributional solution of the equation 𝐿𝑘𝑦 = 𝑙𝛿𝑁1 and fits the initial

condition 𝑃 1(𝑧, 𝜏) → 𝑙(𝑧) 𝑎𝑠𝜏 → 0+ 𝑓𝑜𝑟𝑧 > 0;

III. If 𝑙 ∈ 𝐶2 and its first and second derivatives are in boundary N, then 𝑃 1
𝑧𝑧(𝑧, 𝜏) is

continuous in 𝑧 ≥ 0, 𝜏 ≥ 0 and 𝑃 1
𝜏 exists is continuous in 𝑧, and its smoothness

in 𝜏 is determined by that of 𝑘(𝜏) itself;

IV. If, furthermore, 𝑘 ∈ 𝐶(𝑅+), then 𝑃 1(𝑧, 𝜏) ∈ 𝐶2(𝑧 ≥ 0, 𝜏 > 0, )∩𝐶(𝑧 ≥ 0, 𝜏 ≥ 0)

and, it implies that 𝑃 1(𝑧, 𝜏) is a classical solution of the (2.1)-(2.2) where 𝑔 = 0,

because the backing of distribution 𝛿𝑁1 is 𝑁1.

Proof 2.3.1 It is same as in Theorem 2.2.1. There is a substitution of variable given

by

𝑧 − 𝜖 = 2
√︀

(𝑘1(𝜏)),

is needed.
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(B) Single-layer potential 𝑃 2(𝑧, 𝜏) as shown in (2.11) is a part of solution respect to

the boundary values 𝑦′𝑧(0, 𝜏).

Theorem 2.3.2 Similarly, let us assume that condition (a) is satisfied. Then:

I. For 𝑚 ∈ 𝑁,𝑃 2(𝑧, 𝜏) ∈ 𝑁 ;

II. 𝑃 2(𝑧, 𝜏) is a distributional solution of the equation 𝐿𝑘𝑦 = 𝑚𝑘𝛿𝑁2 , 𝑍 ≥ 0, 𝜏 ≥ 0;

satisfies the zero initial condition as 𝜏 → 0+;

III. If, moreover, 𝑘 ∈ 𝐶(𝑅+) and 𝑚′ ∈ 𝑁 , then 𝑃 2(𝑧, 𝜏) ∈ 𝐶∞ in 𝑧 and 𝐶1 in 𝜏 for

𝑧 > 0, 𝜏 ≥ 0 and is a classical solution of (2.1) with 𝑔 = 𝑚 = 0;

IV. 𝑃 2(𝑧, 𝜏) is continuous at 𝑥 = 0 for any 𝜏 ≥ 0.

Proof 2.3.2 Let’s insert a new variable into equation (2.11):

𝑥 =
1

4𝛼1(𝜏 − 𝛾)
. (2.15)

Our new variable brings an implicit function

𝛾 = 𝛾(𝜏, 𝑥) 𝑤𝑖𝑡ℎ
1

4𝛼1(𝜏)
≤ 𝑥 < +∞ 𝑎𝑛𝑑 𝛾 = 0 𝑓𝑜𝑟 𝑥 =

1

4𝛼1(𝜏)
,

because 𝑥′
𝛾 ≥ 0 (is zero only at isolated points). Therefore, (2.11) can be edited as

below, because 𝑘1(𝜏) = 𝛼1(𝜏):

𝑃 2(𝑧, 𝜏) =
1

4𝜋

∫︁ ∞

0.25𝑘1(𝜏)

𝑚(𝛾(𝜏, 𝑥))𝑥−1.5𝑒−𝑧2𝑥𝑑𝑥. (2.16)

(I) can be shown easily from equation (2.16), because

|𝑃 2(𝑧, 𝜏)| ≤ 1√
𝜋
||𝑚||(𝑘1(𝜏))1/2; (𝑘1(0) = 0).

(II) can be shown as in Theorem 2.2.1.

(𝑃 2(𝑧, 𝜏))′𝜏 = 1/2𝜋−1/2𝑚(0)(𝑘1(𝜏))
−1/2𝑘(𝜏)𝑒

−𝑧2

4𝑘1(𝜏) + 𝑃 2(𝑧, 𝜏 ;𝑚′
𝜏 ). (2.17)
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Here 𝑃 2(𝑧, 𝜏 ;𝑚′
𝜏 ) is the potential given by (2.16) with density [𝑚(𝛾(𝜏, 𝑥))]′𝜏 .

(III) can be derived from (2.16)-(2.17). 𝑃 2(𝑧, 𝜏) satisfies the equation 𝐿𝑘𝑃
2 = 0 for

any 𝑧 > 0, because the support of 𝑚𝑘𝛿𝑁2 is 𝑁2.

(IV) can be reached by comparison of the convergent integral

𝑃 2(0, 𝜏) =
1

4𝜋

∫︁ ∞

1/(4𝑘1(𝜏))

𝑚(·)𝑥−3/2𝑑𝑥,

with 𝑃 2(𝑧, 𝜏) for all 𝑧 close to 0.

As a result, we obtain this estimate:

|𝑃 2(𝑧, 𝜏)− 𝑃 2(0, 𝜏)| ≤ 1

2
||𝑚|||𝑧|(1−Ψ(|𝑥*|/2(𝑘1(𝜏))1/2),

where 0 ≤ 𝑥* ≤ 𝑥 and Ψ is the probability integral [5].

2.4 Double-layer Potential

Double layer potential 𝐷(𝑧, 𝜏) as shown in equation (2.12) is a part of a solution

respect to the boundary condition

𝑦(0, 𝜏) = 𝜂(𝜏), 𝜏 ≥ 0.

