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Finite Elements Solutions to the Black - Scholes Equation 

Abstract 

Nowadays, for the financial industry it is important to implement mathematical tools of 

the advanced level. World’s well-known economists Fischer Black and Myron Scholes 

introduced the distinguished equation for option pricing in 1973. This Capstone project aims to 

find finite element solutions to the Black-Scholes Equation. For this, the Black-Scholes 

Equation is solved as a convection dominated problem through the Local Projection 

Stabilization, where Galerkin finite element method is applied to the parabolic equation. Hence, 

for the Local Projection Stabilization, the functions of L2 – orthogonal finite element basis of 

arbitrary order are constructed. These functions result in a diagonal mass matrix which are 

useful for time discretization.  

1. Introduction 

Pricing of options is a prevalent topic for discussion among financial practicioners.  

Option is a financial contract between at least two parties or financial derivative which can be 

sold or bought with agreed price on the specific date in the future. There are various types of 

option. The most frequently used are European and American options, which differ from each 

other in their time of maturity. European option relates to the one that can be exercised only 

once on the specific date, meanwhile American option can be exercised at any point of time. 

Also, there are call and put options: call option gives the right for the holder to buy an asset and 

put option, on the contrary, allows to sell the stock. Therefore, the concept of the option is of 

great importance since it allows to secure the right of selling or buying a specific asset for a 

fixed price. Moreover, it gives an opportunity for the holder to buy a stock for the lower price 

in order to save money and to not overpay for it. This project focuses on the call options of 

European type.  

Scholars Black and Scholes demonstrated how to examine the dynamics of a financial 

market, particularly of the options, by deriving a European Stock Purchase option with an 
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equilibrium price. The equilibrium option prices concern the stock price, the exercise price 

(current price), the risk-free interest rate, time to expiration and the standard deviation of log 

returns (volatility). This research examines deterministic equations of Black-Scholes model with 

one-dimension. Further, the paper analyzes boundary conditions and solves the equation as 

convection dominated problem by local projection scheme for its stabilization.    

2. The Black-Scholes Equation 

To find the derivative of the function of a stochastic process, which is time dependent, the 

following Ito’s lemma is used. Within stochastic framework which concerns random variables, 

Ito’s lemma performs as chain rule in differential calculus. More detailed derivation of Ito’s 

Lemma can be found in the book by Hilber et. al (2013).  

𝑑𝑉 =
𝜕𝑉

𝜕𝑆
(𝜎𝑆𝑑𝑊 + 𝜇𝑆𝑑𝑡) +

𝜕𝑉

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑉

𝜕𝑆2
𝜎2𝑆2𝑑𝑡 

The outcome is that dV has a random component involving dW and a deterministic 

component from dt. Stock price is driven by stochastic equation: 𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 where 

𝜇, 𝜎 > 0, in the integral expression 𝑆𝑡 = 𝑆0 + 𝜇 ∫ 𝑆𝑠𝑑𝑠 +
𝑡

0
𝜎 ∫ 𝑆𝑠𝑑𝑊𝑠

𝑡

0
. Here, 𝜇 characterizes the 

stock trend.  

The solution of the expression is 𝑆𝑡 = 𝑆0𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝑊𝑡

, which gives dP with no stochastic 

part dW:  

𝑑𝑃 =
𝜕𝑉

𝜕𝑆
 𝜎𝑆𝑑𝑊+(𝜇𝑆 

𝜕𝑉

𝜕𝑆
+ 

𝜕𝑉

𝜕𝑡
+

1

2
 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2) – 
𝜕𝑉

𝜕𝑆
(𝜎𝑆𝑑𝑊 + 𝜇𝑆𝑑𝑡) 

This is a deterministic risk-free return: 𝑑𝑃 = (
𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2)dt with 𝑃 = 𝑉 − 𝑆 (
𝜕𝑉

𝜕𝑆
) 

dP=rPdt from investing the same value P in any other riskless asset.  

