
NAZARBAYEV UNIVERSITY
School of Sciences and Humanities

MATH 499 CAPSTONE PROJECT

Semantics- and Syntax-related
Subvectors in the Skip-gram

Embeddings

Submitted By:
Maxat Tezekbayev

Research Supervisor:
Zhenisbek Assylbekov

Second Reader:
Rustem Takhanov

Nur-Sultan, 2020

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Abstract

This project presents that using a modified version of Skip-gram with negative sampling
with weight tying proposed by Assylbekov and Takhanov (2019) word embedding of each
word can be decomposed into two subvectors: x and y. We empirically showed that x-
subvector is more related to the semantic role of the word and y-subvector is more related
to the syntactic role of the word.

1 Introduction
Nowadays word embeddings play a crucial role in variety of natural language processing
tasks, such as part-of-speech tagging, machine translation, and question answering. Skip-
gram with negative sampling (SGNS) which was proposed by Mikolov, Sutskever, et
al. (2013) is one of the widespread and simple models to obtain these word embeddings.
Assuming that words have already been converted into indices, let {1, . . . , n} be a finite
vocabulary of words from some corpus. Following the setups of the widely used SGNS
model (Mikolov et. al, 2013), we consider two vectors per each word i:

• wi is an embedding of the word i when i is a center word,

• ci is an embedding of the word i when i is a context word.

We follow the assumptions of Assylbekov and Takhanov (2019) on the nature of word
vectors, context vectors, and text generation, i.e.

1. A priori word vectors w1,. . . ,wn ∈Rd are i.i.d. draws from isotropic multivariate
Gaussian distribution: wi

iid∼ N
(
0, 1

d
I
)
, where I is the d× d identity matrix.

2. Context vectors c1, . . . , cn are related to word vectors according to ci = Qwi,
i = 1, . . . , n, for some orthogonal matrix Q ∈ Rd×d.

3. Given a word i, the probability of any word j being in its context is given by

p(j | i) ∝ pj · ew
>
i cj (1)

where pj = p(j) is the unigram probability for the word j.

Assylbekov and Takhanov (2019) showed that context vectors are reflections of word
vectors in approximately half the dimensions and proposed theoretically grounded way of
tying weights in the SGNS model. Zobnin and Elistratova (2019) using other procedures
also showed that context vectors are reflections of word vectors, but they empirically
suggest using lower amount of reflections. Under the assumptions 1–3 above, Assylbekov
and Takhanov (2019) showed that each word’s vector wi splits into two approximately

1

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

equally-sized subvectors xi and yi, and the model (1) for generating a word j in the
context of a word i can be rewritten as

p(j | i) ≈ pj · ex
>
i xj−y>i yj .

Interestingly, embeddings of the first type (xi and xj) are responsible for pulling the word
j into the context of the word i, while embeddings of the second type (yi and yj) are
responsible for pushing the word j away from the context of the word i. We hypothe-
size that the x-embeddings are more related to semantics, whereas the y-embeddings are
more related to syntax. We provide a motivating example for this hypothesis and then
empirically validate it through controlled experiments.

2 Skip-gram model
In this section we will consider a toy example which will gives us an idea how word
embeddings are obtained via the Skip-gram model.

2.1 Toy example
Consider a very small corpus: ”i like to write capstone project”. In this text, we have 6
distinct words and the number of words in our vocabulary is 6, which we can denote as
W . We can represent each word in terms of one-hot vectors:

xi =
[
1 0 0 0 0 0

]
∈ R|W|

xlike =
[
0 1 0 0 0 0

]
∈ R|W|

xto =
[
0 0 1 0 0 0

]
∈ R|W|

xwrite =
[
0 0 0 1 0 0

]
∈ R|W|

xcapstone =
[
0 0 0 0 1 0

]
∈ R|W|

xproject =
[
0 0 0 0 0 1

]
∈ R|W|

When we represent words as one-hot vectors, the size of each word’s vector is equal to the
number of words in our vocabulary, which in the real world can be more than 1 million
words. These vectors are sparse and there is no notion of similarity between these vectors
because they are orthogonal to each other. However, we know that at least some words
have synonyms in the real world. To overcome this problem, we want to encode similarity
in the vectors themselves and represent them in more dense way so that words that share
common contexts in the corpus are located close to one another in the vector space. Let
d be the size of such vectors, and usually we choose d to be from 50 to 300. In our toy
example, we can choose d to be equal to 3.