There is a theorem related to double-layer potential:

Theorem 2.4.1 Suppose that (a) is satisfied. Then,

I. For 𝜂 ∈ 𝑁, 𝐷(𝑧, 𝜏) ∈ 𝑁 ;

II. 𝐷(𝑧, 𝜏) is a distributional solution of the equation 𝐿𝑘𝑦 = −(𝑘𝜂𝛿𝑁2)
′
𝑧 and satisfies

zero initial condition as 𝜏 → 0+;

III. For 𝑧 > 0, 𝜏 ≥ 0 𝑖𝑓 𝑘, 𝜂 ∈ 𝐶(𝑅)+ 𝑎𝑛𝑑 𝜂′ ∈ 𝑁, then 𝐷(𝑧, 𝜏) ∈ 𝐶∞ in z, and

𝐶1 in 𝜏 , and it is a classical solution of (2.1)-(2.2) with 𝑔 = 𝜁 = 0;
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IV. Given that 𝜂(𝜏) ∈ 𝐶1(𝑅+), 𝐷(𝑧, 𝜏) satisfies the following ”jump formulae”:

lim
𝑧→±0

𝐷(𝑧, 𝜏) = ±1

2
𝜂(𝜏). (2.18)

Proof 2.4.1 (I)-(III) can be proved as in Theorem 2.2.1. To do so, we need to create

a new variable. Let it be (2.15). Then, 𝐷(𝑧, 𝜏) can be reformed as:

𝐷(𝑧, 𝜏 =
𝑧

2
√
𝜋

∫︁ ∞

1/4𝑘1(𝜏)

𝜂(𝛾)𝑥−1/2𝑒−𝑧2𝑥𝑑𝑥, (2.19)

and the derivative of this equation is:

𝜕𝐷

𝜕𝜏
=

𝑧√
𝜋
𝜂(0)(𝑘1(𝜏))

−3/2𝑘(𝜏)𝑒𝑥𝑝(−𝑧2/4(𝑘1(𝜏)) +𝐷(𝑧, 𝜏 ; 𝜂′(𝜏))), (2.20)

where 𝐷(𝑧, 𝜏 ; 𝜂′𝜏 ) is potential (2.19) with density [𝜂(𝛾(𝜏, 𝑥))]′𝜏 . Hence, (II) can be

easily shown as in Theorem 2.3.1. Similarly, (I) and (III) can be derived from (2.19)-

(2.20) as shown in Theorem 2.3.2.

Part (IV) needs more efforts to put in. We start with equating 𝜂(𝜏) = 𝜂(𝛾) for any

𝛾 satisfying 0 ≤ 𝛾 ≤ 𝜏 , and the corresponding double-layer potential is denoted by

𝐷0.Then (2.19) and (2.13) implies that in case 𝑧 ̸= 0:

𝐷0 =
𝑧

2
√
𝜋
𝜂(𝜏)

∫︁ ∞

1/4𝑘1(𝜏)

𝑥−1/2𝑒𝑧
−2

𝑥𝑑𝑥 = ±𝜂(𝜏)

2

(︃
1−Ψ

(︃
𝑧

2
√︀
𝑘(𝜏)

)︃)︃
(2.21)

here the sign of 𝑧 is placed instead of ±, also,

lim
𝑧→0±

𝐷0(𝑧, 𝜏) = ±1

2
𝜂(𝜏),

because of Ψ(0) = 0. After that we deal with 𝐷0−𝐷 for 𝑧 > 0, by applying integration

with moves, namely over (0, 𝜏 −Δ) and (𝜏 −Δ, 𝜏). We consider the cases where 𝜏

is ”regular” and ”irregular” individually. To begin with, suppose that

𝐷(𝑧, 𝜏)−𝐷0(𝑧.𝜏) = 𝐽1 + 𝐽2,
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where

𝐽1 =
𝑧

4
√
𝜋

∫︁ 𝜏−Δ

0

(𝜂(𝜏)− 𝜂(𝛾))
𝑘(𝛾)

𝛼
3/2
1 (𝜏 − 𝛾)

𝑒𝑥𝑝

(︂
− 𝑧2

4𝛼1(𝜏 − 𝛾)

)︂
𝑑𝛾,

𝐽2 =
𝑧

4
√
𝜋

∫︁ 𝜏

𝜏−Δ

(𝜂(𝜏)− 𝜂(𝛾))
𝑘(𝛾)

𝛼
3/2
1 (𝜏 − 𝛾)

𝑒𝑥𝑝

(︂
− 𝑧2

4𝛼1(𝜏 − 𝛾)

)︂
𝑑𝛾,

and, similarly in (21), each 𝜏 without looking at its regularity,

|𝐽1| ≤ ||𝜂||

[︃
Ψ

(︃
𝑧

2
√︀

𝑘(𝜏)− 𝑘(𝜏 −Δ)

)︃
−Ψ

(︃
𝑧

2
√︀

𝑘(𝜏)

)︃]︃
→ 0

where 𝑧 → 0 and Δ > 0 is arbitrary and fixed too. 𝐼2 needs to be treated separated for

different values of 𝜏 . When 𝜏 is regular meaning 𝑘(𝜏) > 0, we can choose sufficiently

small Δ. Hence, it makes 𝑘(𝛾) > 0 𝑜𝑣𝑒𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝜏 −Δ, 𝜏 ], Therefore, substitution

of variables 𝑥 = (𝜏 − 𝛾)−1 and 𝛼1(𝜏 − 𝛾) = 𝛼(𝛾)(𝜏 − 𝛾) in interval [𝜏 −Δ, 𝜏 ] help us

to get:

|𝐼2| ≤
||𝑘|||𝑧|||𝜂′||
4
√
𝜋𝑘

3/2
Δ

∫︁ ∞

1/Δ

𝑥−3/2𝑒𝑥𝑝

(︂
− 𝑧2

4𝑘((𝜏)− 𝑘(𝜏 −Δ))

)︂
𝑑𝑥

=
||𝑘|||𝑧|||𝜂′||
2
√
𝜋𝑘

3/2
Δ

√
Δ𝑒𝑥𝑝

(︂
− 𝑧2

4(𝑘(𝜏)− 𝑘(𝜏 −Δ))

)︂
.