Therefore, we obtain Black-Scholes equation: 𝑟𝑉 − 𝑟𝑆
𝜕𝑉

𝜕𝑆
=

𝜕𝑉

𝜕𝑡
+

1

2
 
𝜕2𝑉

𝜕𝑆2 𝜎2𝑆2 

Since Ito’s lemma concerns time and random variables, it is applied widely in quantitative 

finance and economics. Black-Scholes Model is one of the most outstanding applications, which 

will be considered in detail later. But it is important to note that given variables in the equation, 
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namely value of the option (V(S,t)), stock price (S), expiration time (t), risk-free interest rate (r) 

and standard deviation of log returns (𝜎), satisfy  

𝜕𝑉(𝑆, 𝑡)

𝜕𝑡
+ 𝑟𝑆𝑡

𝜕𝑉(𝑆, 𝑡)

𝜕𝑆
+

1

2

𝜕2𝑉(𝑆, 𝑡)

𝜕𝑆2
𝜎2𝑆2 = 𝑟𝑉(𝑆, 𝑡) 

The price can be calculated by 𝐶0 = 𝑆0𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2), where  

 𝑑1 =
ln(

𝑆0
𝐾

)+(𝑟+
𝜎2

2
)(𝑇−𝑡)

𝜎√𝑇−𝑡
  , 𝑑2 =

ln(
𝑆0
𝐾

)+(𝑟−
𝜎2

2
)(𝑇−𝑡)

𝜎√𝑇−𝑡
 and N(x) means a cumulative 

distribution function for a random variable x which is normally distributed:  

𝑁(𝑥) =
1

√2𝜋
∫ exp (−

1

2
𝑡2)𝑑𝑡

𝑥

−∞

 

For simplicity, the classical Black-Scholes equation is investigated, which means that no 

dividends are paid. However, in the section of numerical examples dividends are taken into 

account, thus it implies that generalized Black-Scholes equation is used.  

3. Assumptions 

The Black-Scholes equation as a mathematical model plays vital role in the pricing of 

financial derivatives. The model has following assumptions: 

a) There are no arbitrage opportunities. 

b) There is frictionless market. 

This implies that transaction costs including fees or taxes are not available, each party is 

able to access any information instantly, there are equal interest rates for lending and borrowing 

money, and at any time all credits and securities are available in any size. As a result, each 

variable is perfectly divisible and can be any real number. Moreover, the price is not affected 

by individual trading.   

c) The price follows a geometric Brownian motion. 

d) The interest rate and volatility are constant during the contract period, namely for 

0 t T. 
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e) The option is European type. 

𝑉𝑡 +
1

2
𝜎2𝑆2𝑉𝑆𝑆 + 𝑟𝑆𝑉𝑆 − 𝑟𝑉 = 0 

V – value of the European call option  

𝑉𝑡 − rate of change of the value of the option at time t 

𝑉𝑆 − rate of change of the value of the option with price S 

S – stock price 

r – risk-free interest rate  

𝜎 – standard deviation of log returns (volatility) 

4. Boundary conditions 

𝜕𝑉

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0 

Initial boundary conditions are defined as follows: 

V (0, t) = 0 

V (S, t) = S as S∞  

V (S, T) = max (S-K, 0) = max (K𝑒𝑥-K, 0), where K – strike price 

Here, V (S, t) – value of derivative with price S at time t, which must satisfy a terminal 

condition. The terminal condition for t = T is V (S, T) = L(S), where L defines the payoff 

function taking into account the type of the option (Seydel 2006).   

L (S): = {
(𝑆 − 𝐾)+

(𝐾 − 𝑆)+ 

This condition naturally designates the definition of the option. Therefore, V (S, T) = f(S) 

– value of the option with price S at the final time T (time to expiration), S0 and 0 t T.  

Solving initial boundary conditions, we obtain: 

𝜏 =
𝜎2

2
(𝑇 − 𝑡)   𝑡 = 𝑇 −

2𝜏

𝜎2 

𝑥 = ln (
𝑆

𝐾
)   S=K𝑒𝑥 

V (S, t) = Kv(x, 𝜏) 

for a call 

for a put  
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Solving the equation, the first derivatives are: 

