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Abstract

Recent studies have shown that the appropriate space for word embeddings is not the Euclidean
space, but negatively curved, hyperbolic space. We randomly throw points in the hyperbolic disc
and claim that these points are already word representations. However, it is yet to be uncovered
which point corresponds to which word of the human language of interest. This correspondence
can be approximately established using a pointwise mutual information between words and
graph matching techniques. The embeddings were evaluated at WS353 task, and then separately
on its similarity and relatedness parts.
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Chapter 1

Introduction

Word embeddings are vector representations of human words. What is the easiest way to get a
vector of real numbers from a word? It seems that it will be natural to take the n-dimensional
vector, where n is the vocabulary size, with only one non-zero element equal to 1 in the position
corresponding to the word index in the dictionary. This approach is called one-hot encoding.
Suppose we have 5 words in our dictionary “I”, “love”, “dogs”,“and”, “cats”. One-hot encoding
of our words would be “I” =[1, 0, 0, 0, 0]T, “love” =[0, 1, 0, 0, 0]T, “dogs” =[0, 0, 1, 0, 0]T, and so
on. The idea of one-hot encoding has a significant drawback: vector representation of a word
has nothing to do with its meaning. In our case words ”dogs” and ”cats” are as similar as words
“love” and “and”, which is not a useful approach. The goal is to construct such embeddings that
will reflect similarities and dissimilarities between words. The idea is based on the distributional
hypothesis, which states that words in similar contexts have similar meanings.

One of the widely used word embeddings models is the Skip-gram with negative sampling
(SGNS) of Mikolov et al. (2013). SGNS is the machine learning model that is trained to find the
most related words for a given word. However it was shown by Levy and Goldberg (2014) that
SGNS is implicitly factorizing a matrix, whose entries are the pointwise mutual information
(PMI) between words. Moreover, Assylbekov and Jangeldin (2020) have shown that vectors
of comparable quality can also be obtained from factorizing a binarized PMI (BPMI) matrix,
where BPMIi,j = 1, if PMIi,j > 0, and BPMIi,j = 0 , otherwise. The obtained binarized PMI
matrix can be interpreted as an adjacency matrix of a particular graph. Also, they have shown
that the graph obtained from BPMI matrix possesses properties of a complex network, namely,
scale-free degree distribution and a strong clustering coefficient.

On the other side,Krioukov et al. (2010), have shown that hyperbolic geometry underlies
complex networks. Which means that if we construct Random Hyperbolic Graph (RHG) it will
have scale-free degree distribution and a strong clustering. Therefore, it seems reasonable to
analyze RHG as a model for word embeddings. This capstone is the first step in constructing
word vectors from randomly thrown points on the hyperbolic disk.
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Chapter 2

Theory

2.1 Hyperbolic geometry

First, let us briefly review the basic facts about hyperbolic geometry. There are three types
of isotropic spaces: Euclidian (curvature is 0), Spherical (curvature is positive) and hyperbolic
(curvature is negative). Hyperbolic geometry emerges from relaxing Euclid’s fifth axiom, which
says that for any straight line and a point not on it, there ”exists one and only one straight line
which passes” through that point and never intersects the first line. In hyperbolic plane there is
an infinite number of parallel lines that pass through a single point. (Figure 1)

There are four models commonly used for hyperbolic geometry: the Klein model, the
Poincare disk, the Poincare half-plane model and hyperboloid model. Each model represents
different aspects of hyperbolic geometry, but no model represents all of its properties. I will use
the Poincare disk model, in which the hyperbolic plane H2 is represented on a disk of radius 1
and lines are arcs of circles that are orthogonal to the boundary of the disk, plus all diameters
of the disk. This model is conformal, which means that Euclidean angles between lines in the
model are equal to the hyperbolic angle. However, it is not true for areas and distances. Eu-
clidean and hyperbolic distances from the center of the disk are related by: re = tanh( rh

2
) ,

where re is euclidean distance and rh is hyperbolic distance.
One of the defining characteristics of hyperbolic space is that it expands faster (exponentially)

than Euclidian space (polynomially). For example formulas for the disk area and length of a
circle are:

Disk area = 2π
cosh (ζr − 1)

ζ2
= A(r),

Circle length = 2π
sinh (ζr)

ζ
= L(r).