In the line above, 0 < 𝑘Δ = min
𝛾∈[𝜏−Δ,𝜏 ]

|𝑘(𝛾*)| → 𝑘(𝜏) with Δ → 0. This implies that

𝐼2 → 0 with either 𝑧 or Δ → 0. When 𝜏 is not regular, in other words, 𝑘(𝜏)=0, it

needs another approach. Equation (2.15) allows us to show that

𝐼2 ≤
1

2
max

𝛾∈[𝜏−Δ,𝜏 ]
|𝜂(𝜏)− 𝜂(𝛾)|

(︃
1−Ψ

(︃
𝑧

2
√︀
𝑘(𝜏)− 𝑘(𝜏 −Δ)

)︃)︃

≤ 1

2
max

𝛾∈[𝜏−Δ,𝜏 ]
|𝜂(𝜏)− 𝜂(𝛾)| < 𝜀,

where 𝜀 is arbitrary small number. These steps imply that 𝐷0 −𝐷 → 0 with 𝑧 → 0,

thus the equation (2.18) [5].
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Chapter 3

Elements of potential theory for

multi-dimensional degenerate

parabolic equations

Now, we move on to construct the potential theory for the multi-dimensional version

of the degenerate parabolic equation (2.1). The next step will be an analysis on

the consequences. As considered in Chapter 2, we find the fundamental solution by

applying Fourier transform in 𝑧. It helps us to develop degenerate potential theory.

This chapter covers the degenerate versions of volume potential, single-layer potentials

(Poisson integral), double layer potential with their properties and applications. To be

precise, we first discuss Cauchy problems for multi-dimensional degenerate parabolic

equation with its fundamental solution. Secondly, we study the layer potentials. Note

that discussion of this session is based on the work [4].

3.1 Fundamental Solution and Cauchy problems

We write our equation (2.1) in new form for multi-dimensional case:

♢𝑘𝑦(𝑧, 𝜏) :=
𝜕𝑦(𝑧, 𝜏)

𝜕𝜏
− 𝑘(𝜏)Δ𝑧𝑦(𝑧, 𝜏) = 𝑔(𝑧, 𝜏), (3.1)
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Here (𝑧, 𝜏) ∈ Ω × (0, 𝑇 ), where 𝑇 is finite and Ω is bounded in 𝑅𝑛 with 𝑛 > 1 and

Lyapunov boundary 𝜕Ω ∈ 𝐶1+𝜎, 0 < 𝜎 < 1, 𝑔 is a some function of 𝑧 and 𝜏 . The

conditions (a)-(b) on 𝑘(𝜏) are same as in Chapter 2. To ease our calculation, we will

use the function 𝛽(𝜏, 𝛾) which is given by the formula

𝛽(𝜏, 𝛾) =

∫︁ 𝜏

𝛾

𝑘(𝑣)𝑑𝑣 = 𝑘1(𝜏)− 𝑘1(𝛾), 𝛽(𝜏, 0) = 𝑘1(𝜏).

It is worth to mention that satisfying (a) means 𝛽(𝜏, 𝛾) is greater than zero for any

𝛾 satisfying 𝜏 > 𝛾 > 0.

Lemma 3.1.1 Under condition (b), the fundamental solution of equation (3.1) is

given as

𝜉𝑛,𝛽(𝑧, 𝜏) = 𝜉𝑛(𝑧, 𝑘1(𝜏)) =
𝐻(𝜏)𝑒𝑥𝑝

(︁
|𝑧|2

4𝑘1(𝜏)

)︁
(4𝜋𝑘1(𝜏))𝑛/2

, (𝑧, 𝜏) ∈ 𝑅𝑛 ×𝑅, (3.2)

where 𝜉𝑛 is a standard fundamental solution of the diffusion operator, 𝐻 is a Heaviside

function and |𝑧| is the Euclidean norm.

Proof 3.1.1
𝜕𝜉(𝑧, 𝜏)

𝜕𝜏
− 𝑘(𝜏)Δ𝑧𝜉(𝑧, 𝜏) = 𝛿(𝑧)𝛿(𝜏). (3.3)

By 𝛿 we represent the Dirac distribution. After applying the Fourier transform in 𝑧,

the achieved equation is:

𝜕𝜉(𝜖, 𝜏)

𝜕𝜏
+ 𝑘(𝜏)|𝜖|2Δ𝑧𝜉(𝜖, 𝜏) = 1(𝜖)𝛿(𝜏), (𝜖, 𝜏) ∈ 𝑅𝑛 ×𝑅, (3.4)

where

𝜉(𝜖, 𝜏) = 𝐺𝑧[𝜉](𝜖, 𝜏) =

∫︁
𝑅𝑛

𝜉(𝑧, 𝜏)𝑒𝑖⟨𝜖,𝑧⟩𝑑𝑧, (𝑖2 = −1),

1(𝜖) is the identity function in 𝑅𝑛 and the dot product in 𝑅𝑛 is represented as ⟨·, ·⟩.