𝑉𝑡 =
𝜕𝑉

𝜕𝑡
= 𝐾

𝜕𝑣

𝜕𝜏
×

𝑑𝜏

𝑑𝑡
= 𝐾

𝜕𝑣

𝜕𝜏
× (−

𝜎2

2
) 

and  

𝑉𝑆 =
𝜕𝑉

𝜕𝑆
= 𝐾

𝜕𝑣

𝜕𝑥
×

𝜕𝑥

𝜕𝑆
= 𝐾

𝜕𝑣

𝜕𝑥
×

1

𝑆
 

In order to do the second derivative is, it is necessary to mention that if 
𝜕𝑥

𝜕𝑆
=

1

𝑆
 then 𝑆 

𝜕𝑆

𝜕𝑥
= 𝑆  because 𝑥 = ln (

𝑆

𝐾
)   x=ln(S)-ln(K). Thus, the second derivative is: 

𝑉𝑆𝑆 =
𝜕2𝑉

𝜕𝑆2
=

𝜕

𝜕𝑆
(

𝜕𝑉

𝜕𝑆
) =

𝜕

𝜕𝑥
(

𝜕𝑉

𝜕𝑆
)

𝜕𝑥

𝜕𝑆
=

𝜕

𝜕𝑥
(𝐾

𝜕𝑣

𝜕𝑥
×

1

𝑆
)

1

𝑆
 = 𝐾

𝜕𝑣

𝜕𝑥
× (−

1

𝑆2
) + 𝐾

𝜕2𝑣

𝜕𝑥2
×

1

𝑆2
 

Since V (S, T) = max (S-K, 0) = max (K𝑒𝑥-K, 0) and V (S, T) = 𝐾𝑣(𝑥, 0), then 𝑣(𝑥, 0) =

max(𝑒𝑥 − 1,0). 

Also, 
𝜕

𝜕𝑥
(

1

𝑆
) =

𝜕𝑆

𝜕𝑥
× (−

1

𝑆2) =  −
1

𝑆2 × 𝑆 = −
1

𝑆
 . Substituting all the derivatives into the 

Black-Scholes equation: 

𝐾
𝜕𝑣

𝜕𝜏
× (−

𝜎2

2
) +

1

2
𝜎2𝑆2 (𝐾

𝜕𝑣

𝜕𝑥
× (−

1

𝑆2
) + 𝐾

𝜕2𝑣

𝜕𝑥2
×

1

𝑆2
) + 𝑟𝑆 (𝐾

𝜕𝑣

𝜕𝑥
×

1

𝑆
) − 𝑟𝑉

= 𝐾
𝜕𝑣

𝜕𝜏
× (−

𝜎2

2
) +

𝜎2

2
(−𝐾

𝜕𝑣

𝜕𝑥
+ 𝐾

𝜕2𝑣

𝜕𝑥2
) + 𝑟𝐾

𝜕𝑣

𝜕𝑥
− 𝑟𝑉

= 𝐾
𝜎2

2
(−

𝜕𝑣

𝜕𝜏
−

𝜕𝑣

𝜕𝑥
+

𝜕2𝑣

𝜕𝑥2
) + 𝑟𝐾 (

𝜕𝑣

𝜕𝑥
− 𝑣) = 0 

The solution of the problem will lie in such parameter as 
𝜕𝑉

𝜕𝜏
 and will be the following: 

 
𝜕𝑣

𝜕𝜏
= (

𝜕2𝑣

𝜕𝑥2
−

𝜕𝑣

𝜕𝑥
) +

2𝑟

𝜎2
(

𝜕𝑣

𝜕𝑥
− 𝑣) =

𝜕2𝑣

𝜕𝑥2
−

𝜕𝑣

𝜕𝑥
+

2𝑟

𝜎2
×

𝜕𝑣

𝜕𝑥
−

2𝑟

𝜎2
× 𝑣

=
𝜕2𝑣

𝜕𝑥2
+ (

2𝑟

𝜎2
− 1)

𝜕𝑣

𝜕𝑥
−

2𝑟

𝜎2
𝑣 
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Hence, 

𝜎2

2
(−

𝜕𝑣

𝜕𝜏
−

𝜕𝑣

𝜕𝑥
+

𝜕2𝑣

𝜕𝑥2
) + 𝑟 (

𝜕𝑣

𝜕𝑥
− 𝑣)

=
𝜎2

2
(−

𝜕2𝑣

𝜕𝑥2
− (

2𝑟

𝜎2
− 1)

𝜕𝑣

𝜕𝑥
+

2𝑟

𝜎2
𝑣 −

𝜕𝑣

𝜕𝑥
+

𝜕2𝑣

𝜕𝑥2
) +  𝑟 (

𝜕𝑣

𝜕𝑥
− 𝑣)