Figure 1: Poincaré disk with hyperbolic parallel lines. https://commons.wikimedia.org
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Where r is the radius of the disk and ζ =
√
−κ, where κ is the curvature of the space

Distance between two points is:

x =
cosh−1(cosh (ζr1) cosh (ζr2) − sinh (ζr1) sinh (ζr2) cos (∆θ) )

ζ
,

where ∆θ = π − |π − |θ1 − θ2|| is the angle between the points. (r1, θ1) and (r2, θ2) are polar
coordinates of the points.

2.2 Random Hyperbolic Graph

Using the facts above, we can construct Random Hyperbolic Graph as in the work of Krioukov
et al. (2010). Firstly, we throw randomly N nodes on a hyperbolic disk of certain radius R.
We assign angular coordinates via uniform distribution θ ∼ Unif [0, 2π] and radial coordinates
from the exponential probability distribution function:

p (r) =
αsinh(αr)

cosh (αR) − 1
≈ αeα(r−R),

where α > 0 is parameter, which allows us to control the distribution of nodes. For example,
for α = ζ the node density is uniform, since:

p (r) =
αsinh(αr)

cosh (αR) − 1
=

ζsinh(ζr)

cosh (ζR) − 1
=
L(r)

A(r)
.

A larger α means that more nodes are close to the boundary of the disk, small α means that
more nodes are close to the origin of the disk.

To form a graph we need to connect pair of nodes with some probability function. That
probability function must have only one parameter,which is hyperbolic distance between the
nodes. The simplest one is the Heaviside step function, i.e. two nodes are neighbors if and only
if the hyperbolic distance between them is less than or equal to R.

2.3 Skip-Gram with Negative Sampling (SGNS)

In this section, I briefly describe one of the widely used word embeddings models Skip-gram
with negative sampling (SGNS) of Mikolov et al. (2013). SGNS is the machine learning
model that is trained to find the most related words for a given word. Most word embeddings
algorithms construct two sort of vectors: for words and for contexts.

Notation:

1. Let’sW := {1, . . . , n} be our vocabulary.

2. The vector representation of word i ∈ W is wi∈ Rd, context j ∈ W is cj ∈ Rd, where d
is an embedding dimension.

3. D is the collection of observed words and context pairs. We say that word j is in the context
of word i if j is in the window of i. For example, a ± 2 window means 2 words to the left
and 2 words to the right of the target word.

4. #(i, j) is the number of times pair (i, j) is in D.

5. # (i) is the number of times word w occurs in D, i.e. # (i) =
∑

j′∈W #(i, j′)



6. # (j) is the number of times word c occurs in D, i.e. # (j) =
∑

i′∈W #(i′, j)

7. W ∈ R|W|×d is matrix with the word vectors as rows.

8. C ∈ R|W|×d is matrix with the context vectors as rows.

9. Pr (D = 1| (i, j)) = logσ ( wi · cj) = 1

1+e−wi· cj is probability that pair (i, j) is from D.

10. Pr (D = 0| (i, j)) = 1 − Pr (D = 1| (i, j)) = logσ (− wi · cj) is probability that pair
(i, j) is not from D.

Our goal is to maximize Pr (D = 1| (i, j)) for (i, j) ∈ D and maximize Pr (D = 0| (i, j))
for randomly sampled pairs (“negative sampling”). Let k be the number of negative samples
and j′ is a sampled context from the empirical distribution PD (j′) = #(j′)

|D| .
For a single pair (i, j) the objective function is:

Pr (D = 1| (i, j)) + kEj′∼PD
[Pr (D = 0| (i, j′))] = logσ〈wi, cj〉+ kEj′∼PD

[logσ〈−wi, cj′〉].

SGNS’s objective function is:∑
i∈W

∑
j∈W

#(i, j)[logσ〈wi, cj〉+ kEj′∼PD
〈−wi, cj′〉].

Without going into technical details, maximizing this function using stochastic gradient descent
we get word and context vectors, where words with similar meaning have similar embedding.

2.4 PMI and Alternative word representation

Pointwise mutual information (PMI) is a measure between a pair of words i and j, defined as the
probability of their co-occurrence divided by the probabilities of them appearing individually:

PMI (i, j) = log
p(i, j)

p (i) p (j)
.

Empirically we can calculate PMI from the real text as follows:

p (i, j) =
#(i, j)

|D|
, p (i) =

#(i)

|D|
, p (j) =

#(j)

|D|
.

Pairs with number of co-occurrence slightly lower than number of occurrences of each word
individually have high PMI. Similarly, pairs whose number of co-occurrence is much less
than occurrences of each word have small PMI. The table below shows counts of pairs of
words getting the most and the least PMI scores filtering by 1,000 or more co-occurrences and
|D| = 50000952.