2

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

2.2 How the Skip-gram works
The Skip-gram model is a one hidden layer feedforward neural network. First of all, we
need to create our dataset to train our model. Considering our toy example, we can create
pair of words, where the first word is a center word and the second word is a word that
appears in the context of the first word within some window. We can choose window size
to be equal to 2 and create our training dataset:

The Skip-gram takes any center word as input and tries to predict the surrounding window
of its context words. However, in the end, we will just use the weights of the hidden layer
as the word embeddings.
Consider a pair of words (i, j). We take a one-hot vector of the word i as input and one-hot
vector of the word j as a desired output of the neural network and we want to maximize
probability of the word j to appear in the context of the word i.
Word embeddings stacked into a matrix W:


i w11 w12 w13 w1

like w21 w22 w23 w2

to w31 w32 w33 w3

write w41 w42 w43 w4

capstone w51 w52 w53 w5

project w61 w62 w63 w6

3

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Context embeddings stacked into a matrix C:


i c11 c12 c13 c1

like c21 c22 c23 c2
to c31 c32 c33 c3

write c41 c42 c43 c4
capstone c51 c52 c53 c5
project c61 c62 c63 c6

W represents weights of the neural network between the input and hidden layers. C
represents weights of neural network between the hidden and output layers.
How do we get output of the model? Consider a pair of words (i, j):

1. WT · xi = wT
i (because xi is one-hot vector)

2. CwT
i =

[
c1w

T
i c2w

T
i c3w

T
i c4w

T
i c5w

T
i c6w

T
i

]
3. Then apply softmax function to obtain ”probabilities” for each word to appear in

the context of word i:

softmax



c1w
T
i

c2w
T
i

c3w
T
i

c4w
T
i

c5w
T
i

c6w
T
i

 =



exp(c1wT
i)∑6

k=1 exp(ckw
T
i)

exp(c2wT
i)∑6

k=1 exp(ckw
T
i)

exp(c3wT
i)∑6

k=1 exp(ckw
T
i)

exp(c4wT
i)∑6

k=1 exp(ckw
T
i)

exp(c5wT
i)∑6

k=1 exp(ckw
T
i)

exp(c6wT
i)∑6

k=1 exp(ckw
T
i)


−→ y =



y1

y2

y3

y4

y5

y6



2.3 Objective function of Skip-gram
As was mentioned previously, considering pairs of words (i, j), we want to maximize
probability of word j to appear in the context of word i and therefore our objective func-
tion is:

max p(j|i) = max yj∗

= max log yj∗

= cj∗w
T
i − log

6∑
k=1

exp(ckw
T
i) := −E

(2)

4

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Insted of maximizing −E, we can minimize E.

2.4 Skip-gram with negative sampling
However, calculating log term of (2) for each pair (i, j) can be computationally costly
because, in a real corpus, we will have more than 100,000 words in it. Therefore, Mikolov,
Sutskever, et al. (2013) proposed a modified objective function where instead of having
too many context vectors that need to be updated per iteration, we only update a sample
of them:

E = log σ(cj∗w
T
i)−

∑
m∈Wneg

log σ(cmw
T
i) (3)

where σ is the sigmoid function:

σ(x) =
1

1 + e−x
(4)

and Wneg is the set of words that are sampled based on some arbitrarily chosen proba-
bilistic distribution.

2.5 Updating the weights
For updating weights in the neural network, we use backpropagation and gradient descent
method. Let uj = cjw

T
i . To obtain the update equations of the weights, we take the

derivative of E with regard to uj:

∂E

∂uj
= σ(uj)− tj := ej (5)

where tj = 1 · (j = j∗). Then we take the derivative of E with regard to each entry k of
context vector cj:

∂E

∂ckj
=
∂E

∂uj
· ∂uj
∂ckj

= ej · wk (6)

Which results in the following update equations for each entry of context vector cj:

c
(new)
kj = c

(old)
kj − α · ej · wk. (7)

where α is a hyperparameter of gradient descent method. Let hk =
∑V

i=1 xi · wik. It
represents k-th entry of the hidden layer. We take the derivative of E with regard to hk:

∂E

∂hk
=

∑
j={j∗}∪Wneg

∂E

∂uj
· ∂uj
∂hk

=
∑

j={j∗}∪Wneg

ej · cjk := ak (8)

5

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Taking the derivative of E with regard to to each entry k of word embedding wi:

∂E

∂wik

=
∂E

∂hk
· ∂hk
∂wik

= ak · xi (9)

Which results in the following update equations for each entry of word embedding wi:

w
(new)
ik = w

(old)
ik − α · ak · xi. (10)