=
𝜎2

2
(

𝜕𝑣

𝜕𝑥
−

2𝑟

𝜎2

𝜕𝑣

𝜕𝑥
+

2𝑟

𝜎2
𝑣 −

𝜕𝑣

𝜕𝑥
) + 𝑟 (

𝜕𝑣

𝜕𝑥
− 𝑣)

=
𝜎2

2
(−

2𝑟

𝜎2

𝜕𝑣

𝜕𝑥
+

2𝑟

𝜎2
𝑣) + 𝑟 (

𝜕𝑣

𝜕𝑥
− 𝑣) = −𝑟 (

𝜕𝑣

𝜕𝑥
+ 𝑣) + 𝑟 (

𝜕𝑣

𝜕𝑥
− 𝑣) = 0 

5. Convection dominated problem 

Further, in order to define the price of the European option, Zvan, Forsyth and Vetzal 

(1996) examined the Black-Scholes equation discretizing some features such as time taking into 

account the terminal and boundary conditions. They solved the problem by the perspective of 

convection-diffusion equation since the equation is backward linear parabolic. In their research, 

time t was substituted with t* = T – t which develops from expiration to the present time. After 

changing the variables, the equation converts like this: 

𝜕𝑉

𝜕𝑡 ∗
=

1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
−  (−𝑟𝑆)

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 

which has the similar form as in fluid dynamics. The term 
1

2
 𝜎2𝑆2 𝜕2𝑉

𝜕𝑆2 is a parabolic diffusion 

term, where 
1

2
 𝜎2𝑆2 is its magnitude. Meanwhile, (−𝑟𝑆)

𝜕𝑉

𝜕𝑆
 is the 1st order hyperbolic convective 

term, where (−𝑟𝑆) is its velocity which disseminates the information. Since (−𝑟𝑆) is a positive 

term, then from the S   boundary information emanates into the computational domain. 

Therefore, if the velocity term is larger than the diffusion term, then the equation is considered 

as convection dominated.  
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6. Local Projection Scheme 

Referring to the Dr. Schieweck, Skrzypacz and Tobiska’s research, in order to solve the 

convection dominated type of problem it is necessary to use the local projection scheme. 

Starting from the simple 1D model problem (boundary value problem) 

−𝜀𝑢′′ + 𝑏𝑢′ = 0 in Ω = (0,1) ⊂ ℝ1 

with such boundary conditions as: 

 u(0)=0 

 u(1)=1 

Singularly perturbed problem:  0 < 𝜀 ≪ 1  

The exact solution to boundary value problem is: 𝑢(𝑥) =
𝑒

𝑏𝑥
𝜀 −1

𝑒
𝑏
𝜀−1

 

 

 

 

 

 

To replace infinite-dimensional linear problem, it is needed to discretize by piecewise-

linear conforming functions on the uniform grid.  

 ℎ =
1

𝑀
 

0=𝑥0 𝑥1        𝑥2   1=𝑥𝑀 

Motivation for Finite Element Methods: 

∫(−𝜀∆𝑢𝑣 + 𝑏∇𝑢𝑣)dx =

Ω

∫ 0𝑣dx

Ω

 ∀𝑣 ∈ 𝐶0
∞(Ω) 

Then, integrating by parts: 

∫ 𝜀∇𝑢∇𝑣dx −

Ω

∫ 𝜀
∂u

∂n
𝑣ds + ∫ 𝑏∇u𝑣dx = 0

Ω∂Ω

 

0 

Boundary layer occurs if 0 <
𝜀

𝑏
≪ 1 

1 
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Thus, we obtain ∫ ( 𝜀𝑢′𝑣′ + 𝑏𝑢′𝑣)dx
1

0
= 0  ∀𝑣 ∈ 𝐶0

∞(0,1) 

Proving the existence and uniqueness of the solution, if 𝑢′ ∈ 𝐿2(Ω), then LHS is well 

defined for all 𝑣 ∈ 𝐻0
1(Ω) = {𝑣 ∈ 𝐿2(Ω):  𝑣′ ∈ 𝐿2(Ω), v|𝜕Ω = 0 } 

Now, it is needed to find 𝑢 ∈ 𝐻1(Ω), u(0)=0,  u(1)=1 such that ∫ ( 𝜀𝑢′𝑣′ + 𝑏𝑢′𝑣)dx
1