Word i Word j # (i) # (j) #(i, j) PMI (i, j)
puerto rico 1938 1311 1159 10.03
hong kong 2438 2694 2205 9.73
to in 1025659 1187652 1066 -3.13
of and 1761436 1375396 1190 -3.70

Table 1 The most and the least PMI scores filtered by 1000 or more co-occurrence



PMI matrix is a symmetric matrix with entries MPMI
i,j = PMI(i, j).

Levy and Goldberg (2014) have shown that SGNS is implicitly factorizing a matrix, whose
entries are the pointwise mutual information (PMI) between words:

〈wi, cj〉 = PMI(i, j)− log k →W ·CT = MPMI− log k,

where k corresponds to the number of ”negative” samples in SGNS model.

The main problem with PMI is that most of the pairs in our matrix were never observed in the
text, for these pairs PMI = log 0 = −∞. One way to solve this problem is to use Positive
PMI (PPMI) where all negative values become 0: PPMI (i, j) = max {PMI (i, j) , 0}

These facts suggest the use of shifted PPMI (SPPMI):

SPPMIk (i, j) = max {PMI (i, j)− log k, 0} .

Levy and Goldberg (2014) also show empirically that the low-rank Singular Value Decompo-
sition (SVD) of the SPPMI matrix produces word vectors which are comparable in quality to
those of the SGNS.

Singular Value Decomposition factorizes M ∈ Rn×n into the product of three matrices:

M = USVT.

where U,V are orthonormal matrices and S is a diagonal matrix of singular values.

The rank d approximation of M is Md = UdSdV
T
d , where Sd is the diagonal matrix formed

from the top d singular values. Ud and Vd are matrices produced by selecting corresponding
columns from U and V.
W ≈ Ud

√
Sd and C ≈ Vd

√
Sd

Word vectors produced that way are comparable in quality to those of the SGNS.

2.5 BPMI

Assylbekov and Jangeldin (2020) introduced stronger roughening of the original PMI matrix –
Binarized PMI (BPMI).

Aij := H
(

log p(i,j)
p(i)p(j)

)
, (1)

where H(x) = 1 if x > 0, and H(x) = 0 otherwise.
Vectors of comparable quality can also be obtained from a low-rank approximation of a bi-
narized PMI matrix. Thus, a binarized PMI matrix is also an option when it comes to word
vectors. BPMI matrix can be interpreted as an adjacency matrix for some graph. The graph
obtained from BPMI matrix possess properties of a complex network, namely, scale-free de-
gree distribution and strong clustering coefficient, and according to Krioukov et al. (2010), such
graph possesses an effective hyperbolic geometry underneath. The following chain summarizes
this argument:

Word Embeddings −→ BPMI −→ Complex Network −→ Hyperbolic Space

In this work, we go from the final point (hyperbolic space) to the starting one (word embed-
dings), and the next section provides the details of our method.



Chapter 3

Constructing Word Embeddings from the
random hyperbolic graph.

3.1 Distances in RHG

Proposition 3.1.1. LetX be a distance between two points from the Random Hyperbolic Graph
with parameters α, ζ and radius R. The probability distribution function of X is given by

fX(x) =

∫ R

0

∫ R

0

ζ sinh(ζx)

π
√

1− A(r1, r2, x) sinh(ζr1) sinh(ζr2)
ρ(r1)ρ(r2)dr1dr2, (2)

for A(r1, r2, x) ∈ (−1, 1) where A(r1, r2, x) = cosh(ζr1) cosh(ζr2)−cosh(ζx)
sinh(ζr1) sinh(ζr2)

, and ρ(r) = α sinhαr
coshαR−1 .

Proof. Let us throw randomly two points (r1, θ1) and (r2, θ2) into the hyperbolic disk of radius
R, i.e. r1, r2

i.i.d.∼ ρ(r), θ1, θ2
i.i.d.∼ Uniform[0, 2π). LetX be the distance between these points (X

is a random variable). Let γ be the angle between these points, then γ := π − |π − |θ1 − θ2|| ∼
Uniform[0, π) and thus

fcos γ(t) =
1

π
√

1− t2
, t ∈ (−1, 1).