3 Motivating Example
Consider a phrase:

he works on macbook pro

The word ‘pro’ appears in the context of the word ‘macbook’ but the word vector wpro is
not the closest to the word vector wmacbook (see Table 1). Instead, these vectors are split

w>macbook = [x>macbook;y
>
macbook]

w>pro = [x>pro;y
>
pro]

in such way that the quantity x>macbookxpro − y>macbookypro is large enough. We can inter-
pret this as follows: the word ‘pro’ is semantically close enough to the word ‘macbook’
but is not the closest one: e.g. wmacintosh is much closer to wmacbook than wpro; on the
other hand the word ‘pro’ syntactically fits better being next to the word ‘macbook’ than
‘macintosh’, i.e. −y>macbookymacintosh < −y>macbookypro. This combination of semantic prox-
imity (x>macbookxpro) and syntactic fit (−y>macbookypro) allows the word ‘pro’ to appear in the
context of the word ‘macbook’.

word i w>
macbookci w>

macbookwi x>
macbookxi −y>

macbookyi

macintosh −0.738 (26th) 18.516 (30th) 8.889 (21st) −9.449 (59005th)
pro 2.271 (4th) 11.845 (4068th) 7.058 (95th) −4.787 (1st)

Table 1: Dot products between vectors and their order

4 Experiments
In this section, we empirically verify our hypothesis. We train SGNS with tied weights
(Assylbekov and Takhanov, 2019) on two widely-used datasets, text8 and enwik91.

1. http://mattmahoney.net/dc/textdata.html. The enwik9 data was processed with
the Perl-script WIKIFIL.PL provided on the same webpage.

6

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Text8 is a 100 MB sample of English Wikipedia text with the total number of words of
about 17 million words and 254 thousand unique words. The size of processed enwik9
is 715 MB and it has 124 million words and 833 thousand unique words.

which gives us word embeddings as well as their partitions:

w>i := [x>i ;y
>
i].

The source code that reproduces our experiments is available at https://github.c
om/MaxatTezekbayev/Semantics--and-Syntax-related-Subvector
s-in-the-Skip-gram-Embeddings.

4.1 Evaluation of word embeddings
There are two main types of tasks to evaluate ”quality” of obtained word embeddings:
similarity and analogy tasks. In similarity tasks, we have pairs of words and human-
annotated scores for them on some scale, which depends on the annotation procedure of
the dataset. We used 4 widely used datasets for similarity tasks: WordSim (Finkelstein et
al. 2002), MEN (Bruni et al. 2012), M. Turk (Radinsky et al. 2011), Rare Words (Luong,
Socher, and Manning 2013). The samples from the datasets are given in Table 2. For each
pair of words (l,m) we can calculate cosine similarity:

similarity = cos θ =
wl ·wm

||wl|| · ||wm||

Obtaining cosine similarity scores for each pair of words, we can calculate Spearman’s
rank correlation coefficient between cosine similarity scores and human annotated scores.
The results are given in Table 4.

WordSim MEN M. Turk Rare Words

tiger cat 7.35 sun sunlight 50 funeral death 4.714 reasoning deduce 8
tiger tiger 10.00 automobile car 50 albert einstein 4.267 unicycles wheel 6.88
book paper 7.46 river water 49 asia animal 1.555 entrapping deceive 6.57

television radio 6.77 donut panda 3 life death 4.103 gibberish dutch 4

353 pairs 3000 pairs 287 pairs 2034 pairs

Table 2: Samples from similarity task datasets

In addition to similarity task datasets, there are analogy task datasets, where we have 2
pairs of words : a : a∗ :: b : b∗ (a is to a∗ as b is to b∗). For example, Tokyo is to Japan
as Paris is to France. There are 2 popular datasets for analogy task: Google analogy

7

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

test set (Mikolov, Chen, et al. 2013) and MSR2. The samples of analogy tasks are given
in Table 3. Embeddings are evaluated for its ability to infer the 4th word out from the first
three and we use the following well-known model 3CosAdd:

argmax
w∈W

cos(w, wa∗ − wa + wb)

After choosing the 4th words by 3CosAdd we compare them with correct words and
calculate accuracy which is a ratio of number of correct predictions to the total number of
analogy samples in the dataset.