0
= 0  

∀𝑣 ∈ 𝐻0
1(Ω) 

Discretizing the function, 𝑉ℎ ≈ 𝐻1(Ω) 

 𝑉ℎ = {𝑣ℎ ∈ 𝐶0(Ω)   𝑣ℎ|(𝑥𝑖,𝑥𝑖+1) ∈ ℙ1}   

Thus, on each cell K=(𝑥𝑖, 𝑥𝑖+1) the discrete solution should be linear polynomial 

 

  

 

         𝑥𝑖−1     𝑥𝑖  𝑥𝑖+1 

 

where the key idea of FEM is to span 𝑉ℎ  with basis function’s 𝜙𝑖  that have a local support 

𝑢ℎ(𝑥) = ∑ 𝑢𝑖𝑖 𝜙(𝑥)   (ansatz) 

∫ ( 𝜀𝑢ℎ
′ 𝜙′

𝑖
+ 𝑏𝑢ℎ

′ 𝜙𝑖
′)dx

1

0
= 0  ∀𝑖 

→   ∫ 𝜀(∑ 𝑢𝑗𝑗 𝜙𝑗
′)𝜙𝑖

′ + b(∑ 𝑢𝑗𝑗 𝜙𝑗)
′
𝜙𝑖dx

1

0
= 0       ∀𝑖 

→ ∑ (∫(𝜀𝜙𝑗
′𝜙′

𝑖
+ 𝑏𝜙𝑗

′𝜙𝑖)

1

0

𝑑𝑥) 𝑢𝑗

𝑗

= 0         ∀𝑖,   

where 𝐴𝑖𝑗 = ∫ (𝜀𝜙𝑗
′𝜙′

𝑖
+ 𝑏𝜙𝑗

′𝜙𝑖)
1

0
𝑑𝑥      ∀𝑖 

To explain approximation, finite element method is introduced as a special case of 

Galerkin method, which minimizes error of approximation functions that project the residual. 

Galerkin discretization with ℙ1 elements lead to the tridiagonal systems: 

Support of 𝜙𝑖   

Global hat function    

𝜙𝑖   
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(−
𝜀

ℎ
−

𝑏

2
) 𝑢𝑖−1 +

2𝜀

ℎ
𝑢𝑖 + (−

𝜀

ℎ
+

𝑏

2
) 𝑢𝑖+1 = 0 for ∀𝑖 = 1, … , 𝑀 − 1  

where 𝑢𝑖 = 𝑢ℎ(𝑥𝑖), 𝑢0 = 0,  𝑢𝑀 = 1 

If 2𝜀 ≠ 𝑏ℎ, then the solution u is given by 𝑢𝑖 =
(

1+𝑃𝑒
1−𝑃𝑒

)
𝑖
−1

(
1+𝑃𝑒
1−𝑃𝑒

)
𝑀

−1
, where i=1, …, M-1 

where 𝑃𝑒 : =
|𝑏|ℎ

2𝜀
, which is a local Peclet number with such conditions as:  

 𝑃𝑒 > 1 =>(
1+𝑃𝑒

1−𝑃𝑒
) < 0 => 𝑢ℎ is oscillatory 

 𝑃𝑒 < 1 => 𝑢ℎ has no oscillations but 
ℎ

2
<

𝜀

|𝑏|
 means ℎ ≪ 1 if 0 <

𝜀

|𝑏|
≪ 1 

The mesh refinement leads to big systems which are, especially in higher dimensions, 

infeasible from the numerical point of view. Therefore, the following steps are needed to be 

taken:  

1. In order to stabilize the Galerkin solution the bilinear form is to be perturbed, 

that is 𝑎ℎ(𝑢, 𝑣) = 𝑎(𝑢, 𝑣) + 𝑠ℎ(𝑢, 𝑣), where 𝑠ℎ(𝑢, 𝑣) is the stabilization term 

2. Using different ansatz and test spaces, we take Petrov-Galerkin method.  

7. Stabilization methods 

One of the stabilization methods is Local Projection Stabilization (LPS), which is not 

consistent but easy to implement stencil as in Galerkin method.  