Since the distance in our model of hyperbolic plane is given by

X =
cosh−1[cosh ζr1 cosh ζr2 − sinh ζr1 sinh ζr2 cos γ]

ζ
,

we have

Pr(X ≤ x) = Pr

cos γ ≥ cosh ζr1 cosh ζr2 − cosh ζx

sinh ζr1 sinh ζr2︸ ︷︷ ︸
A(r1,r2,x)


= Pr(cos γ ≥ A(r1, r2, x)) =

∫ +∞

A(r1,r2,x)

dt

π
√

1− t2
=

1

2
− sin−1A(r1, r2, x)

π
,

and therefore

fX|r1,r2(x) =
d

dx

[
1

2
− sin−1A(r1, r2, x)

π

]
=

ζ sinh ζx

π
√

1− A(r1, r2, x) sinh(ζr1) sinh ζr2
for A(r1, r2, x) ∈ (−1, 1).

Integrating fX|r1,r2(x)ρ(r1)ρ(r2) with respect to r1 and r2 we get (2).
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You can see that (2) perfectly matches simulation in the picture below

Normalized histogram of distances and theoretical p.d.f of distances in the RHG

Notice, that the adjacency matrix of our graph is Bij := H(R − xij), and comparing this to
(1), we see that if A and B induce structurally similar graphs then the distribution of the PMI
values log p(i,j)

p(i)p(j)
should be similar to the distribution of R−xij values. To test this empirically,

we compute a PMI matrix of a well-known corpus, text8,1 and compare the distribution of
the PMI values with the p.d.f. of R−X , where X is a distance between two random points of a
hyperbolic disk (the exact form of this p.d.f. is given in Proposition 3.1.1). The results are shown
in Figure 2. As we can see, the two distributions are indeed similar and the main difference is
in the shift—distribution of R − X is shifted to the left compared to the distribution of the
PMI values. This possibly explains why the PMI entries are shifted to the left in the matrix
factorization approach of Levy and Goldberg (2014). We hypothesize that the nodes of the
RHG treated as points of the hyperbolic space are already reasonable word embeddings for the
words.

3.2 Average degree distribution

To compute the degeee distribution P(k) we have to calculate the average degree k(r) of nodes
located at distance r from the origin.

Proposition 3.2.1. Let k(r1) be the average degree of a node located at distance r1 from the
origin of Random Hyperbolic Graph with parameters α, ζ radius R and N number of vertices,
then

k(r1) = N [

∫ r?

0

p(r2)dr2 +

∫ R

r?
[
ρ(r2)

2
− sin−1A(r1, r2, R)ρ(r2)

π
]dr2. (3)

A(r1, r2, x) = cosh(ζr1) cosh(ζr2)−cosh(ζx)
sinh(ζr1) sinh(ζr2)

, ρ(r) = α sinhαr
coshαR−1 and r? is such that A(r1, r

?, R) = −1.

Proof. Suppose the given point has polar coordinate (r1, θ1). Let us throw randomly a point
(r2, θ2) into the hyperbolic disk of radius R, i.e. r2

i.i.d.∼ ρ(r), θ2
i.i.d.∼ Unif[0, 2π). Let X be the

distance between these points. Using the same technique as in the proof of Proposition 3.1.1
we get:

1http://mattmahoney.net/dc/textdata.html

http://mattmahoney.net/dc/textdata.html
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Figure 2: Distribution of PMI values (top) and of R−X .

Pr(X ≤ R) =


0, if A(r1, r2, R) ≥ 1
1
2
− sin−1 A(r1,r2,R)

π
, if A(r1, r2, R) ∈ (−1, 1)

1, if A(r1, r2, R) ≤ −1

Integrating Pr(X ≤ R)ρ(r2) with respect to r2 we get (3).

However, it is difficult to work with these integrals. Let us show that this exact expression (3)
can be approximated to more elegant equation for k(r) that was used in the work of (Krioukov
et al., 2010).

3.3 Average degree distribution approximation

Proposition 3.3.1. Let k(r1) be the average degree of a node located at distance r1 from the
origin of Random Hyperbolic Graph with parameters α, ζ radius R and N number of vertices,
then

k(r1) ≈ N

[
2

π
ξe−ζr1/2 −

(
2

π
ξ − 1

)
e−αr1

]
, (4)

where ξ = α/ζ
α/ζ−1/2

Proof. We must show that (3) ≈ (4)
Since in the RHG vast majority of nodes are close to the boundary of the disk for large R
coth(ζr1) = 1.
Let us solve A(r1, r

?, R) = −1 for r?