Hence, solution of the last equation (3.4) is

𝜉(𝜖, 𝜏) = 𝐻(𝜏)𝑒𝑥𝑝(−|𝜖|2𝑘1(𝜏)), (𝜖, 𝜏) ∈ 𝑅𝑛 ×𝑅.
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The application of inverse Fourier transform with its properties completes the proof.

Now we want to check whether

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾) := 𝜉𝑛(𝑧 − 𝜖, 𝛽(𝜏, 𝛾))

satisfies the equation

𝜕𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜏
− 𝑘(𝜏)Δ𝑧𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾) = 𝛿(𝑧 − 𝜖)𝛿(𝜏 − 𝛾)

under condition (a) for all values of 𝜏, 𝛾 ∈ 𝑅 and 𝑧, 𝜖 ∈ 𝑅𝑛.

Now, we make substitution of the variable 𝜖𝑖 =
𝑧𝑖

2
√

𝑘1(𝜏)
for 𝑖 = 1, 2, ...𝑛.We will obtain

∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧, 𝜏)𝑑𝑧 =
1

(4𝜋𝑘1(𝜏))𝑛/2

∫︁
𝑅𝑛

𝑒𝑥𝑝

(︂
− |𝑥|2

4𝑘1(𝜏)

)︂
𝑑𝑧 =

𝑛∏︁
𝑖=1

1

𝜋𝑛/2

∫︁ ∞

−∞
𝑒𝑥𝑝(−𝜖2𝑖 )𝑑𝜖𝑖 = 1, 𝜏 > 0.

(3.5)

In addition, 𝜉𝑛,𝛽(𝑧, 𝜏) has a property such as

𝜉𝑛,𝛽(𝑧, 𝜏) −→ 𝛿(𝑧) 𝜏 −→ 0+, ∀𝑧 ∈ 𝑅𝑛. (3.6)

This property can be shown. Let us take a function 𝜇 which is differentiable many

times in 𝑅𝑛 with compact support. By application of polarization formula, we obtain

∫︁
𝑅𝑛

𝑔(|𝑧|)𝑑𝑧 = 𝜔𝑛

∫︁ ∞

0

𝑔(𝜂)𝜂𝑛−1𝑑𝜂,

where 𝑔 is some integrable function in 𝑅𝑛, 𝜔𝑛 = 2𝜋𝑛/2

Γ(𝑛/2)
. Then by applying MVT, we

get ⃒⃒⃒⃒ ∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧, 𝜏)(𝜇(𝑧)− 𝜇(0))𝑑𝑧

⃒⃒⃒⃒
≤ 𝐴

(4𝜋𝑘1(𝜏))𝑛/2

∫︁
𝑅𝑛

𝑒𝑥𝑝

(︂
− |𝑧|2

4𝑘1(𝜏)

)︂
|𝑧|𝑑𝑧

=
𝐴𝜔𝑛

(4𝜋𝑘1(𝜏))𝑛/2

∫︁ ∞

0

𝑒𝑥𝑝

(︂
− 𝜂2

4𝑘1(𝜏)

)︂
𝜂𝑛𝑑𝜂 =

2𝐴𝜔𝑛

√︀
𝑘1(𝜏)

𝜋𝑛/2

∫︁ ∞

0

𝑒𝑥𝑝(−𝑦2)𝑦𝑛𝑑𝑦

= 2𝐴
√︀

𝑘1(𝜏),
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Here 𝐴 is some positive constant. Because of the 𝑘1(𝜏) is continuous and not negative

in interval [0, 𝑇 ], by using (3.5), we can derive (3.6) as below

(𝜉𝑛,𝛽, 𝜇(𝑧)) =

∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧, 𝜏)𝜇(𝑧)𝑑𝑧 = 𝜇(0)

∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧, 𝜏)𝑑𝑧

+

∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧, 𝜏)(𝜇(𝑧)− 𝜇(0))𝑑𝑧 −→ (𝛿(𝑧), 𝜇(𝑧)) = 𝜇(0), 𝑎𝑠 𝜏 −→ 0+.

As we have 𝛽(𝜏, 𝛾) > 0 for all 𝛾 such that 𝜏 > 𝛾 > 0 under condition (a), we can

check that ∫︁
𝑅𝑛

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑑𝜖 = 1, 𝜏 > 𝛾 > 0, 𝑧 ∈ 𝑅𝑛 [4]. (3.7)

3.2 Types of potentials

3.2.1 Poisson potential

The Poisson potential is given by equation below.

(𝑃𝑙)(𝑧, 𝜏) =

∫︁
Ω

𝜉𝑛,𝛽(𝑧 − 𝜖, 𝜏)𝑙(𝜖)𝑑𝜖, 𝑧 ∈ Ω, 0 < 𝜏 < 𝑇, (3.8)

Here 𝑙 is a bounded function in range 𝑅𝑛 with supp𝑙 ⊂ Ω and 𝜉(𝑛, 𝛽)(𝑧 − 𝜖, 𝜏) =

𝜉𝑛(𝑧 − 𝜖, 𝑘1(𝜏)). There is a theorem related to Poisson potential.