𝑎ℎ(𝑢, 𝑣) = 𝑎(𝑢, 𝑣) + ∑ 𝜏𝐾(Κℎ(∇𝑢), Κℎ(∇𝑣))Κ𝐾  , where  

 𝜏𝐾 = 𝛾0ℎ𝐾  

 ∑ 𝜏𝐾(𝐾ℎ(∇𝑢), 𝐾ℎ(∇𝑣))𝐾𝐾  is the artificial diffusion applied only to the small-scale 

modes of the function(s) 

 Κℎ|Κ = 𝜋ℎ|Κ − 𝑖𝑑; 𝐿2 projection on some discontinuous space of 𝜋ℎ|𝐾   

The idea of the Local Projection Stabilization (LPS) method is to calculate the projection 

of the gradient of finite element functions vh ∈ Vh into a discontinuous space Dh of the large 
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scale modes and to stabilize only the remaining so-called fine scale modes of the function vh 

for which the gradient cannot be represented by the projection space.  

𝑉ℎ = ℙ1 ,
𝐷ℎ =  ℙ0 ,   

𝑉ℎ → 𝐷ℎ
 

If 𝑢ℎ ∈ ℙ1 →  ∇𝑢ℎ ∈ ℙ0 → 𝐾ℎ
(∇𝑢ℎ

) = 𝜋ℎ
(∇𝑢ℎ

) − ∇𝑢ℎ = ∇𝑢ℎ − ∇𝑢ℎ = 0 

Thus, in order to get stabilization of the Galerkin scheme, we need to extend finite element 

space  ℙ1. Moreover, we have to enrich this space of piecewise-linear  ℙ1.  

Let us consider the following enrichment: 𝑉ℎ = ℙ1
+ = ℙ2 , where ℙ1 is enriched by 

quadratic bubbles. 

If 𝑢ℎ ∈ ℙ2 → ∇𝑢ℎ ∈ ℙ1 → Κ(∇𝑢ℎ
) = 𝜋ℎ

(∇𝑢ℎ
) − ∇𝑢ℎ = { 0 ∀𝑢ℎ ∈ ℙ1

∗ ∀𝑢ℎ ∈ ℙ2 − ℙ1

 

Here, πh denotes 𝐿
2 projection: 𝑉ℎ → 𝐷ℎ.

Therefore, (𝜋ℎ𝑣 − 𝑣1𝜙) = 0 ∀𝜙 ∈ 𝐷ℎ and 𝜋ℎ ∈ 𝐷ℎ   

Therefore, τΚ(𝜋ℎ∇𝑢ℎ − ∇𝑢ℎ , 𝜋ℎ∇𝑢ℎ − ∇𝑢ℎ)Κ = −𝜏Κ(𝜋ℎ∇𝑢ℎ − ∇𝑢ℎ , ∇𝑢ℎ)Κ
 

= 𝜏Κ(𝛻𝑢ℎ , 𝛻𝑢ℎ)Κ − 𝜏Κ(𝜋ℎ∇𝑢ℎ , ∇𝑢ℎ)Κ
 

= 𝜏Κ(∇𝑢ℎ , ∇𝑢ℎ
)Κ − 𝜏Κ

∫ 𝜋ℎ∇𝑢ℎ𝑢ℎ
𝑛𝑑𝑠 = 𝜏𝐾(∇𝑢ℎ , ∇𝑢ℎ)𝐾, since 𝑢𝑛 = 0 on 𝜕Κ

𝜕Κ

 

where 𝑢ℎ ∈ ℙ2 − ℙ1 and 𝜋ℎ∇𝑢ℎ ∈ ℙ0
 

Here, 𝜏Κ(∇𝑢ℎ , ∇𝑢ℎ)Κ
, which is an artificial diffusion was added in the region where 

|∇𝑢| ≫ 1  

8. Main part of Local Projection Scheme 

Κℎ : 𝑉ℎ
(Κ) → 𝐷ℎ

(Κ) – fluctuation operator, such that the consistency error is not too big.  