A(r1, r
?, R) =

cosh(ζr1) cosh(ζr?)

sinh(ζr1) sinh(ζr?)
− cosh(ζR)

sinh(ζr1) sinh(ζr?)
= −1



⇐⇒ cosh(ζr?)

sinh(ζr?)
− cosh(ζR)

sinh(ζr1) sinh(ζr?)
= −1

⇐⇒ cosh(ζr?)− cosh(ζR

sinh(ζr1)
= − sinh(ζr?)

⇐⇒ cosh(ζr?) + sinh(ζr?) =
cosh(ζR

sinh(ζr1)

⇐⇒ r? =
1

ζ
ln

[
cosh(ζR)

sinh(ζr1)

]
≈ R− r1.

Now we can rewrite equation (3):

k(r1) = N

[ ∫ R−r1

0

p(r2)dr2 +

∫ R

R−r1

(
ρ(r2)

2
− sin−1A(r1, r2, R)ρ(r2)

π

)
dr2

]
.

Let us calculate the first integral:∫ r?

0

p(r2)dr2 ≈
∫ R−r1

0

αeα(r2−R)dr2 = e−αr1 .

For the second integral the Taylor series of sin−1 around 1 with two first terms was used.

sin−1A(r1, r2, R) ≈ π/2−
√

2(1− A(r1, r2, R))1/2∫ R

R−r1

(
ρ(r2)

2
− sin−1A(r1, r2, R)ρ(r2)

π

)
dr2 ≈

√
2

π

∫ R

R−r1
(1− A(r1, r2, R))1/2ρ(r2)dr2

=

√
2

π

∫ R

R−r1

(
1−

(
1− cosh(ζR)

sinh(ζr1) sinh(ζr2)

))1/2

ρ(r2)dr2

=

√
2

π

∫ R

R−r1
ρ(r2)

(
eζR + e−ζR

(eζr1 − e−ζr1) sinh(ζr2)

)1/2

dr2 ≈
√

2

π

∫ R

R−r1
ρ(r2)

(
eζ(R−r1)

sinh(ζr2)

)1/2

dr2

≈
√

2

π

∫ R

R−r1
αeα(r2−R)

(
2eζ(R−r1)

eζr2 − e−ζr2

)1/2

dr2 ≈
√

2

π

∫ R

R−r1
αeα(r2−R)

(
2eζ(R−r1)

eζr2

)1/2

dr2

=

√
2

π
α
√

2eζ(R−r1)
∫ R

R−r1
eαr2−αR−ζr2/2dr2 =

√
2

π

α
√

2eζ(R−r1)

α− ζ/2
(e−ζR/2 − eζr1/2−ζR/2−αr1)

=
2

π
(ξe−ζr1/2 − ξe−αr1).

Summing the both integrals and multiplying by N we got:

k(r1) ≈ N

[
2

π
ξe−ζr1/2 − (

2

π
ξ − 1)e−αr1

]
.

The resulting formula is the same as in the work of (Krioukov et al., 2010). You can see
that obtained approximation perfectly fits the simulation in the Figures 3 and 4. Using this
approximation we can calculate average degree for our graph:

k =

∫ R

0

ρ(r)k(r)dr ≈ 2

π
ξ2Ne−ζR/2. (5)



Figure 3: Theoretical(black curve) and ex-
perimental (blue dots) average degree dis-
tribution in RHG with parameters α = 0.5,
ζ = 0.5 R = 16.55

Figure 4: Theoretical (black curve) and ex-
perimental (blue dots) average degree dis-
tribution in RHG with parameters α = 1.2,
ζ = 1.2 R = 16.55

Figure 5: Theoretical and experimental
distribution of degree for a node at distance
11 from the origin in RHG with parameters
α = 1, ζ = 1 R = 16.55

Figure 6: P(k) of RHG in log-log scale
with parameters α = 1, ζ = 1 R = 16.55

3.4 Calculating P(k)

Now we can compute degree distribution P(k) using by this formula:

P (k) =

∫ R

0

g(k|r)p(r)dr, (6)

where g(k|r) is the conditional probability that a node with radial coordinate r has degree k.
It was shown in the work of (Boguna, 2003) that for complex networks g(k|r) is Poisson distri-
bution with parameter k(r). You can see that Poisson distribution perfectly matches simulation
for a node at distance 11 from the origin in Figure 5
Now we can rewrite equation 6 as:

P (k) =

∫ R

0

e−k(r)[k(r)]k

k!
αeα(r−R)dr.