Theorem 3.2.1 Assume that coefficient 𝑘(𝜏) fits the condition (b). Function 𝑙 is

bounded as written in sentence above. Then, Poisson potential (3.8) accepts the esti-

mation

|(𝑃𝑙)(𝑧, 𝜏)| ≤ sup
𝜖∈Ω

|𝑙(𝜖)|, 𝑧 ∈ Ω, 0 < 𝜏 < 𝑇, (3.9)

and is a solution of the equation

♢𝑘𝑦 = 0, 𝑖𝑛 Ω× (0, 𝑇 ). (3.10)

Furthermore, the Poisson potential 𝑃𝑙 will be the element of 𝐶∞ class and satisfies
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the initial condition

𝑦(·, 0) = 𝑙, 𝑖𝑛 Ω, (3.11)

if the function 𝑙 is continuous and bounded in 𝑅𝑛 with supp𝑙 ⊂ Ω. Also, it provides

its continuity in Ω× [0, 𝑇 ].

Proof 3.2.1 It is evident that

(𝑃𝑙)(𝑧, 𝜏) =

∫︁
Ω

𝜉𝑛,𝛽(𝑧 − 𝜖, 𝜏)𝑙(𝜖)𝑑𝜖

(𝑃𝑙)(𝑧, 𝜏) =

∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧 − 𝜖, 𝜏)𝑙(𝜖)𝑑𝜖 (𝑧, 𝜏) ∈ Ω× (0, 𝑇 ).

Moreover, we own the estimate

|(𝑃𝑙)(𝑧, 𝜏)| ≤ sup
𝜖∈𝑅𝑛

|𝑙(𝜖)|
∫︁
𝑅𝑛

𝜉𝑛,𝛽(𝑧 − 𝜖, 𝜏)𝑑𝜖 = sup
𝜖∈𝑂𝑚𝑒𝑔𝑎

|𝑙(𝜖)|.

We must check that 𝑃𝑙 satisfies the equation (3.10), because for all values of 𝑧 and 𝜏

in their domain, integration and differentiation can be interchanged in equation (3.8).

Let function 𝑙 be bounded as before. It is clear that, by using (3.6), it can be observed

that 𝑃𝑙 satisfies (3.11). Now, it is turn to make substitution. Let 𝜖 = 𝑧 + 2
√︀

𝑘1(𝜏)𝑣.

Then, we get

𝑃𝑙(𝑧, 𝜏) =
1

𝜋𝑛/2

∫︁
𝑅𝑛

𝑙(𝑧 + 2
√︀

𝑘1(𝜏)𝑣)𝑒𝑥𝑝(−|𝑣|2)𝑑𝑣.

The supposition for function 𝑙 grants the continuity and boundedness. Allow 𝑁𝑙 be

the upper bound for 𝑙. Because of the fact that 𝑙 is uniformly continuous, for every

𝜉 > 0, there exist 𝛿 > 0 such that |𝑙(𝑧) − 𝑙(𝜖)| < 𝜉/2 for all values of 𝑧 and 𝜖 ∈ 𝑅𝑛

with |𝑧 − 𝜖| < 𝛿. Hence, for arbitrary 𝜉 > 0, we can select 𝜂 > 0 such that

1

𝜋𝑛/2

∫︁
|𝑣|≥𝜂

𝑒𝑥𝑝(−|𝑣|2)𝑑𝑣 ≤ 𝜉

4𝑁𝑙

.

For arbitrary 𝑟 > 0, there exists 𝛿𝑟 > 0 such that |𝑘1(𝜏)| < 𝑟 for all values 𝜏 ∈ [0, 𝑇 ]

with 𝜏 < 𝛿𝑟, because 𝑘1(𝜏) is continuous in [0, 𝑇 ]. Putting 𝑟 = 𝛿2

4𝜂2
and applying the
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information |𝑣| ≤ 𝜂 and 𝜏 < 𝛿𝑟, we obtain 2
√︀

𝑘1(𝜏)𝑣 < 2
√
𝑟𝜂 = 𝛿. We reduce these

facts to ⃒⃒⃒⃒
1

(4𝜋𝑘1(𝜏))

∫︁
𝑅𝑛

𝑒𝑥𝑝

(︂
−|𝑧 − 𝜖|2

4𝑘1(𝜏)

)︂
𝑙(𝜖)𝑑𝜖− 𝑙(𝑧)

⃒⃒⃒⃒
⃒⃒⃒⃒

1

𝜋𝑛/2

∫︁
𝑅𝑛

(𝑙(𝑧 + 2
√︀
𝑘1(𝜏)𝑣)− 𝑙(𝑧))𝑒𝑥𝑝(−|𝑣|2𝑑𝑣)

⃒⃒⃒⃒

<
𝜉

2𝜋𝑛/2

∫︁
|𝑣|≤𝜂

𝑒𝑥𝑝(−|𝑣|2)𝑑𝑣 + 2𝑁𝑙

𝜋𝑛/2

∫︁
|𝑣|≥𝜂

𝑒𝑥𝑝(−|𝑣|2)𝑑𝑣 < 𝜉,

for every 𝑧 ∈ 𝑅𝑛 and 𝜏 < 𝛿𝑟. It involves the 𝑃𝑙′𝑠 continuity at 𝜏 = 0 and 𝑃𝑙(·, 0) = 𝑙

in Ω [4].

3.2.2 Volume Potential

The volume potential is written by equation:

(𝑃𝑔)(𝑧, 𝜏) =

∫︁ 𝜏

0

∫︁
Ω

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖𝑑𝛾, 𝑧 ∈ Ω, 0 < 𝜏 < 𝑇. (3.12)

Here the function 𝑔 is bounded in Ω× [0, 𝑇 ] with supp𝑔(·, 𝜏) ⊂ Ω, ∀𝜏 ∈ [0, 𝑇 ].