𝑎ℎ
(𝑢ℎ , 𝑣ℎ

) = 𝑎(𝑢ℎ , 𝑣ℎ
) + 𝑠ℎ

(𝑢ℎ , 𝑣ℎ
) = (𝑓, 𝑣ℎ

)  ∀𝑣ℎ ∈ 𝑉ℎ
 

𝑎ℎ
(𝑢, 𝑣ℎ

) = 𝑎(𝑢, 𝑣ℎ
) + 𝑆ℎ

(𝑢, 𝑣ℎ
) = (𝑓, 𝑣ℎ

) + 𝑆ℎ
(𝑢, 𝑣ℎ

)     ∀𝑣ℎ ∈ 𝑉ℎ
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where 𝑎(𝑢, 𝑣ℎ
) = (𝑓, 𝑣ℎ

)  is the weak formulation 

Notice that in this case Galerkin orthogonality is violated. However, the consistency error 

is of the following order: 

𝑎(𝑢 − 𝑢ℎ , 𝑣ℎ
) − 𝑠ℎ

(𝑢 − 𝑢ℎ , 𝑣ℎ
) = −𝑆ℎ

(𝑢, 𝑣ℎ
)  

𝑎ℎ
(𝑢 − 𝑢ℎ , 𝑣ℎ

) = 𝑂 (ℎ𝑟+
1

2‖𝑣ℎ
‖), if Κℎ

is appropriate in case ‖Κh
𝑞‖0,𝐾

≤ 𝐶ℎ𝑘
𝑟|𝑞|𝑟,Κ

 

Special interpolation operator: 𝑤 − 𝑗ℎ
𝑤 ⊥ 𝐷ℎ; (𝑤 − 𝑗ℎ

𝑤, 𝑞ℎ
) = 0  ∀𝑞ℎ ∈ 𝐷ℎ

 

Applying Local Projection Scheme to non-stationary problems: 

𝜕𝑡
𝑢 − 𝜀∆𝑢 + 𝑏∇𝑢 + 𝑐𝑢 = 𝑓    𝑖𝑛 (𝑂, 𝑇) × Ω,  

where 𝐴𝑢 = −𝜀∆𝑢 + 𝑏∇𝑢 + 𝑐𝑢 – differential operator.  

Using Finite Element Methods (FEM) in space: 𝑀ℎ𝑢ℎ + 𝐴ℎ𝑢ℎ = 𝑓,  

where 𝑀ℎ signifies the mass matrix and 𝐴ℎ denotes the stiffness matrix. Discretizing in time 

by dG(1) results in fully discrete problem, which is necessary to solve 22 block system: 

[

9

8
𝑀 +

3𝜏𝑛

4
𝐴 

3

8
𝑀

−
9

8
𝑀

5

8
𝑀 +

𝜏𝑛

4
𝐴

] [𝑈1

𝑈2
]  = [

𝐹1

𝐹2
] 

Due to 𝐿2 orthogonality of the base functions of the new element  the diagonal mass 

matrix M can be used in the new matrix: 𝐴̌ ≔ 𝑀−1𝐴 which is a row scaling of A, and 𝑅
𝑗 ≔

𝑀−1𝐹𝑗
 for j=1,2. 

A reduced system for 𝑈2, which has the half dimension of the 22 block system, can be 

obtained by removing the unknown variable 𝑈1 from the block system: 
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{𝐼 +
2𝜏𝑛

3
𝐴̌ +

𝜏𝑛
2

6 𝐴̌2} 𝑈2 = 𝑅1 + 𝑅2 +
2𝜏𝑛

3
𝐴̌𝑅2 

9. Numerical examples 

In order to ignore undesirable time discretization errors caused by dG(1), we investigate 

additionally the following stationary problem  

−𝜀𝜕𝑥𝑥𝑢 + 𝑏𝜕𝑥𝑢 = 𝑓 in Ω = (0,1)  

𝑢 = 0 on 𝜕Ω  

where ε = 10−8, b(x) = 1 and f(x) is chosen such that  

𝑢(𝑥) = 𝑥 −
𝑒

𝑥−1
𝜀 − 𝑒−

1
𝜀

1 − 𝑒−
1
𝜀

+ 𝑒𝑥 − 1 − 𝑥(𝑒 − 1) 

is solution for the equation above. It exhibits an exponential boundary layer at x = 1. We use 

the coarse mesh that consists of NEL = 5 equal cells and that will be uniformly refined. In Table 

1, L2 errors are presented between the exact and LPS solution for the polynomial degree r = 1, 

2, 3. The orders of L2 errors computed on the sub-domain Ω0 =  (0, 7/10) are optimal with 

respect to the polynomial degree r. The parameter γ0 has to be chosen appropriately in oder to 

suppress spurious oscillations at the boundary layer, see Fig. 1. On these graphs, solid blue line 

signifies LPS and dashed red line denotes exact solutions for the example.  