Google MSR

athens greece berlin germany good better rough rougher
denmark krone russia ruble young younger quick quicker

man woman king queen goes went feels felt
quick quickly rapid rapidly tells tell stays stay

19544 analogies 8000 pairs

Table 3: Examples of analogy task datasets

4.2 x-Subvectors Are Related to Semantics
We evaluate the whole vectors wi’s, as well as the subvectors xi’s and yi’s on standard
semantic tasks — word similarity and word analogy. We used the HYPERWORDS tool of
Levy, Goldberg, and Dagan (2015). The results of the evaluation are provided in Table 4
and Table 5. As one can see, the x-subvectors outperform the whole w-vectors in the
similarity tasks and show competitive performance in the analogy tasks. However, the
y-parts demonstrate poor performance in these tasks. This shows that the x-subvectors
carry more semantic information than the y-subvectors.

2. The dataset is available at: https://www.microsoft.com/en-us/download/details
.aspx?id=52319

8

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Data Embeddings Size WordSim MEN M. Turk Rare Words

text8
w := [x;y] 200 .646 .650 .636 .063
Only x 100 .703 .693 .673 .149
Only y 100 .310 .102 .193 .019

enwik9
w := [x;y] 200 .664 .697 .616 .216
Only x 100 .714 .729 .652 .256
Only y 100 .320 .188 .196 .091

Table 4: Evaluation of word vectors and subvectors on the similarity tasks

Data Embeddings Size Google MSR

text8
w := [x;y] 200 .305 .319
Only x 100 .348 .213
Only y 100 .032 .128

enwik9
w := [x;y] 200 .518 .423
Only x 100 .545 .303
Only y 100 .096 .251

Table 5: Evaluation of word vectors and subvectors on the analogy tasks

4.3 y-Subvectors Are Related to Syntax
We train a softmax regression by feeding in the embedding of a current word to predict
its part-of-speech (POS) tag:

P̂OS[t] = softmax(Aw[t] + b)

We evaluate the whole vectors and the subvectors on tagging the Brown corpus with the
Universal POS tags from python nltk package. There are 12 POS tags: NOUN (noun),
V ERB (verb), ADP (adposition), DET (determiner), ADJ (adjective), ADV (adverb),
PRON (pronoun), CONJ (conjunction), PRT (particle), NUM (numeral), X (other).
Words that were not in the vocabulary of text8 and enwik9 were excluded from the
dataset. The resulting accuracies are provided in Table 6.

9

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Embeddings Size
Trained on Trained on
text8 enwik9

w := [x;y] 200 0.9048 .9131
Only x 100 .8099 .8184
Only y 100 .8840 .8927

Table 6: Accuracies on a simplified POS-tagging task.

We can see that the y-subvectors are more suitable for POS-tagging than the x-subvectors,
which means than the y-parts carry more syntactic information than the x-parts.

5 Conclusion
Although word embeddings play a crucial role in NLP tasks, there is a lack of inter-
pretability of each dimension of the word embedding and its structure. Using theoretical
analysis of word embeddings gives us a better understanding of their properties. More-
over, a theory may provide us interesting hypotheses on the nature and structure of word
embeddings, and such hypotheses can be verified empirically as is done in this paper. We
empirically showed that there are parts of word embeddings which are more related to the
semantic role of the word and parts which are related to the syntactic role of the word.
The further step can be identifying these parts of word embedding in original version of
SGNS model.

References
Assylbekov, Zhenisbek, and Rustem Takhanov. 2019. “Context Vectors are Reflections

of Word Vectors in Half the Dimensions.” Journal of Artificial Intelligence Research
66:225–242.

Bruni, Elia, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. 2012. “Distributional
semantics in technicolor.” In Proceedings of ACL, 136–145. Association for Compu-
tational Linguistics.

Finkelstein, Lev, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2002. “Placing search in context: The concept revis-
ited.” ACM Transactions on information systems 20 (1): 116–131.

Levy, Omer, Yoav Goldberg, and Ido Dagan. 2015. “Improving distributional similarity
with lessons learned from word embeddings.” Transactions of the Association for
Computational Linguistics 3:211–225.

10

Semantics- and Syntax-related Subvectors in the Skip-gram Embeddings

Luong, Thang, Richard Socher, and Christopher Manning. 2013. “Better word represen-
tations with recursive neural networks for morphology.” In Proceedings of CoNLL,
104–113.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation
of Word Representations in Vector Space. arXiv: 1301.3781 [cs.CL].

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. “Dis-
tributed representations of words and phrases and their compositionality.” In Pro-
ceedings of NeurIPS, 3111–3119.

Radinsky, Kira, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. 2011.
“A word at a time: computing word relatedness using temporal semantic analysis.”
In Proceedings of the 20th international conference on World wide web, 337–346.
ACM.

11