Theorem 3.2.2 Let 𝑘(𝜏) hold the condition (a) and the function g be bounded in

Ω × [0, 𝑇 ] with supp 𝑔(·, 𝜏) ⊂ Ω ∀𝜏 ∈ [0, 𝑇 ]. Then the potential 𝑃𝑔 with density 𝑔

accepts the estimation

|(𝑃𝑔)(𝑧, 𝜏)| ≤ 𝜏 sup
(𝜖,𝛾)∈Ω×[0,𝜏 ]

|𝑔(𝜖, 𝛾)|, 𝑧 ∈ Ω, 0 < 𝜏 < 𝑇, (3.13)

and solves (3.1) with zero initial condition

𝑦(·, 𝜏) −→ 0 𝑎𝑠 𝜏 −→ 0+, 𝑖𝑛 Ω. (3.14)

Proof 3.2.2 We know that it is evident

(𝑃𝑔)(𝑧, 𝜏) =

∫︁ 𝜏

0

∫︁
Ω

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖𝑑𝛾
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=

∫︁ 𝜏

0

∫︁
𝑅𝑛

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖𝑑𝛾, 𝑧 ∈ Ω, 𝜏 ∈ (0, 𝑇 ),

because supp 𝑔(·, 𝜏) ⊂ Ω,∀𝜏 such that 0 ≤ 𝜏 ≤ 𝑇. Therefore, by using equation (3.7),

we get equation (3.13)

|(𝑃𝑔)(𝑧, 𝜏)| ≤ sup
(𝜖,𝛾)∈𝑅𝑛×[0,𝛾]

|𝑔(𝜖, 𝛾)|
∫︁ 𝜏

0

∫︁
𝑅𝑛

𝜉𝑛,𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖𝑑𝛾

= 𝑡 sup
(𝜖,𝛾)∈Ω×[0,𝛾]

|𝑔(𝜖, 𝛾)|, (𝑧, 𝜏) ∈ Ω× (0, 𝑇 ).

By calculating directly, it can be seen that 𝑃𝑔 satisfies our initial equation (3.1) [4].
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Chapter 4

Focus of the thesis

The main focus of this thesis is to demonstrate the multi-dimensional analysis from

Chapter 3 to one-dimensional case. Note that calculation in one-dimensional case

is different than those in the multi-dimensional case which can be found in [4]. We

consider a potential and a differential equation, and that potential must be a solution

to the given equation. But, we want to make it unique solution of the problem. To

do so, we try to find the lateral boundary conditions. Consider

𝑦(𝑧, 𝜏) =

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝜏)𝑙(𝜖)𝑑𝜖, (4.1)

𝑦(𝑧, 0) = 𝑙(𝑧), (4.2)

where 𝜉𝛽(𝑧, 𝜏) is the fundamental solution of the Cauchy problem of the equation

𝜕𝑦

𝜕𝜏
− 𝑘(𝜏)

𝜕2𝑦

𝜕𝑧2
= 0. (4.3)

Conditions on 𝑘(𝜏)

Conditions on 𝑘(𝜏) are as follows:

(a) 𝑘(𝜏) ≥ 0 so, the coefficient can accept zero value.

(b) 𝑘1(𝜏) =
∫︀ 𝜏

0
𝑘(𝑠)𝑑𝑠 and it is greater than zero when 𝜏 > 0. So, 𝑘1(0) = 0 and

𝑘1(𝑡) can accept negative values.
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It can be noticed that (a) is the special case of (b). So, satisfying first condition

automatically means that it satisfies the second one too. When the coefficient 𝑘(𝜏) is

positive, it is easy to solve the given equation. However, when the coefficient is nega-

tive and we know that it can accept negative values, the obstacle called degeneracy is

observed. Therefore, it needs more effort to handle this problem. By applying Fourier

transform in 𝑧 and the second condition, the fundamental solution of the problem can

be obtained by substituting 𝜉𝛽(𝑧, 𝜏).

𝜉𝛽(𝑧, 𝜏) = 𝜉(𝑧, 𝑘1(𝜏)) =
𝐻(𝜏)

2
√︀

𝜋𝑘1(𝜏)
exp(−𝑧2/4𝑘1(𝜏)). (4.4)

The fundamental solution contains 𝐻(𝜏) function which is called the Heaviside func-

tion. It is usually defined as an integral of the Dirac delta function. Now, the

remaining task is to give lateral boundary conditions of the problem.

4.1 Simple example

Here we discuss the main result from [7].

As written above, potentials are the elements of potential theory and they are the

solutions for differential equations. For instance, let us look at following potential in

one dimension, where Ω = (0, 1). By 𝑡 we denote the time in our equation and it

satisfies 𝑡 ∈ Ω.

𝑦(𝑡) =

∫︁ 1

0

−1

2
| 𝑡− 𝜏 | 𝑓(𝜏)𝑑𝜏. (4.5)

Here 𝑓 can be integrated in the interval (0,1). The fundamental solution of the

equation below (4.6) is the kernel of the potential (4.5)

−𝜕2
𝑡 𝜉(𝑡− 𝜏) = 𝛿(𝑡− 𝜏), (4.6)

where

𝜉(𝑡− 𝜏) = −1

2
(𝑡− 𝜏).
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and 𝛿 is the Dirac distribution. Therefore, the potential (4.5) fits the equation

−𝜕2
𝑡 𝑦(𝑡) = 𝑓(𝑡), 𝑡 ∈ Ω. (4.7)

The next task is to find the lateral boundary conditions of the above equation. By

using integration by parts from Calculus, we obtain

𝑦(𝑡) =

∫︁ 1

0

−1

2
| 𝑡− 𝜏 | 𝑓(𝜏)𝑑𝜏 =

∫︁ 1

0

1

2
| 𝑡− 𝜏 | 𝜕2

𝜏𝑦(𝜏)𝑑𝜏

=

∫︁ 𝑡

0

1

2
(𝑡− 𝜏)𝜕2

𝜏𝑦(𝜏)𝑑𝜏 +

∫︁ 1

0

1

2
(𝜏 − 𝑡)𝜕2

𝜏𝑦(𝜏)𝑑𝜏

= 𝑦(𝑡)− 𝑡
𝑦′(0) + 𝑦′(1)

2
− −𝑦′(1) + 𝑦(0) + 𝑦(1)

2
, ∀𝑡 ∈ (0, 1),

after canceling 𝑦(𝑡) from both sides, we are left with,

𝑡(𝑦′(0) + 𝑦′(1)) + (−𝑦′(1) + 𝑦(0) + 𝑦(1)) = 0, ∀𝑡 ∈ (0, 1).