Table 1. 

𝐿2 − norms of the discretization errors on Ω0 =  (0, 7/10) 

 r=1, γ0 = 10−1 r=2, γ0 = 6 ∗ 10−2 r=3, γ0 = 5 ∗ 10−2 

Level ||𝑒h||
0,Ω0

 order ||𝑒h||
0,Ω0

 order ||𝑒h||
0,Ω0

 order 

1 5.564e-3 
 

1.013e-04 
 

9.442e-05 
 

2 1.328e-3 2.067 1.177e-05 3.105 1.189e-07 9.634 

3 3.419e-4 1.957 1.506e-06 2.967 5.488e-09 3.437 
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4 8.667e-5 1.980 1.903e-07 2.985 3.469e-10 3.984 

5 2.182e-5 1.990 2.391e-08 2.993 2.180e-11 3.992 

6 5.472e-6 1.995 2.996e-09 2.996 1.367e-12 3.995 

7 1.370e-6 1.998 3.750e-10 2.998 8.5115e-14 4.006 

 

Fig. 1  
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The following numerical example is constructed on the basis of the generalized Black-

Scholes Equation: 𝒞𝑡 +
1

2
𝜎2(𝑆, 𝑡)𝑆2𝒞𝑆𝑆 + (𝑟(𝑆, 𝑡) − 𝑑(𝑆, 𝑡))𝑆𝒞𝑆 − 𝑟(𝑆, 𝑡)𝒞 = 0, which solves 

the convection dominated problem.  

Here, the parameters are: 𝒞(𝑆, 𝑡) - the value of European call option, S – asset price, 𝑡 – 

time, K – exercise price, d – dividends to pay, T – maturity (expiration) date, 𝑟(𝑆, 𝑡) > 0 – risk-

free interest rate, 𝑑(𝑆, 𝑡) – dividend, and 𝜎(𝑆, 𝑡) > 0 – volatility function of the underlying asset 

𝑟(𝑆, 𝑡), 𝑑(𝑆, 𝑡),  𝑎𝑛𝑑 𝜎(𝑆, 𝑡) are bounded on the domain and sufficiently smooth. 

𝑟, 𝑑 𝑎𝑛𝑑 𝜎 are constant functions, which compose the classical Black-Scholes Equation. 

The solution is based on such parameters as  𝑆 ∈ (0,8) and 𝑡 ∈ (0,8], which means that 

terminal condition for time T=8 (see Fig. 2). It can be seen from the Fig. 2 that across the time 

the price of the stock decreases while other parameters are constant. 

Boundary conditions: 

𝒞(0, 𝑡) = 0 

𝒞(8, 𝑡) = 𝑒−𝑟𝑡 

Initial conditions: 

𝒞(𝑆, 0) = max(𝑆 − 𝐾, 0)  with 𝐾 = 0.5, 𝜎 = 0.001, 𝑟 = 0.06 and 𝑑 = 0.02 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

x

r=3
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Fig. 2  
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10. Conclusion 

In this project, establishing boundary conditions Black-Scholes Equation was solved as 

the convection dominated problem was determined, where the velocity term was greater than 

the diffusion term. Thus, it can be observed that the higher price of the stock the greater value 

of the option. Another observation is that if the stock price does not change, value of the option 

decreases when the maturity date is becoming closer. Therefore, if the maturity date is in the 

nearest future and the value of the option is approximately stock price minus exercise price, 

which is about zero. Meanwhile, if the expiration date is far from today, then the exercise price 

will be low, and the value of the option will be approximately equal to the stock price. The 

presented finite elements are of arbitrary order and are L2 – orthogonal. Moreover, using the 

Local Projection Stabilization they can be solved in one-dimensional problems of convection-

dominated type. The functions of L2 – orthogonal finite element basis are useful for time 

discretization, especially for the temporal dG(1) – discretization. In further research projects, L2 

– orthogonal basis can be constructed with the extension to two and/or three-dimensional case.  
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