This integral can be easily calculated by substitution t = k(r):

P (k) =
k
2

2

∫ k(0)

k/2

e−ttk−2

k!
dt ≈ k

2

2

∫ ∞
k/2

e−ttk−2

k!
dt =

k
2

2

Γ(k − 2, k/2)

k!
, (7)

where Γ(s, x) =
∫∞
x
ts−1e−tdt is incomplete gamma function.

It can be shown that equation (7) behaves as a power law of the form k−(2α/ζ+1). The degree
distribution of the RHG follows a power law. In log-log scale the power law function is a
straight line. In figure 6 you can see the equation (7) in log-log scale.



3.5 Finding permutation

We can treat nodes of RHG as an embedding for words of our vocabulary. However, we do
not know which point corresponds to which word of the human language. Our goal is to find
one-to-one correspondence between human words and nodes on the hyperbolic disk.
Let A,B are adjacency matrices of BPMI graph and RHG. The problem of finding the corre-
spondence between words and nodes can be interpreted as the following optimization problem:∥∥A−PBPT

∥∥2
F
→ minP∈Pn ,

where P is a permutation matrix, Pn – set of all permutation matrices of size n× n and ‖◦‖F is
a Frobenius norm.∥∥A−PBPT

∥∥2
F

= ‖A‖2F − 2
〈
A,PBPT

〉
F

+
∥∥PBPT

∥∥2
F

= ‖A‖2F − 2
〈
A,PBPT

〉
F

+ ‖B‖2F
= ‖A‖2F − 2tr(ATPBPT) + ‖B‖2F.

As ‖A‖2F, ‖B‖
2
F are constants, the problem is to maximize tr(ATPBPT).

However, this problem also known as the quadratic assignment problem (QAP) is one of the fun-
damental combinatorial optimization problems. The problem is NP-hard, so there is no known
algorithm for exact solution of this problem in polynomial time. The approximate solution can
be found in the work of Umeyama (1988):
First, take SVD of A and B:

A = UASAV
T
A,

B = UBSBV
T
B.

Let P̃ = UA UB
T

where UA and UB
T

are matrices which have as each element the absolute
value of each element of UA, and UB, respectively.
The next step is to find the ‘nearest’ permutation matrix P to P̃, i.e. we have to solve:∥∥∥P− P̃

∥∥∥2
F
→ minP∈Pn .

This is typical linear assignment problem and can be solved using Auction algorithm of Bert-
sekas (1979).
Finally, we can obtain word vectors from PBPT via low-rank approximation as was described
in section 2.4



Chapter 4

Evaluation

In this section we evaluate the quality of word vectors resulting from a RHG against those
from the SGNS, PMI, and BPMI. We use the text8 corpus mentioned in the previous section.
We were ignoring words that appeared less than 500 times (resulting in a vocabulary of 3,446
tokens). We set window size to 2, and dimensionality of word vectors to 200. The embeddings
were evaluated on WS353 task (Finkelstein et al., 2002), and then separately on its similarity
and relatedness parts.

Overall Similarity Relatedness

SGNS .669 .767 .661
PMI + SVD .432 .498 .433
BPMI + SVD .362 .432 .322
RHG + Permute + SVD .263 .254 .246

Table 2: Evaluation of word embeddings on the WS353 task. Evaluation metric is the Spear-
man’s correlation with the human ratings.

The results of evaluation are provided in Table 2. As we can see, vector representations of
words generated by a random hyperbolic graph lag behind in quality from word vectors obtained
by other standard methods. From this perspective, the results can be considered negative. How-
ever, as mentioned in the introduction, the main goal is to find a simple mathematical structure
for word vectors. Moreover, this paper is the first step in finding such a structure.
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Chapter 5

Conclusion

Since hyperbolic space underlies complex networks, it is logical to exploit its properties in
constructing word vectors. It was shown that by throwing points randomly on the hyperbolic
plane, we get word representations such that each point corresponds to a certain word of the
human language, and this correspondence is determined by the relation (hyperbolic distance)
to other words. Hyperbolic space seems to be the right direction of the search. Perhaps, the
mediocre quality of the resulting vectors is due to the scarcity of the two-dimensional hyperbolic
plane H2. This conclusion is fully consistent with the principle of semiotic arbitrariness of
De Saussure (2011)—the relationship between a word (sign) and the real-world thing it denotes
is an arbitrary one.
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