Then, boundary conditions for the potential (4.5) are found after canceling 𝑡.

𝑦′(0) + 𝑦′(1) = 0 𝑎𝑛𝑑 − 𝑦′(1) + 𝑦(0) + 𝑦(1) = 0. (4.8)

Now, it is time to construct our boundary value problem with obtained results.

−𝜕2
𝑡 𝑦(𝑡) = 𝑓(𝑡), 𝑡 ∈ Ω,

𝑦′(0) + 𝑦′(1) = 0 𝑎𝑛𝑑 − 𝑦′(1) + 𝑦(0) + 𝑦(1) = 0,

𝑦(𝑡) =

∫︁ 1

0

−1

2
| 𝑡− 𝜏 | 𝑓(𝜏)𝑑𝜏. [7]

Now, our problem has become a BVP with a unique solution. Above strategy works

best with ODE, but it is tiresome for partial differential equations. This type of

problems first appeared in Kac’s works, who was a Polish-American mathematician.
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He developed these BVPs with further applications [1]. (see also [6])

4.2 Main result

Here we use some techniques from [2] and [3].

We have equations (4.1)-(4.3) with 0 < 𝑥 < 1. And we know that solution of our

equation is of the form after substituting 𝜉𝛽(𝑧, 𝜏) with domain 𝐷 = 0 < 𝑧 < 1, 𝜏 > 0

𝑦(𝑧, 𝜏) =
1

2
√︀

𝜋𝑘1(𝜏)

∫︁ 1

0

exp

(︂
−(𝑧 − 𝜖)2

4𝑘1(𝜏)

)︂
𝑙(𝜖)𝑑𝜖. (4.9)

Theorem 4.2.1 For any 𝑘(𝜏) ∈ 𝐶
𝛼
2 (0, 𝑇 ) and 𝑔(𝑧, 𝜏) ∈ 𝐶

𝛼,𝛼
2

𝑧,𝜏 (Ω) the generalised heat

potential is a unique solution of the equation (4.1)-(4.3) in 𝐶
2+𝛼, 1+𝛼

2
𝑧,𝜏 with boundary

conditions

𝐼𝑦(𝑧, 𝜏)|𝑧=1 = 0, 𝐼𝑦(𝑧, 𝜏)|𝑧=0 = 0. (4.10)

where

𝐼𝑦(𝑧, 𝜏) := −𝑦(𝑧, 𝜏)𝑘(𝜏)

2

+

∫︁ 𝜏

0

[︂
𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑘(𝜏)𝑦(𝜖, 𝛾)− 𝜖𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑘(𝛾)

𝜕𝑦(𝜖, 𝛾)

𝜕𝜖

]︂ ⃒⃒⃒⃒𝜖=1

𝜖=0

𝑑𝛾.

Proof 4.2.1 We know that

𝑦(𝑧, 𝜏) = lim
𝛿→0

𝑦𝛿(𝑧, 𝜏),

and

𝑦𝛿(𝑧, 𝜏) =

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

𝜉𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖

In addition, it clear that

𝑑𝑦(𝑧, 𝜏)

𝑑𝜏
=

𝜕𝑦(𝑧, 𝜏)

𝜕𝑧

𝜕𝑧

𝜕𝜏
+

𝜕𝑦(𝑧, 𝜏)

𝜕𝜏

𝜕𝜏

𝜕𝜏
=

𝜕𝑦(𝑧, 𝜏)

𝜕𝜏
,

𝑑𝑦(𝑧, 𝜏)

𝑑𝑧
=

𝜕𝑦(𝑧, 𝜏)

𝜕𝑧

𝜕𝑧

𝜕𝑧
+

𝜕𝑦(𝑧, 𝜏)

𝜕𝜏

𝜕𝜏

𝜕𝑧
=

𝜕𝑦(𝑧, 𝜏)

𝜕𝑧
.

(4.11)

30



After applying the properties of fundamental solution (4.4), we have:

0 = lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

0𝑦(𝜖, 𝛾)𝑑𝜖 = lim
𝛿→0

∫︁ 𝜏−𝛾

0

𝑑𝛾

∫︁ 1

0

𝛿(𝑧 − 𝜖, 𝜏 − 𝛾)𝑦(𝜖, 𝛾)𝑑𝜖

= lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

(︂
−𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾

𝜕𝛾
)− 𝑘(𝜏)

𝜕2𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾

𝜕𝜖2

)︂
𝑦(𝜖, 𝛾)𝑑𝜖,

also

lim
𝛿→0

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝛿)𝑦(𝜖, 𝜏 − 𝛿)𝑑𝜖

= lim
𝛿→0

∫︁ 1

0

𝛿(𝑧 − 𝜖))𝑦(𝜖, 𝜏 − 𝛿)𝑑𝜖 = 𝑦(𝑧, 𝜏), 𝑧 ∈ (0, 1).

(4.12)

Taking into account that 𝑦(𝑧, 𝜏) ∈ 𝐶
2+𝛼,1+𝛼

2
𝑧,𝜏 (Ω) and by considering equations (4.9),

(4.8), (4.3) and (4.2) for ∀(𝑧, 𝜏) ∈ (0, 1)× (0, 𝑇 ) a straight computation gives:

0 =

∫︁ 𝜏

0

𝑑𝛾

∫︁ ∞

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑔(𝜖, 𝛾)𝑑𝜖

=

∫︁ 𝜏

0

𝑑𝛾

∫︁ ∞

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾) ◇𝛽 𝑦(𝑧, 𝜏)𝑑𝜖

= lim
𝛿→0

∫︁ 1

0

𝑑𝜖

∫︁ 𝜏−𝛿

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝛾
𝑑𝛾

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑘(𝛾)
𝜕2𝑦(𝜖, 𝛾)

𝜕𝜖2
𝑑𝜖

= lim
𝛿→0

∫︁ 1

0

𝑑𝜖

∫︁ 𝜏−𝛿

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑑𝑦(𝜖, 𝛾)

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑘(𝛾)𝑑𝑦𝜖(𝜖, 𝛾)

= lim
𝛿→0

∫︁ 1

0

[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑦(𝜖, 𝛾)]
⃒⃒𝛾=𝜏−𝛿

𝛾=0
𝑑𝜖

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝛾
𝑦(𝜖, 𝛾)𝑑𝜖
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− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑘(𝛾)[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
− 𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

[
𝜕2𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖2
𝑘(𝛾)𝑦(𝜖, 𝛾)]𝑑𝜖

= lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑑𝛾

∫︁ 1

0

(︂
−𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝛾
− 𝑘(𝛾)

𝜕2𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖2

)︂
𝑦(𝜖, 𝛾)𝑑𝜖

+ lim
𝛿→0

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝛿)𝑦(𝜖, 𝜏 − 𝛿)− 𝜉𝛽(𝑧 − 𝜖, 𝜏)𝑦(𝜖, 0)𝑑𝜖

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑘(𝛾)[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
− 𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾

= 0 + lim
𝛿→0

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝛿)𝑦(𝜖, 𝜏 − 𝛿)𝑑𝜖

− lim
𝛿→0

∫︁ 1

0

𝜉𝛽(𝑧 − 𝜖, 𝜏)𝑦(𝜖, 0)𝑑𝜖

− lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑘(𝛾)[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
− 𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾

= 𝑦(𝑧, 𝜏)−𝑦(𝑧, 𝜏)−lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑘(𝛾)[𝜉𝛽(𝑧−𝜖, 𝜏−𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
−𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾

= lim
𝛿→0

∫︁ 𝜏−𝛿

0

𝑘(𝛾)[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
− 𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾.

It yields

∫︁ 𝜏

0

𝑘(𝛾)[𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)
𝜕𝑦(𝜖, 𝛾)

𝜕𝜖
− 𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑦(𝜖, 𝛾)]

⃒⃒𝜖=1

𝜖=0
𝑑𝛾 = 0, (𝑧, 𝜏) ∈ Ω.

(4.13)

In case if 𝑧 −→ 1 − 0 and 𝑧 −→ 0 + 0, the two integrals below brings the jump

relations. ∫︁ 𝜏

0

[︂
𝜕𝜉𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑘(𝛾)𝑦(𝜖, 𝛾)

]︂ ⃒⃒⃒⃒
𝜖=1

𝑑𝛾,

∫︁ 𝜏

0

[︂
𝜕𝜉𝑘(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑘(𝛾)𝑦(𝜖, 𝛾)

]︂ ⃒⃒⃒⃒
𝜖=0

𝑑𝛾.

As a result, when 𝑧 −→ 1 − 0 and 𝑧 −→ 0 + 0, we achieve the lateral boundary
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conditions

𝐼𝑦(𝑧, 𝜏)
⃒⃒
𝑧=1

= 0, 𝑎𝑛𝑑 𝐼𝑦(𝑧, 𝜏)
⃒⃒
𝑧=0

= 0,

where

𝐼𝑦(𝑧, 𝜏) := −𝑦(𝑧, 𝜏)𝑘(𝜏)

2

+

∫︁ 𝜏

0

[︂
𝜕𝜉𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)

𝜕𝜖
𝑘(𝜏)𝑦(𝜖, 𝛾)− 𝜖𝛽(𝑧 − 𝜖, 𝜏 − 𝛾)𝑘(𝛾)

𝜕𝑦(𝜖, 𝛾)

𝜕𝜖

]︂ ⃒⃒⃒⃒𝜖=1

𝜖=0

𝑑𝛾.

It completes the proof.
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Chapter 5

Conclusion

To conclude with, this thesis paper studied the elements of potential theory and their

applications in one-dimensional and multi-dimensional degenerate parabolic equa-

tions. Researchers have been studying potential theory and have applied it to solve

initial-boundary value problems. Elements of potential theory such as volume po-

tentials, Poisson integrals, single and double layer potentials can be solutions for

different problems differing in source function and initial conditions. To do so, one

finds first fundamental solution by applying transform operations. In this thesis, we

considered the potential which is a solution for degenerate type parabolic equation

in one dimension with zero source function. Here the word degenerate refers to the

conductivity coefficient given with two conditions. The aim of the thesis was to find

boundary conditions that make given potential a unique solution for given equation.

Before finding them, we gave a simple example which can easily explain the task. As

a result, we found desired boundary conditions by using properties of fundamental

solution, potential theory and simple integration techniques. The multi-dimensional

analogue of this result can be found in [4].
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